掺铒光纤光源及其光谱平坦技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了以掺铒光纤为增益介质的光纤超荧光光源及其光谱的增益平坦技术。设计研制的高平坦度C+L波段掺铒光纤超荧光光源适用于分布式光纤光栅传感系统、长距离光纤通信系统以及光纤陀螺和光纤无源器件测试等领域。本文的分析研究对高平坦度的ASE光源的设计和制作具有一定的指导意义。
     首先对研制掺铒光源所用的掺铒光纤、泵浦激光二极管以及主要光电器件的工作原理和特性作了详细的介绍。对掺铒光纤超荧光光源的特性、基本原理、结构和数学模型作了系统地描述。在介绍C波段和L波段ASE光源的基础上,对C+L波段ASE光源进行了深入的研究。通过对单级单程、单级双程和双级双程结构的C+L波段ASE光源的实验研究和分析,设计了三级双泵浦结构的C+L波段ASE光源。此光源与前面几种结构的C+L波段ASE光源相比,具有更优的性能指标,尤其是输出光谱的平坦度,在不加任何滤波器的情况下,60nm(1543~1603nm)波段范围内光谱的不平坦度<±1.3dB,由于1532nm波长附近的波峰存在,在80nm(1523~1603nm)波段范围内光谱的不平坦度>±3dB。
     然后,针对ASE光源输出光谱的不平坦性,介绍了几种典型的光谱平坦技术方法,其中重点介绍了外部均衡法,即使用增益均衡滤波器实现光谱的高平坦度。研究的滤波器包括:马赫-曾德尔干涉仪型滤波器、长周期光栅(LPFG)以及基于光纤环形镜结构的增益平坦滤波器。对各个滤波器进行了详尽的理论与实验研究,然后总结各自的优缺点。其中,根据设计的光源输出光谱的特点,通过理论计算,利用特制的长周期光栅实现了在80nm(1525~1605nm)波段范围内,输出的C+L波段光谱平坦度<±0.66dB,输出功率较加入LPG之前减小了1.05dB,是较为理想的一种平坦方法。
     结合实验室承担的科研项目,分析了分布式光纤光栅传感检测系统对掺铒光纤超荧光光源性能的要求。将优化设计的光源应用于分布式光纤光栅传感系统中,通过实验证明:使用高平坦度的ASE光源不但可以增加分布式光纤光栅传感系统中的传感器数量,而且有利于FBG传感信号的远距离传输和解调。
     最后,结合论文中的研究情况指出了论文的不足之处,并根据现在国内外的研究现状对掺杂光纤光源相关领域的未来研究方向进行了展望。
The super-fluorescent fiber source (SFS) and the gain flattening technique are studied in this paper. The high flattening fiber soure produced can be applied in the distributed FBG sensing system, the long optical fiber communication systems, fiber optic gyroscope, and so on. The studies of the paper are useful for the design of the high flattening erbium-doped super-fluorescent fiber source.
     First, the article gives a detailed introduction about the erbium-doped fiber, the pumping source as well as the main optoelectronic devices, which compose the SFS. Then, systematically describes parameters、fundamental structures and mathematical model about erbium-doped fiber super-fluorescent source. Based on the studies of the C band and L band ASE, the C+L band ASE is lucubrated. By studying the C+L band ASE of single-stage single-pass, single-stage double-pass and dual-stage double-pass structure, a high flatness C+L band ASE is presented using the three-stage erbium fiber and two pump LDs of 980 nm structure. The flatness of the spectra from 1543nm to 1603nm is less than±1.3dB without using any external spectral filters. But the the flatness of the spectra from 1523nm to 1603nm is more than±3dB, because there is a peak near by 1532nm.
     The typical spectra of erbium-doped fiber source is not a flat spectra containing a high-intensity region and a flat part spectra. In order to make the spectra flat, some gain flatten techniques are introduced. Thereinto, research focus is the gain flatten filter. The filter studies include cascaded Mach-Zehnder Interferometer (MZI) based gain flattening filter, long period fiber gratings (LPFG) and fiber loop mirror. Analyse their working principles theoretically, test their effects by the experiments, and contrast their characteristics. Based on the spectra of designed fiber source, the transmission spectrua of the LPFG can be computed. By utilizing the LPFG built according to the computing result, the flatness of the spectra from 1525nm to 1605nm is less than±0.66dB, the output power is 1.05 dB samller than before. So it is better than others.
     According to the project of our laboratory, the performance of fiber source used in distributed FBG sensing system is analysed. The optimized C+L band ASE is applied in the distributed FBG sensing system, experiment results indicate that the high flatness ASE not only extends the bandwidth for large number of sensor, but also is beneficial to accurate demodulation.
     Finally, the shortages of the study are listed, which definitize the targets and the problems to be solved in the future study.
引文
[1]廖延彪.光纤光学[M].北京:清华大学出版社,2000.
    [2]E.Desurvire,and J.R.SimPson.Amplifieation of Spontaneous Emission in Erbium-doped Single-mode Fibers[J].Lightwaveteehnology,1989,7(5),835~845.
    [3]P.F.Wysoeki,M.J.F.Digolmet,B.Y.Kim.Charaeteristics of Erbium-doped Superfluorescent Fiber Sources for Interferrometric Sensor Applications[J].IEEE Photon Technol.,1994,12(3),550~557.
    [4]P.F.Wysoeki,R.F.Dalman,M.J.F.Digonnet,et al.1.55um Broadband Fiber Sources Pumped near 980nm[J]. Fiber Laser Sources and Amplifiers,1991,1373(1):66~77.
    [5]钱景仁,程旭,朱冰.掺铒光纤超荧光宽带光源的实验研究[J].中国激光,1998,25(11):989~992.
    [6]沈林放,钱景仁,双级后向结构铒光纤超荧光光源的理论分析[J].量子电子学报,2000,17(4):345~349.
    [7]钱景仁,陈登鹏,沈林放等.前向抽运双级双程掺铒光纤宽带光源[J].中国激光,2001,28(12):1075~1078.
    [8]鲍吉龙,张献民,陈抗生等.FBG传感网络技术研究[J].光通信技术,2001,25(2):84~88.
    [9]V.Vali,R.W.Shorthill.Fiber Ring Interferometer[J].Applied Optics,1976,15(5):1099~1100.
    [10]D.E.Thompson,D.B.Anderson,S.K.Yao,et al.Sagnac Fiber-ring Interferometer Gyro with Electronic Phase Sensing Using a/GaAl/As Laser[J]. Applied Physics Letters,1978,33(12):940~941.
    [11]P.R.Morkel,E.M.Taylor,J.E.Townsend,et al.Wavelength Stability of Nd3+-doped Fiber Fluorescent Sources[J].Electron.Lett.,1990,26(13),873~875.
    [12]R.P.Moeller,W.K.Burns,N.J.Frigo.Open-loop Output and Scale Factor Stability in A Fiber Optic Gyroscope [J].Lightwave Technol.,1989,7(2):262~269.
    [13]R.A.Bergh,H.C.Lefevre,H.J.Shaw.Overview of Fiber-optic Gyroscope[J]. Lightwave Technol.,1984, 2(2),91~107.
    [14]H.C.Lefevre.Fiber-optic Gyroscope[J].Optical Fiber Sensors:Systems and Applications,1989,2: 381~429.
    [15]R.Kaskyap,R.Wyatt,R.J.Campbell.Wideband Gain Flattened Erbium Fiber Amplifier Using A Photosens-itive Fibre Blazed Grating[J].Electron.Lett.,1993,29(2):154~156.
    [16]R.Kaskyap,R.Wyatt,P.F.Mckee.Wavelength Flatten Saturated Erbium Amplifier Using Multiple Side-tap Bragg Gratings[J]. Electron.Lett.,1993,29(11):1025~1026.
    [17]葛春风.光纤通讯系统中的部分关键技术[D].天津大学博士后研究工作报告,2002.
    [18]Y.W.Lee,J.Nilsson,S.T.Hwang,et al.Experimental Characterization of A Dynamically Gain-flattened Erbium-doped Fiber Amplifier[J].IEEE Photon.Tech.Lett,1996,8(12):1612~1614.
    [19]Shenping Li, K S Chiang, W A. Gambling.Gain Flattening of An Erbium-doped Fiber Amplifier Using
    A Highbirefringence Fiber Loop Mirror[J].Photonics Technology Letters,2001,13(9):942-944.
    [20]Shien-Kuei Liaw,Yung-Kuang Chen.Passive Gain-Equalized Wide-Band Erbium-Doped Fiber Amplifier Using Samarium-Doped Fiber[J].IEEE Photon.Technol.Lett.,1996,8(7):879~881.
    [21]Yi Bin Lu,P.I.Chu.Gain Flattening by Using Dual-Core Fiber in Erbium-Doped Fiber Amplifier [J]. IEEE Photon.Technol.Lett.,2000,12(12),1616~1617.
    [22]葛春风.全光纤波分复用通信系统中关键技术的研究[D].南开大学博士研究生学位论文,1999.
    [23]赵勇.光纤光栅及其传感技术[M].北京:国防工业出版,2007.
    [24]A.D.Kersey,M.A.Davis,H.J.Patriek,et al.Fiber Grating Sensors[J].Lightwave Technol.,1997,15(8): 1442-1463.
    [25]S.W.James,R.P.Tatam.Optical Fibre Long-Period Grating Sensors:Characteristics and Application[J]. Meas.Sci.Technol.,2003,14(5):49~61
    [26]王天枢,李军,郭玉彬等.信噪比可调谐环形掺铒光纤激光器的研究[J].激光杂志,2003,24(6):25~26.
    [27]张明德,孙小苗.光纤通信原理与系统[M].南京:东南大学出版社,1996.
    [28]Djafar K.Mynbaev.LowellL.Scheiner. Fiber-Optic Communications Technology [M].徐公权等译.北京:机械工业出版社,2002,15~18.
    [29]廖延彪.偏振光学[M].北京:科学出版社,2003.
    [30]蒙红云,高伟清,刘艳格等.基于光纤环形镜的L-波段掺铒光纤放大器增益的提高[J].中国激光,2004,31(7):825~828.
    [31]黎敏,田芋,廖延彪.飞速发展中的光纤陀螺技术[J].光学精密工程,1998,6(3):1-9.
    [32]高伟清,蒙红云,刘艳格等.一种新颖的反射结构高功率超宽带光纤光源[J].中国激光,2004,31(5):591~594.
    [33]Douglas C.Hall,William K.Burns,Robert P.Moeller,et al. High-sability Er-doped superfluorescent fiber sources[J].Lightwave Technology,1995,13(7):1452~1460.
    [34]W.C.Huang, H.Ming. Simulation Analysis of One-Stage C+L-band Erbium-doped Fiber ASE with Double-pass Bi-directional pumping configuration[J].Chinese Optics Letters,2004,2(3):125~127.
    [35]G.F.Hou,Y.G..Li,CH.P.Fu.Rare-earth-doped Fiber Superfluorescent Source[J].Laser Journal,2002,23(1): 17~20(in Chinese).
    [36]L.A.Wang,C.D.Chen.Stable and Broadband Er-doped Superfluorescent Fiber Sources Using Double-pass Backward Configuration[J].Electron.Lett.,1996,32(19):1815~1817.
    [37]沈林放,钱景仁.高稳定宽频带掺铒光纤超荧光光源[J].光学学报,2001,21(3):300~304.
    [38]黄文财,明海,谢建平等.L波段掺铒光纤超荧光光源和放大器研究[J].光电工程,2002,29(6):50~52.
    [39]陈爽,冯莹,魏立安.超宽带ASE光纤光源研究[J].光电子技术与信息,2005,18(3):49~51.
    [40]王秀琳,明海,王安廷等.单级结构C+L波段掺铒光纤宽带光源[J].中国激光,2006,33(2):166~170.
    [41]王天枢,王珂,郭玉彬等.高平坦C+L波段掺Er光纤超荧光光源实验研究[J].光电子·激光,2006,17(7):821~823.
    [42]郭小东,乔学光,贾振安等.一种C+L波段高功率掺铒光纤宽带光源[J].中国激光,2005,32(5):609~612.
    [43]王秀琳,黄文财.新颖的双通道输出高功率掺铒光纤宽带光源[J].光子学报,2007,36(1):124~127.
    [44]Yoshida.S,Kuwano.S,Iwashita.K.Gain-flattened EDFA with High Al Concentration for Multistage Repeatered WDM Transmission Systems[J].Electron.Lett.,1995,31(20):1765~1767.
    [45]M.R.X.Barros,GNykolak,D.J.DiGiovanni et al.Performance of a high concentration erbium-doped alumino silicate fiber amplifier[J].IEEE Photon.Technol.Lett.,1996,8(6):761~763.
    [46]Chbat.M,Artigaud.S,Bayart,et al.Systems Aspects of Fluoride-based EDFAs[C].Dallas,TX:Optical Fiber Communication,1997.83~84.
    [47]Y.Ohishi, A.Mori, M.Yamada et al.Gain Characteristics of Tellurite-based Erbium-doped Fiber Amplifiers for 1.5-μm Broadband Amplification[J].Optics Letters,1998,23(4):274~276.
    [48]A.Mori,T.Sakamoto,K.Shikano et al.Gain Flattened Erbium-doped Tellurite Fiber Amplifier for WDM Signals in The 1581-1616nm Wavelength Region[J],Electron.Lett.,2000,36:621.
    [49]YiBinLu,P.L.Chu.A Gain-flattened L-band Dual-core Erbium-doped Fiber Amplifier[J].Optics Commu-nications.2003,220:303~308.
    [50]YiBinLu,P.L.chu,A.Alphones,P.Shum.A 105-nm Ultrawide-band Gain-flattened Amplifier Combining C-and L-band Dual-core EDFAs in A Parallel Configuration,IEEE Photon.Technol.Lett.,2004,16(7): 1640~1642.
    [51]肖艳红,厉群,韩岩等.用于级连EDFA增益谱平坦的滤波器透过谱设计的迭代算法[J].中国激光,2001,28(3):265~268.
    [52]肖悦娱,何赛灵.一种级联马赫曾德尔滤波器设计的新方法[J].光学学报,2004,24(3):346~350.
    [53]W S Lu, Y. Cui, R L. Kirlin. Least Pth Optimization for the Design of 1-D Filters with Arbitrary Amplitude and Phase Response[A].International Conference on Acon-stics,Speech and Signal Processing/ICASSP 93[C].Minneapolis:IEEE,1993:61-64.
    [54]邹喜华,潘炜,罗斌等.基于PSO的级联马赫-曾德尔型光滤波器优化设计[J].电子学报,2007,35(2):216~219.
    [55]吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416~420.
    [56]M.Zirngibl.Gain Control in Erbium-doped Fibre Amplifiers by An All-optical Feedback Loop[J]. Electron.Lett.,1991,27(7),560~561.
    [57]D.B.Mortimore.Fiber Loop Reflectors[J].Lightwave Technology,1988,6(7):1217~1224.
    [58]方伟.基于高双折射光纤环镜的波长交错器研究[D].天津:天津理工大,2006.32~39.
    [59]冯素娟,尚亮,毛庆和.利用偏振控制器连续调节光纤环镜的反射率[J].物理学报,2007,56(8):4679~4684.
    [60]K. Morishita, K. Shimamoto.Wavelength-selective Fiber Loop Mirrors and Their Wavelength Tunability by Twisting[J].Journal of Lightwave Technology,1995,13(11):2276~2281.
    [61]柳春郁,叶红安,曹雪.用于光纤光栅解调的波长敏感光纤耦合器[J].光学学报,2006,26(11):1622~16525.
    [62]靳伟,阮双深.光纤传感技术新发展[M].北京:科学出版社,2005:252~287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700