基于序列数据的太阳耀斑预报方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳耀斑作为最剧烈的太阳活动形式之一,它的爆发直接影响空间和地球的环境,进而影响人类的生产和生活。因此,耀斑预报的研究具有重大的实用价值。随着观测手段和设备的不断改进,人们能够得到大量的太阳观测数据。如何从海量的观测数据中获得知识、建立预报模型成为太阳物理研究中的一个关键的问题。本文基于太阳活动区光球磁场观测和耀斑观测数据,研究了自动知识发现和预报模型建立的方法。具体从以下几个方面进行了探索:
     (1)在建模理论的指导下,确定模型的动态特性,给出需要引入的观测序列的长度,并给出基于滑动窗方法的耀斑预报模型。相对于现阶段使用的耀斑模型,本文给出的耀斑预报模型能够反映活动区观测的动态信息对耀斑的影响,是一个动态模型。考虑到活动区的演化信息,耀斑预报的建模问题可以看成是机器学习中的贯序监督学习问题。本文利用滑动窗方法,将贯序监督学习问题转化为一般的监督学习问题加以解决,并验证了预报因子序列在预报模型中的重要作用。
     (2)构造光球磁场序列的多尺度预报因子。为了更加全面地反映活动区光球磁场序列的演化特性及其对耀斑预报的影响,本文基于极大重叠离散小波变换和序列特征提取方法构造了耀斑的多尺度预报因子。相对于现有的从活动区磁图中提取出的空间多尺度预报因子,本文第一次构造出反映活动区时间演化特性的多尺度预报因子。利用信息论中信息增益率的概念,定量地刻画了多尺度预报因子的耀斑预报能力。并给出具有较强预报能力的多尺度预报因子的物理解释。选择预报能力强的多尺度预报因子,建立了基于多尺度预报因子的太阳耀斑预报模型,验证了多尺度预报因子的重要作用。
     (3)建立耀斑预报的不确定性规则模型。由于对耀斑的物理本质认识得不够深入,现阶段提取的预报因子与预报模型仅存在一定的概率依赖关系。为了更好地表达这种关系,利用贝叶斯网方法从观测数据中建立了耀斑预报的不确定性规则模型,并给出所建模型的物理解释。相对于现有的活动区观测特征与耀斑间的确定性关系,本文首次从数据中学习到活动区观测与耀斑间的不确定性关系。该方法不仅可以用来建立耀斑预报模型,更重要的是它还可以用于观测数据中的知识发现。面对日益增多的观测变量和观测数据量,这无疑是一个有重要意义的研究方向。
     (4)提出预报因子组的概念,基于多个预报因子组建立了耀斑预报的多模型融合模型。相对于现有预报模型以单个预报因子为基本的输入单元,本文首次提出预报因子组的概念,解释了形成预报因子组的合理性,并将预报因子组作为耀斑预报模型的基本输入单元。由于预报因子组的不唯一性,为每个预报因子组建立一个耀斑预报的基模型,然后将这些模型的结果组合起来,形成耀斑预报的多模型融合模型。
Solar ?are is one of the most severe solar activities. It in?uences the space weatherand some activities on the Earth, so it is valuable to predict the level of solar ?ares.With the development of the observational instruments, large amounts of data is obtained.One of the most important scientific problems is how to extract knowledge and buildprediction model from the data. This problem is discussed and the main contributions ofthis dissertation are listed as follows:
     (1) Under the guidance of the modeling method, the dynamic characteristics ofthe prediction model are determined, and the prediction model with the sliding windowmethod is built. Comparing with the current prediction models, the proposed model,which can re?ect the evolutionary information of the photospheric magnetic field in theactive regions, is a dynamic model. Taking into account the evolutionary information ofactive regions, building a ?are prediction model can be viewed as a sequential supervisedlearning problem in machine learning. Here, the sequential supervised learning problemis transformed into the standard supervised learning problem, and the importance of thesequence of predictors is validated.
     (2) Multiscale predictors of photospheric magnetic field are proposed. In order tofully describe the in?uence of the evolution of photospheric magnetic field in active re-gions on the eruption of solar ?ares, multiscale predictors are constructed using maximumoverlap discrete wavelet transform and sequential feature extraction method. Compar-ing with the existing multiscale predictors extracted from photospheric magnetograms,the proposed multiscale predictors re?ect the evolutionary characteristics of photosphericmagnetic field. The predictability of the proposed multiscale predictors is quantitativelyestimated by information gain ratio, and the physical explanation of these predictors isgiven. Using these predictors, the solar ?are prediction model is built, and the effective-ness of these predictors is validated.
     (3) The uncertainty prediction model of solar ?ares is established. Because of thelimitation on the physical understanding of solar ?ares, the predictors probabilisticallyrelate to the eruption of ?ares. Bayesian network learned from the observational data isused to express these relationships, and the physical interpretation of this model is given. Comparing with existing models with the deterministic relationships, the uncertainty pre-diction model of solar ?ares is firstly developed. This model not only can be used toforecast the eruption of ?ares, but also can be used for knowledge discovery from theobservational data. For the increasing quantity of the observed data, this will become animportant research direction.
     (4) The concept of predictor teams is proposed, and the multiple prediction modelsbuilt by predictor teams are fused. The predictor team is firstly proposed and the reason-ability of the predictor team is explained. The base prediction models of solar ?ares arebuilt using predictor teams, and then these base models are fused to generate a compre-hensive prediction model.
引文
1赵新华.日地扰动事件的统计分析及相关预报方法的综合研究[D].北京:中国科学院研究生院(空间科学与应用研究中心), 2007:1–23.
    2李蓉.人工智能在太阳活动预报中的应用[D].北京:中国科学院研究生院(国家天文台), 2007:27–50.
    3 J. Han and M. Kalnber原著,范明,盂小峰译.数据挖掘概念与技术[M].第二版.,北京:机械工业出版社, 2007:1–25.
    4王劲松,焦维新.空间天气灾害[M].气象出版社, 2009:1–8.
    5国家自然科学基金委员会主编.中国空间天气战略计划建议[M].中国科学技术出版社, 2004:13–15.
    6 H. Koskinen, L. Eliasson, B. Holback, et al. Space Weather and Interactions withSpacecraft[J]. SPEE Final Report, FMI, Helsinki, 1999:18–31.
    7 L. Lanzerotti. Space Weather Effects on Communications[J]. Space storms andspace weather hazards, 2001:247–268.
    8 G. Hajj, L. Lee, X. Pi, L. Romans, W. Schreiner, P. Straus, C. Wang. COSMIC GPSIonospheric Sensing and Space Weather[J]. Terrestrial atmospheric and oceanicsciences, 2000, 11(1):235–272.
    9 H. Koskinen, E. Tanskanen, R. Pirjola, A. Pulkkinen, C. Dyer, D. Rodgers, P. Can-non, J. Mandeville, D. Boscher, A. Hilgers. Space Weather Effects Catalogue[J].ESA Space Weather Programme Feasibility Studies, FMI, QinetiQ, RAL Consor-tium, 2001:20–23.
    10 N. Crosby. Space Weather and the Earth’s Climate[C]. Astrophysics and SpaceScience Library. 2001, 259:95–100.
    11 I. Sammis, F. Tang, H. Zirin. The Dependence of Large Flare Occurrence on theMagnetic Structure of Sunspots[J]. The Astrophysical Journal, 2000, 540:583–587.
    12 P. McIntosh. The Classification of Sunspot Groups[J]. Solar Physics, 1990,125(2):251–267.
    13 T. Atac. Statistical Relationship between Sunspots and Major Flares[J]. Astro-physics and Space Science, 1987, 129(1):203–208.
    14 V. Abramenko, V. Yurchyshyn, H. Wang, T. Spirock, P. Goode. Scaling Behaviorof Structure Functions of the Longitudinal Magnetic Field in Active Regions on theSun[J]. The Astrophysical Journal, 2002, 577:487–495.
    15 R. Komm, F. Hill. Solar Flares and Solar Subphotospheric Vorticity[J]. Journal ofGeophysical Research-Space Physics, 2009, 114(A6):A06105.
    16 M. Hagyard. The Significance of Vector Magnetic Field Measurements[J]. SocietaAstronomica Italiana, 1990, 61(2):337–357.
    17 B. Schmieder, M. Hagyard, G. Ai, H. Zhang, B. Kalman, L. Gyori, B. Rompolt,P. Demoulin, M. Machado. Relationship between Magnetic Field Evolution andFlaring Sites in AR 6659 in June 1991[J]. Solar Physics, 1994, 150(1):199–219.
    18 M. Wheatland. A Test to Confirm the Source of Energy for Solar Flares[J]. Publi-cations Astronomical Society Of Australia, 2001, 18(4):351–354.
    19 Y. Cui, R. Li, L. Zhang, Y. He, H. Wang. Correlation between Solar Flare Productiv-ity and Photospheric Magnetic Field Properties[J]. Solar Physics, 2006, 237(1):45–59.
    20 J. Drake. Characteristics of Soft Solar X-ray Bursts[J]. Solar Physics, 1971,16(1):152–185.
    21 M. Aschwanden, B. Dennis, A. Benz. Logistic Avalanche Processes, ElementaryTime Structures, and Frequency Distributions in Solar Flares[J]. The AstrophysicalJournal, 1998, 497:972–993.
    22 T. Bai. Variability of the Occurrence Frequency of Solar Flares as a Function ofPeak Hard X-ray Rate[J]. Astrophysical Journal, 1993, 404(2):805–809.
    23 M. Wheatland. A Bayesian Approach to Solar Flare Prediction[J]. The Astrophys-ical Journal, 2004, 609:1134–1139.
    24 M. Wheatland. A Statistical Solar Flare Forecast Method[J]. Space Weather, 2005,3:S07003.
    25 A. Bartkowiak, M. Jakimiec. Distance-based Regression in Prediction of SolarFlare Activity[J]. Questiio, 1994, 18(1):7–38.
    26 P. Bornmann, D. Shaw. Flare Rates and the Mcintosh Active-region Classifica-tions[J]. Solar Physics, 1994, 150(1):127–146.
    27 H. Zirin, W. Marquette. BEARALERTS: A Successful Flare Prediction System[J].Solar Physics, 1991, 131(1):149–164.
    28 P. Gallagher, Y. Moon, H. Wang. Active-Region Monitoring and Flare ForecastingI. Data Processing and First Results[J]. Solar Physics, 2002, 209(1):171–183.
    29 R. Miller, O. Hillsburgh. WOLF―A Computer Expert System for Sunspot Clas-sification and Solar Flare Prediction[J]. Knowledge-based Systems in Astronomy,1989:107–120.
    30 K. Leka, G. Barnes. Photospheric Magnetic Field Properties of Flaring VersusFlare-quiet Active Regions. II. Discriminant Analysis[J]. The Astrophysical Jour-nal, 2003, 595:1296–1306.
    31 G. Barnes, K. Leka, E. Schumer, D. Della-Rose. Probabilistic Forecasting of SolarFlares from Discriminant Analysis of Vector Magnetogram Data[J]. Space Weather,2007, 5:S09002.
    32 G. Bradshaw, R. Fozzard, L. Ceci. A Connectionist Expert System That ActuallyWorks[J]. Advances in Neural Information Processing Systems, 1989, 1:248–255.
    33 R. Qahwaji, T. Colak. Automatic Short-term Solar Flare Prediction Using MachineLearning and Sunspot Associations[J]. Solar Physics, 2007, 241(1):195–211.
    34 M. Nunez, R. Fidalgo, M. Baena, R. Morales. The In?uence of Active RegionInformation on the Prediction of Solar Flares: An Empirical Model Using DataMining[C]. Annales Geophysicae. 2005, 23:3129–3138.
    35张桂清,王家龙.活动区磁位形特征的物理分析[J].地球物理学进展, 1994,9:54–60.
    36 C. Zhu, J. Wang. Verification of Short-term Predictions of Solar Soft X-ray Burstsfor the Maximum Phase (2000–2001) of Solar Cycle 23[J]. Chinese Journal ofAstronomy and Astrophysics, 2003, 3:563–568.
    37 R. Li, H. Wang, H. He, Y. Cui, Z. Du. Support Vector Machine Combined withK-nearest Neighbors for Solar Flare Forecasting[J]. Chinese Journal of Astronomyand Astrophysics, 2007, 7:441–447.
    38 H. Wang, Y. Cui, R. Li, L. Zhang, H. Han. Solar Flare Forecasting Model Supportedwith Artificial Neural Network Techniques[J]. Advances in Space Research, 2008,42(9):1464–1468.
    39 S. Weiss, C. Kulikowski. Computer Systems That Learn: Classification and Pre-diction Methods from Statistics, Neural Nets, Machine Learning, and Expert Sys-tems[M]. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1991:1–25.
    40 A. Freitas. A Genetic Programming Framework for Two Data Mining Tasks: Clas-sification and Generalized Rule Induction[J]. Genetic programming, 1997:96–101.
    41 X. Yin, J. Han. CPAR: Classification Based on Predictive Association Rules[C].Proceedings of the third SIAM international conference on data mining. 2003:331–335.
    42 J. Grabmeier, A. Rudolph. Techniques of Cluster Algorithms in Data Mining[J].Data Mining and Knowledge Discovery, 2002, 6(4):303–360.
    43 R. Ng, J. Han. Efficient and Effective Clustering Methods for Spatial Data Min-ing[C]. Proceedings of the International Conference on Very Large Data Bases.1994:144–144.
    44 P. Bradley, U. Fayyad, C. Reina, et al. Scaling Clustering Algorithms to LargeDatabases[J]. Knowledge Discovery and Data Mining, 1998:9–15.
    45蔡伟杰,张晓辉.关联规则挖掘综述[J].计算机工程, 2001, 27(005):31–33.
    46 R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules[C]. Proc.
    20th Int. Conf. Very Large Data Bases, VLDB. 1994, 1215:487–499.
    47陈昊,王熙照,袁方,湛燕. Lazy和Eager分类算法的比较研究[J].计算机工程与应用, 2004, 40(004):72–73.
    48 Z. Liu, W. Wang, Y. Zhang. Research on Eager Classification and Lazy Classifica-tion[J]. Minimicro Systems, 2002, 23(12):1489–1491.
    49 A. Veloso, W. Meira Jr. Eager, Lazy and Hybrid Algorithms for Multi-criteriaAssociative Classification[C]. Anais do Workshop sobre Algoritmos de Minerac?aode Dados (WAMD). 2005:17–25.
    50 C. Westphal, T. Blaxton. Data Mining Solutions[M]. Wiley New York, 1998.
    51 N. Roussopoulos, S. Kelley, F. Vincent. Nearest Neighbor Queries[C]. Proceed-ings of the 1995 ACM SIGMOD international conference on Management of data.1995:71–79.
    52 Z. Song, N. Roussopoulos. K-nearest Neighbor Search for Moving Query Point[J].Lecture notes in computer science, 2001:79–96.
    53 S. Berchtold, C. Bohm, D. Keim, H. Kriegel. A Cost Model for Nearest Neigh-bor Search in High-dimensional Data Space[C]. Proceedings of the sixteenthACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems.1997:78–86.
    54 A. Hinneburg, C. Aggarwal, D. Keim. What Is the Nearest Neighbor in High Di-mensional Spaces[C]. Proceedings of the 26th International Conference on VeryLarge Data Bases. 2000:506–515.
    55 D. Lowe. Similarity Metric Learning for a Variable-kernel Classifier[J]. Neuralcomputation, 1995, 7(1):72–85.
    56 W. McCulloch, W. Pitts. A Logical Calculus of the Ideas Immanent in NervousActivity[J]. Bulletin of Mathematical Biology, 1943, 5(4):115–133.
    57 D. Hebb. The Organization of Behavior[J]. Neurocomputing: Foundations of Re-search, 1988:484–507.
    58 F. Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage andOrganization in the Brain[J]. Psychological review, 1958, 65(6):386–408.
    59 B. Widrow, M. Hoff. Adaptive Switching Circuits[J]. IRE WESCON ConventionRecord, 1960:96–104.
    60 P. Werbos. Beyond Regression: New Tools for Prediction and Analysis in theBehavioral Sciences[D]. Massachusetts:Harvard University, 1974:1–50.
    61 J. Hopfield. Neural Networks and Physical Systems with Emergent Collective Com-putational Abilities[J]. Proceedings of the national academy of sciences, 1982,79(8):25–54.
    62 T. Kohonen. Self-organized Formation of Topologically Correct Feature Maps[J].Biological cybernetics, 1982, 43(1):59–69.
    63 G. Carpenter, S. Grossberg. A Massively Parallel Architecture for a Self-organizingNeural Pattern Recognition Machine[J]. Computer vision, graphics, and imageprocessing, 1987, 37(1):54–115.
    64 E. Bertin, S. Arnouts. SExtractor: Software for Source Extraction[J]. Astronomyand Astrophysics Supplement Series, 1996, 117(2):393–404.
    65 S. Andreon, G. Gargiulo, G. Longo, R. Tagliaferri, N. Capuano. Wide Field Imag-ing. I[J]. Applications of neural networks to object detection and star/galaxy clas-sification. MNRAS, 2000, 319:700–716.
    66 E. Vieira, J. Ponz. Automated Spectral Classification Using Neural Networks[C].Astronomical Data Analysis Software and Systems. 1998, 145:508–511.
    67 S. Goderya, S. Lolling, R. Ahmed. Automated Morphological Classification ofGalaxies Using Computer Vision and Artificial Neural Networks: A Descriptionof the Computational Scheme[C]. Bulletin of the American Astronomical Society.1999, 31:832–836.
    68周志华,陈世福.神经网络规则抽取[J].计算机研究与发展, 2002,39(004):398–405.
    69 S. Gallant. Connectionist Expert Systems[J]. Communications of the ACM, 1988,31(2):152–169.
    70 E. Hunt. Concept Learning: An Information Processing Problem[M]. RE Krieger,1974:491–492.
    71 L. Breiman. Classification and Regression Trees[M]. Chapman & Hall/CRC,1984:1–49.
    72 J. Quinlan. Induction of Decision Trees[J]. Machine learning, 1986, 1(1):81–106.
    73 J. Quinlan. C4. 5: Programs for Machine Learning[M]. Morgan Kaufmann,2003:1–30.
    74 M. Mehta, R. Agrawal, J. Rissanen. SLIQ: A Fast Scalable Classifier for DataMining[J]. Lecture Notes in Computer Science, 1996, 1057:18–34.
    75 J. Shafer, R. Agrawal, M. Mehta. SPRINT: A Scalable Parallel Classifier for DataMining[C]. Proceedings of the International Conference on Very Large Data Bases.1996:544–555.
    76 R. Rastogi, K. Shim. Public: A Decision Tree Classifier That Integrates Buildingand Pruning[J]. Data Mining and Knowledge Discovery, 2000, 4(4):315–344.
    77 L. Zadeh. Fuzzy Sets as a Basis for a Theory of Possibility[J]. Fuzzy sets andsystems, 1999, 100:9–34.
    78 Z. Pawlak. Rough Set Approach to Knowledge-based Decision Support[J]. Euro-pean Journal of Operational Research, 1997, 99(1):48–57.
    79胡笑旋.贝叶斯网建模技术及其在决策的应用[D].合肥:合肥工业大学,2006:18–26.
    80 M. Wellman, J. Breese, R. Goldman. From Knowledge Bases to Decision Mod-els[J]. The Knowledge Engineering Review, 2009, 7(01):35–53.
    81 T. Dietterich. Machine Learning for Sequential Data: A Review[J]. Lecture Notesin Computer Science, 2002:15–30.
    82 C. Lee, C. Lin, M. Chen. Sliding-window Filtering: An Efficient Algorithm forIncremental Mining[C]. Proceedings of the tenth international conference on Infor-mation and knowledge management. 2001:270–277.
    83 F. Harary, G. Gupta. Dynamic Graph Models[J]. Mathematical and ComputerModelling, 1997, 25(7):79–88.
    84胡文瑞,林元章,吴林襄.太阳耀斑[M].科学出版社, 1983:20–53.
    85方成,丁明德,陈鹏飞.太阳活动区物理[M].南京大学出版社, 2008:1–30.
    86 T. Nguyen, C. Willis, D. Paddon, S. Nguyen, H. Nguyen. Learning Sunspot Clas-sification[J]. Fundamenta Informaticae, 2006, 72(1):295–309.
    87崔延美.太阳光球磁场特性与耀斑相关性研究[D].北京:中国科学院研究生院(国家天文台), 2007:55–70.
    88 H. Wang, J. Wang. Two-dimensional Magnetic Singular Points and Flares in SolarActive Regions[J]. Astronomy And Astrophysics, 1996, 313:285–296.
    89 D. Anosov, V. Arnold, S. Aranson, I. Bronshtein, V. Grines, Y. Il’Yashenko. Ordi-nary Differential Equations and Smooth Dynamical Systems[M]. Springer Verlag,1997:101–123.
    90 Y. Cui, R. Li, H. Wang, H. He. Correlation between Solar Flare Productivityand Photospheric Magnetic Field Properties II. Magnetic Gradient and MagneticShear[J]. Solar Physics, 2007, 242(1):1–8.
    91 B. Welsch, Y. Li, P. Schuck, G. Fisher. Relationship Between Photospheric FlowFields and Solar Flares[J]. The Astrophysical Journal, 2009, 705:821–843.
    92 B. Olstad, A. Torp. Encoding of a Priori Information in Active Contour Models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(9):863–872.
    93 L. Aguirre, P. Donoso-Garcia, R. Santos-Filho. Use of a Priori Information in theIdentification of Globalnonlinear Models-a Case Study Using a Buck Converter[J].IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applica-tions, 2000, 47(7):1081–1085.
    94 D. Yu, Q. Hu, C. Wu. Uncertainty Measures for Fuzzy Relations and Their Appli-cations[J]. Applied Soft Computing Journal, 2007, 7(3):1135–1143.
    95 L. Golab, D. DeHaan, E. Demaine, A. Lopez-Ortiz, J. Munro. Identifying FrequentItems in Sliding Windows Over On-line Packet Streams[C]. Proceedings of the 3rdACM SIGCOMM conference on Internet measurement. 2003:173–178.
    96 J. Chang, W. Lee. A Sliding Window Method for Finding Recently Frequent Item-sets Over Online Data Streams[J]. Journal of Information Science and Engineering,2004, 20(4):753–762.
    97 Y. Liu, Y. Fang, X. Zhu. Modeling of Hydraulic Turbine Systems Based on aBayesian-gaussian Neural Network Driven by Sliding Window Data[J]. Journal ofZhejiang University-Science C, 2010, 11(1):56–62.
    98赵培,谷立臣.基于LVQ神经网络的异步电动机故障诊断[J].机械制造与自动化, 2010, 39(1):172–174.
    99 W. Hou, B. Yang, C. Wu, Z. Zhou. RedTrees: A Relational Decision Tree Algorithmin Streams[J]. Expert Systems with Applications, 2010:6265–6269.
    100张文修,吴伟志,梁吉业,李德玉.粗糙集理论与方法[M].科学出版社,2001:123–130.
    101 M. Dash, H. Liu. Consistency-based Search in Feature Selection[J]. ArtificialIntelligence, 2003, 151(1-2):155–176.
    102胡清华.混合数据知识发现的粗糙计算模型和算法[D].哈尔滨:哈尔滨工业大学, 2008:191–191.
    103 T.M. Mitchell原著,曾华军,张银奎译.机器学习[M].北京:机械工业出版社,2003:48–55.
    104 R. Kohavi. A Study of Cross-validation and Bootstrap for Accuracy Estimation andModel Selection[C]. International joint Conference on artificial intelligence. 1995,14:1137–1145.
    105 M. Bartlett. Contingency Table Interactions[J]. Supplement to the Journal of theRoyal Statistical Society, 1935, 2(2):248–252.
    106 E. Simpson. The Interpretation of Interaction in Contingency Tables[J]. Journal ofthe Royal Statistical Society. Series B (Methodological), 1951:238–241.
    107高隆昌,杨元.数学建模基础理论[M].科学出版社, 2007:65–70.
    108 G. Yu, S. Kamarthi. A Cluster-based Wavelet Feature Extraction Method and itsApplication[J]. Engineering Applications of Artificial Intelligence, 2010.
    109 D.B. Percival and A.T. Walden原著,程正兴译.时间序列分析的小波方法[M].第一版.,北京:机械工业出版社, 2006:50–60.
    110 A. Walden. Wavelet Analysis of Discrete Time Series[J]. Progress In Mathematics,2001, 202:627–641.
    111胡柏炅.时频分析的Hilbert Huang变换及小波方法[D].上海:华东师范大学,2008:27–30.
    112 D. Percival, P. Guttorp. Long-memory Processes, the Allan Variance andWavelets[J]. Wavelets in Geophysics, 1994, 4:325–344.
    113 A. Bruce, H. Gao, A. Bruce. Applied Wavelet Analysis with S-plus[M]. SpringerNew York, 1996:23–65.
    114 R. Coifman, D. Donoho. Translation-invariant De-noising[J]. Lecture Notes InStatistics, 1995:125–125.
    115 J. Liang, T. Parks. A Translation-invariant Wavelet Representation Algorithm With-applications[J]. IEEE Transactions on Signal Processing, 1996, 44(2):225–232.
    116 S. Del Marco, J. Weiss. Improved Transient Signal Detection Using a Wavepacket-based Detector with an Extended Translation-invariant Wavelet Transform[J]. IEEETransactions on Signal Processing, 1997, 45(4):841–850.
    117 M. Unser. Texture Classification and Segmentation Using Wavelet Frames[J]. IEEETransactions on image processing, 1995, 4(11):1549–1560.
    118 G. Nason, B. Silverman. The Stationary Wavelet Transform and some StatisticalApplications[J]. Lecture Notes In Statistics, 1995:281–281.
    119 J. Pesquet, H. Krim, H. Carfantan. Time-invariant Orthonormal Wavelet Represen-tations[J]. IEEE Transactions on Signal Processing, 1996, 44(8):1964–1970.
    120 J. Heyvaerts, E. Priest, D. Rust. An Emerging Flux Model for the Solar FlarePhenomenon[J]. Astrophysical Journal, 1977, 216(1):123–137.
    121 N. Nitta, H. Hudson. Recurrent Flare/ CME Events from an Emerging Flux Re-gion[J]. Geophys. Res. Lett, 2001, 28:3801–3804.
    122 L. Green, P. De′moulin, C. Mandrini, L. Van Driel-Gesztelyi. How Are EmergingFlux, Flares and Cmes Related to Magnetic Polarity Imbalance in Midi Data?[J].Solar Physics, 2003, 215(2):307–325.
    123方成,丁明德,陈鹏飞.太阳活动区物理[M].南京大学出版社, 2008:185–200.
    124 J. Ireland, C. Young, R. McAteer, C. Whelan, R. Hewett, P. Gallagher. Multires-olution Analysis of Active Region Magnetic Structure and its Correlation withthe Mount Wilson Classification and Flaring Activity[J]. Solar Physics, 2008,252(1):121–137.
    125张连文,郭海鹏.贝叶斯网引论[M].科学出版社, 2006:87–100.
    126 J. Li, G. Serpen, S. Selman, M. Franchetti, M. Riesen, C. Schneider. Bayes NetClassifiers for Prediction of Renal Graft Status and Survival Period[J]. InternationalJournal of Medicine and Medical Sciences, 2010, 1(4):144–150.
    127 G. Cooper, E. Herskovits. A Bayesian Method for the Induction of ProbabilisticNetworks from Data[J]. Machine learning, 1992, 9(4):309–347.
    128 N. Japkowicz, S. Stephen. The Class Imbalance Problem: A Systematic Study[J].Intelligent Data Analysis, 2002, 6(5):429–449.
    129 R. Barandela, J. Sa′nchez, V. Garc?a, E. Rangel. Strategies for Learning in ClassImbalance Problems[J]. Pattern Recognition, 2003, 36(3):849–851.
    130 G. Batista, R. Prati, M. Monard. A Study of the Behavior of Several Methodsfor Balancing Machine Learning Training Data[J]. ACM SIGKDD ExplorationsNewsletter, 2004, 6(1):20–29.
    131 A. Orriols, E. Bernado′-Mansilla. The Class Imbalance Problem in Learning Clas-sifier Systems: A Preliminary Study[C]. Proceedings of the 2005 workshops onGenetic and evolutionary computation. 2005:74–78.
    132 D. Li, C. Liu, S. Hu. A Learning Method for the Class Imbalance Problem withMedical Data Sets[J]. Computers in Biology and Medicine, 2010:509–518.
    133 T. Khoshgoftaar, N. Seliya, D. Drown. Evolutionary Data Analysis for the ClassImbalance Problem[J]. Intelligent Data Analysis, 2010, 14(1):69–88.
    134欧阳震诤,罗建书,胡东敏,吴泉源.一种不平衡数据流集成分类模型[J].电子学报, 2010, 38(1).
    135 K. Leka, G. Barnes. Photospheric Magnetic Field Properties of Flaring VersusFlare-quiet Active Regions. IV. A Statistically Significant Sample[J]. The Astro-physical Journal, 2007, 656:1173–1186.
    136 T. Colak, R. Qahwaji. Automated Solar Activity Prediction: A Hybrid ComputerPlatform Using Machine Learning and Solar Imaging for Automated Prediction ofSolar Flares[J]. Space Weather, 2009, 7:S06001.
    137 H. Wang, Y. Cui, H. He. A Logistic Model for Magnetic Energy Storage in SolarActive Regions[J]. Research in Astronomy and Astrophysics, 2009, 9:687–693.
    138 I. Jolliffe, D. Stephenson. Forecast Verification: A Practitioner’s Guide in Atmo-spheric Science[M]. Wiley, 2003:10–70.
    139 S. Wong, W. Ziarko. On Optimal Decision Rules in Decision Tables[J]. Bulletin ofPolish Academy of Sciences, 1985, 33(11-12):693–696.
    140 J. Wroblewski. Finding Minimal Reducts Using Genetic Algorithms[C]. Proc. ofthe Second Annual Join Conference on Information Sciences. 1995:186–189.
    141 S. Wang, W. Ziarko. On Optional Decision Rules in Decision Table[J]. Bulletin ofPolish Academy of Sciences, 1985, 33(4):663–676.
    142 L. Xu, A. Krzyzak, C. Suen. Methods of Combining Multiple Classifiers and TheirApplications to Handwriting Recognition[J]. IEEE Transactions on Systems Manand Cybernetics, 1992, 22(3):418–435.
    143 Z. Zhou, Y. Jiang. Medical Diagnosis with C4. 5 Rule Preceded by ArtificialNeural Network Ensemble[J]. IEEE Transactions on Information Technology inBiomedicine, 2003, 7(1):37–42.
    144 X. Zhao, M. Li, G. Song, J. Xu. Hierarchical Ensemble-based Data Fusion forStructural Health Monitoring[J]. Smart Materials and Structures, 2010, 19:045009.
    145 Y. Shimshoni, N. Intrator. Classification of Seismic Signals by Integrating En-sembles of Neural Networks[J]. IEEE Transactions on Signal Processing, 1998,46(5):1194–1201.
    146 X. Zhang, J. Mesirov, D. Waltz, F. COHEN. Hybrid System for Protein SecondaryStructure Prediction[J]. Journal of Molecular Biology, 1992, 225(4):1049–1063.
    147 P. Long, V. Vega. Boosting and Microarray Data[J]. Machine Learning, 2003,52(1):31–44.
    148 D. Kim, C. Kim. Forecasting Time Series with Genetic Fuzzy Predictor Ensem-ble[J]. IEEE Transactions on Fuzzy Systems, 1997, 5(4):523–535.
    149 E. Kim, W. Kim, Y. Lee. Combination of Multiple Classifiers for the Customer’sPurchase Behavior Prediction[J]. Decision Support Systems, 2003, 34(2):167–175.
    150路志英,赵智超,郝为,林孔元,刘还珠.基于人工神经网络的多模型综合预报方法[J].计算机应用, 2004, 24(004):50–51.
    151 T. Dietterich. Ensemble Methods in Machine Learning[J]. Lecture Notes in Com-puter Science, 2000:1–15.
    152陈海霞.面向数据挖掘的分类器集成研究[D].吉林:吉林大学, 2006:35–57.
    153 L. Breiman. Bagging Predictors[J]. Machine learning, 1996, 24(2):123–140.
    154 Y. Freund, R. Schapire. Experiments with a New Boosting Algorithm[C]. InProceedings of the Thirteenth International Conference on Machine Learning.1996:148–156.
    155 T. Ho. The Random Subspace Method for Constructing Decision Forests[J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 1998, 20(8):832–844.
    156 K. Tumer, N. Oza. Input Decimated Ensembles[J]. Pattern Analysis & Applica-tions, 2003, 6(1):65–77.
    157 Q. Hu, D. Yu, Z. Xie, X. Li. EROS: Ensemble Rough Subspaces[J]. Pattern recog-nition, 2007, 40(12):3728–3739.
    158付忠良,赵向辉,苗青,姚宇.基于属性组合的集成学习算法[J].计算机应用,2010, 30(2):465–475.
    159 T. Dietterich, G. Bakiri. Solving Multiclass Learning Problems via Error-correctingOutput Codes[J]. Journal of Artificial IntelligenceResearch, 1995, 2:263–286.
    160 S. Kwok, C. Carter. Multiple Decision Trees[C]. Proceedings of the Fourth AnnualConference on Uncertainty in Artificial Intelligence table of contents. 1990:327–338.
    161 R. Ranawana, V. Palade. A Neural Network Based Multi-classifier System forGene Identification in Dna Sequences[J]. Neural Computing & Applications, 2005,14(2):122–131.
    162 R. Schapire. The Strength of Weak Learnability[J]. Machine learning, 1990,5(2):197–227.
    163 T. Dietterich. An Experimental Comparison of Three Methods for ConstructingEnsembles of Decision Trees: Bagging, Boosting, and Randomization[J]. Machinelearning, 2000, 40(2):139–157.
    164 J. Kitler, M. Hatef, R. Duin, J. Matas. On Combining Classifiers[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 1998, 20(3):226–239.
    165 L. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms[M]. Wiley-Interscience, 2004:110–132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700