小电流低气压毛细管放电软X射线激光增益饱和输出研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1984年首次实现软X射线激光以来,软X射线激光作为一种相干光源,因其单色性好、瞬间亮度高、脉冲持续时间短和波长短等特点受到了越来越多科学家的重视。然而,通过使用大型的激光系统激发固体靶的方式实现的软X射线激光,由于庞大的体积和昂贵的运作成本,很大程度上限制了其应用。因而实现小型化的、低运转成本的软X射线激光也成为了各国科学家的研究重点。
     毛细管放电方案是实现台式的、小型化的软X射线激光最为有效的方案之一。自1994年,美国的Rocca小组首次成功实现毛细管放电泵浦类氖氩46.9nm软X射线激光输出以来,国际上已有包括日本、意大利等7个国家的研究小组采用该机制相继成功的实现了激光输出,极大的推动了软X射线激光的发展。本研究小组于2004年首次在自行研制的装置上实现了激光输出。在之前的研究基础上,本论文主要完成了46.9nm软X射线激光增益饱和输出研究,使得本课题组成为国际上第四个实现增益饱和输出的研究小组,并首次实现了小电流、低气压下的增益饱和输出,有利于装置的进一步小型化,在理论和实验研究领域对软X射线的发展起到一定的推动作用。而在小电流下实现激光的增益饱和输出,就是要在低的激发阈下实现最高能量的激光输出,电流幅值低必将导致工作气压低,产生激光的反转粒子数少,这就需要理论和实验中各实验参数的优化,围绕这一主题,本文主要包括了理论研究、实验装置的介绍和改造以及实验研究三个方面,致力于提高激光增益以实现稳定的、高能量的激光输出。
     在理论研究方面,本文第二章通过数值模拟和实验相结合的方式,通过雪耙模型Z箍缩理论的描述,系统的分析了激光的产生时间随初始Ar气压和主脉冲电流幅值的变化关系,为实验中放电参数的选择提供一定的参考。考虑到等离子体存在电子密度梯度影响了软X射线激光在等离子体中传输,通过光线传输方程的数值求解,详细的描述了不同的电子密度分布形式下光线在等离子体柱内的传输过程,并结合1mm差分孔对光线遮挡的计算分析和获得的激光4mrad左右的束散角的实验结果,推断出放电时毛细管中的等离子体柱内的电子密度接近抛物线形分布,而且抛物线形分布的电子密度有利于光线在传输过程中的增益放大,以获得更高增益,最终实现更高能量的激光输出。
     毛细管放电装置主要包括了主脉冲系统、预脉冲系统、探测系统、工作负载和充气及真空系统等五个主要组成部分。本文首先描述了放电装置各主要部件的工作原理,针对提高激光增益的实验要求,对装置进行了相应的改造。改造后的主开关可以通过更换附加电感的方式达到改变主脉冲电流上升沿的目的,以便研究主脉冲电流上升沿对激光增益的影响。充气系统的改造有利于研究掺杂气体对激光增益的影响。装置的改造为实验研究提供了可靠的保障。
     为了实现更高增益的激光输出,本文在第四章中进行了一系列旨在提高激光增益的实验研究。首先,系统的研究了主脉冲电流幅值对激光增益的影响,在给定气压下,找到了最佳的主脉冲电流幅值,以实现更高增益的激光输出。其次,研究了在Ar中掺入一定比例的He等气体对激光增益的影响,研究表明掺入一定比例的He有利于提高激光的增益,也就提高了激光的输出能量。再次,研究了主脉冲电流上升沿对激光增益的影响,实验结果表明,在其它放电条件不变的情况下,电流上升沿变大在一定范围内有利于获得更高的增益,从而获得更高能量的激光输出。预脉冲电流是实现软X射线激光输出的一个必要条件,它有利于等离子体均匀箍缩,本章最后分析了预主延时分别为2μs和7μs时预脉冲电流幅值对激光增益的影响,研究表明当预脉冲电流幅值为20A时,激光输出最为稳定,激光增益最高,相对输出能量也最强。
     在增益饱和输出和激光特性研究方面,首先,使用单色仪分析了激光的时间特性,使用平场光栅谱仪和Rowland圆谱仪准确的获得了毛细管放电软X射线激光的谱线信息,证实了X射线二极管获得的激光尖峰为类氖氩46.9nm软X射线激光。其次,采用较为简单的狭缝扫描的办法测得探测面XRD上的光斑直径为5.9mm和6.1mm,对应的激光的束散角在水平方向为4.0mrad,垂直方向为4.1mrad。再次,论文最主要的部分是实现了不同放电条件下的增益饱和输出,测量了不同等离子体长度时的激光相对强度,通过Linford公式拟合获得了不同放电条件下的增益系数,最大增益系数可达到0.68cm-1,并于国际上首次实现了增益系数为0.5cm-1的小电流、低气压下的增益饱和输出。论文最后通过标定过的X射线二极管近似计算了获得的激光能量为67.4μJ,并讨论了采用毛细管放电机制实现更短波长激光输出的可能性。
Since the first reported in 1984, soft X-ray laser as a coherent light source, characterized by good monochromaticity, high instant brightness, narrow pulse duration and short wavelength, seizes more and more scientists’attention. Soft X-ray laser could be generated through hitting solid targets with energetic and bulky laser, which requires high operating costs and in turn limits its application. Therefore, realizing the miniaturized, low running-cost soft X-ray laser has become the research focus of worldwide scientists.
     The proposal of capillary discharge is one of the most effective solutions to achieve desktop, miniaturized soft X-ray laser. Since 1994, the first time when Rocca and his colleagues in US successfully realized capillary discharge Ne-like Ar 46.9nm soft X-ray laser, there has been 7 other countries such as Japan and Italy, that succeed in achieving soft X-ray laser using the same mechanism, which significantly promotes the development of soft X-ray laser. Our research team realized 46.9nm soft X-ray laser output in 2004, using the experimental setup developed by ourself, and becomes the third research group in the world that claims saturation output of 46.9nm soft X-ray laser after several years’endeavor, and it is the first time to realize saturation output under both low current and low pressure condition in 2009. Realization of saturation under both low current and Ar pressure is avail the proposed of miniaturization, which pushes forward the development of soft X-ray laser both experimentally and theoretically to some extent. Saturation output under low main current means obtain the highest laser energy under low threshold, and low main current lead to low Ar pressure, which means small inverted population density, all of this will need the optimization of character. Centre on this theme, this thesis consists of three parts, i.e.: theoretical research, introduction and improvement of experimental instruments and experimental investigation, all of which serves for augmentation of laser energy and realization of stable output of saturated laser.
     Theoretically, chapter 2 analyzes systematically dependence of laser generation time on the initial Ar pressure and the amplitude of main pulse current, using numerical simulations in combination with experiments recur to the description of Z-pinch theory using Snow plow model. The theory presented in chapter 2 provides reference for determinations of discharge parameters during experiments. The fact that the existence of electron density gradient during plasma formation affects the transmission of soft X-ray laser, necessitates the detail investigation on light transmission within the plasma column under different electron densities by solving the light transmission equation. Finally, associated with the analysis of the shelter from pinhole and the experimental result of about 4mrad angle of divergence, the results prove that the electron density of plasma is approximately parabolic distribution. And the parabolic distribution of electron density is be propitious to the gain amplification when the laser transmitting through the plasma, in order to obtain higher laser energy.
     Capillary discharge device is mainly constituted of five parts, i.e.: main pulse system, prepulse system, detection system, working load and inflation as well as vacuum system. This thesis first describes the operation principle of main components for discharge device, and improvements of the device with regarded to enhancing the laser gain as well. The improved main switch can alter the rising edge of main pulse current through switching different inductors. The improved inflation system is conducive to investigate on the influence of gas mixture on laser gain. All in all, improvements of discharge device guarantee the reliability of operation of experiments.
     Chapter 4 describs experimental research in order to obtain higher gain. Firstly, the impact of the amplitude for main pulse current on laser gain was studied, the optimal amplitude was found when the given Ar pressure, and this is in favor of realizing higher gain coefficient. Secondly, the influence of mixture ratio of He with Ar on laser gain was studied, and the results show that the incorporation of a certain proportion of He will help to improve the laser gain, finally increase the laser output energy. This thesis also investigated the effect of main pulse rising edge on laser gain. Experiments indicate that the slow rising edge is conducive to produce higher laser gain, and accordingly improve the laser energy, providing that other conditions remain unchanged. Finally, we also analyzed the impact of amplitude for prepulse current on laser output under delay times of 2μs and 7μs between main pulse and prepulse, which serves to produce high laser gain and stable laser output. It is found that under an amplitude of 20A for prepulse current, laser tends to have the most stable output, and a relatively higher gain, and higher laser energy.
     In the aspect of the laser character and saturation research, firstly, monochromator was employed to analyze the time characteristics of laser. Apart from that, application of both flat-field grating spectrometer and Rowland spectrometer gives accurate spectroscopic information of capillary discharge soft X-ray laser, which confirms that the spike detected by X-ray diode is indeed Ne-like Ar 46.9nm soft X-ray laser. Secondly, the employment of slit-scan method shows that the spot diameters of 5.9mm and 6.1mm in the position of XRD, which corresponds to horizontal and vertical divergence angle of the laser were 4mrad and 4.1mrad respectively. The most important research of the thesis, by fitting with the Linford formula, gain coefficients under different discharge conditions were achieved. The maximum gain coefficient was 0.68cm-1. Gain coefficient of 0.5cm-1 was achieved under both low current and low pressure condition, which is the first time realization in the world. The laser energy was estimated to be 67.4μJ through calibrating the X-ray diode. Finally, the thesis discussed the possibility of reaching shorter wavelength laser using mechanism of capillary discharge.
引文
[1] T. Makimura, Y. Kenmotsu, H. Miyamoto, M. Mori, K. Kondo and K. Murakami. Nanomachining of Inorganic Transparent Materials Using an X-Ray Exciton Method[C]. Fifth International Symposium on Laser Precision Microfabrication, Proceedings of SPIE - The International Society for Optical Engineering, 2004, 5662: 107~112.
    [2] N. Izumi, R. Snavely, G. Gregori, J. A. Koch, H. S. Park and A. B. Remington Application of Imaging Plates to X-Ray Imaging and Spectroscopy in Laser Plasma Experiments[J]. Review of Scientific Instruments. 2006. 77(10): 10E325~10E325-5.
    [3] H. Tanaka, K. Akinaga, A. Takahashi and T. Okada. Development of EUV Light Source by CO2 Laser-Produced Xe Plasma[C]. Fifth International Symposium on Laser Precision Microfabrication, Proceedings of SPIE-The International Society for Optical Engineering. 2004, 5662: 361~366.
    [4] C.J. Gaeta, H. Rieger, I. C. E. Turcu, R. A. Campeau, S. M. Cassidy, K. L. Powers, M. F. Stone and A. Maldonado. High-Power Collimated Laser-Plasma Source for Proximity X-Ray Nanolithography[J]. Journal of Vacuum Science and Technology B. 2003, 21(1): 280~287.
    [5] R. Toth, J.C. Kieffer, A. Krol, S. Fourmaux, T. Ozaki, H. Ye, R. E. Kincaid and A. Rakhman. Phase Contrast Micro-CT with an Ultrafast Laser-Based Hard X-Ray[C]. Laser-Generated, Synchrotron, and Other Laboratory X-Ray and EUV Sources, Optics, and Applications II, Proceedings of SPIE-The International Society for Optical Engineering. 2005, 5918: 1~8.
    [6] S. Eisebitt, J. Luning, W.F. Schlotter, M. Lorgen, O. Hellwig, W. Eberhardt and J. Stohr. Lensless Imaging of Magnetic Nanostructures by X-Ray Spectro-Holography[J]. Nature. 2004, 432(7019): 885~888.
    [7] P. W. Wachulak, M. C. Marconi, R. Bartels, C. S. Menoni and J. J. Rocca. Extreme Ultraviolet Holography with Wavelength Resolution[C]. Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. 2008: 1~2.
    [8] O. Renner, I. Uschmann and E. Forster. Diagnostic Potential of Advanced X-Ray Spectroscopy for Investigation of Hot Dense Plasmas[J]. Laser and Particle Beams. 2004, 22(1): 25~28.
    [9] H. Tang, O. Guilbaud, G. Jamelot, D. Ros, A. Klisnick, D. Joyeux, D. Phalippou, M. Kado, M. Nishikina and M. Kishimoto. Diagnostics ofLaser-Induced Plasma with Soft X-Ray (13.9 nm) Bi-Mirror Interference Microscopy[J]. Applied Physics B. 2004, 78(7-8): 975~977.
    [10] A. G. Molchanov. Lasers in the Vacuum Ultraviolet and in the X-Ray Regions of the Spectrum[J]. Soviet Physics Uspekhi. 1972, 15(1):124~129.
    [11] B. J. MacGowan, M. D. Rosen, M. J. Eckart, P. L. Hagelsten, D. L. Matthews, D. G. Nilson, T. W. Phillips, J. H. Scofield and G. Shimkaveg. Multilayer Structures and Laboratory X-Ray Lasers Research[C]. Proceedings of SPIE. 1986, 588: 36.
    [12]淳于书泰,沈华忠,何绍棠,王世绩,陶祖聪,彭翰生,杨建国.类氖锗X光激光增益实验[J].强激光与粒子束. 1990, 2(3): 280~290.
    [13] S. J. Wang, Y. Gu, G. L. Zhou, Y. L. Ni, S. Y. Yu, S. Z. Fu, C. S. Mao, Z. C. Tao, W. N. Chen, Z. Q. Lin, D. Y. Fan, G. P. Zhang, J. T. Sheng, M. L. Yang, T. X. Zhang, Y. F. Shao, H. M. Peng, X. T. He and M. Yu. Experimental Reseach on Saturated-Gain for Soft-X-Ray Laser from Neon-Like Germanium Plasma[J]. Chinese Physics Letters. 1991, 8(12): 618~621.
    [14] S. J. Wang, Y. Gu and C.S. Mao. Near Diffraction Limit Output and Gain Saturation of Soft X-Ray Laser[J]. Chinese Journal of Lasers. 1993, B2(6): 481~484.
    [15] S. J. Wang, Y. Gu, G. L. Zhou, S. Y. Yu, S. Z. Fu, Y. L. Ni, J. Wu, Z. L. Zhou, G. Q. Han, Z. C. Tao, Z. Q. Lin, S. S. Wang, W. N. Chen, D. Y. Fan, G. P. Zhan, J. T. Sheng, H. M. Peng. Experimental Investigation of High-gain Ne-like Ge Soft-X-Ray Laser by Double-Massive Target Coupling[J]. Journal of the Optical Society of America B. 1992, 9(9): 360~368.
    [16]王世绩,顾援,周关林,倪元龙,余松玉,傅思祖,韩国强,周正良,吴江,毛楚生,万炳根,李敏,曾一新,计巍波,陶祖聪,陈万年,林尊琪,范滇元.多靶串接饱和增益软X光激光实验研究[J].强激光与粒子束. 1992, 4(2): 165~174.
    [17] S. J. Wang, Y. Gu, G. L. Zhou, Y. L. Ni, S. Y. Yu, C. S. Mao, S. Z. Fu, G. Q. Han, Z. L. Zhou, J. Wu, Z. C. Tao, W. N. Chen, Z. Q. Lin and D. Y. Fan. Experimental-Study of a Nearly Saturated Ne-like Ge Soft-X-Ray Laser by Multi-Target Series Coupling in X-Ray Lasers[C]. Institute of Physics Conference Series. 1992: 49~52.
    [18]王世绩,顾援,周关林,周正良,倪元龙,余松玉,傅思祖,毛楚生,韩国强,万炳根,计巍波,吴江,曾一新,陈万年,黄关龙.反射镜多靶串接增益饱和软X光激光实验[J].强激光与粒子束. 1993, 5(4): 557~563.
    [19] D. M. O’Neil, C. L. S. Lewis, D. Neely, J. Uhomoibhi, M. H. Key, A.Marcphee, G. J. Tallents, S. A. Ramsden, A. Rogoyski, E. A. Mclean and G. J. Pert. Characterization of Soft X-Ray Amplification Observed in Ne-Like Germanium[J]. Optics Communications. 1990, 75(5-6): 406~412.
    [20] C.L.S. Lewis, D. Neely, D. M. O’Neill, J. O. Uhomoibhi, M. H. Key, Y. Al Hadithi, G. J. Tallents and S. A. Ramsden. An Injector/Amplifier Double Target Configuration for the Ne-Like Ge X-Ray Laser Scheme[J]. Optics Communications. 1992, 91(1-2): 71~76.
    [21] B. Rus, A. Carillon, B. Gauthe, P. Goedtkindt, P. Jaegle, G. Jamelot, A. Klisnick, A. Sureau and P. Zeitoun. Observation of Intense Soft-X-Ray Lasing at the J=0 to J=1 Transition in Neonlike zinc[J]. Journal of the Optical Society of America B. 1994, 11(4): 564~573.
    [22] Y. Kato, H. Daido, H. Shiraga, M. Yamanaka, H. Azuma, K. Murai, E. Miura, G. Yuan, M. Ohmi, Kazuo A. Tanaka, T. Kanabe, M. Takagi and S. Nakai. Development of Soft X-Ray Lasers at the Institute of Laser Engineering: Recent Results on Ge Soft X-Ray Laser[C]. Proceedings of SPIE. 1992: 56~64.
    [23] B. J. MacGowan, S. Maxon, P.L. Hagelstein, C. J. Keane, R. A. London, D. L. Matthews, M. D. Rosen, J. H. Scofield and D. A. Whelan. Demonstration of Soft-X-Ray Amplification in Nickel-Like Ions[J]. Physical Review Letter. 1987, 59(9): 2157~2160.
    [24] B. J. MacGowan, S. Maxon, C.J. Keane, R. A. London, D. L. Matthews and D. A. Whelan. Soft-X-Ray Amplification at 50.3 ? in Nickellike Ytterbium[J]. Journal of the Optical Society of America B. 1988, 5(9): 1858~1863.
    [25] B.J. MacGowan, S. Maxon, L.B. Da Silva, D. J. Fields, C. J. Keane, D. L. Osterheld, J. H. Scofield, G. Shimkaveg and G. F. Stone. Demonstration of X-Ray Amplifier Near the Carbon K Edge[J]. Physical Review Letter. 1990, 65(4): 420~423.
    [26] B.J. MacGowan, L.B. Da Silva, D.J. Fields, A. R. Fry, C. J. Keane, J. A. Koch, D. L. Matthews, M. S. Mrowka, S. Mrowka, A. L. Osterheld, J. H. Scofield and G. Shimkaveq. Short Wavelength Nickel-Like X-Ray Laser Development[C]. 2nd International Colloquium on X-Ray Lasers. 1990: 17~21.
    [27] J.L. Porter, R.B. Spielman, M.K. Matzen, E. J. Mcguire, L. E. Ruggles, M. F. Vargas, J. P. Apruzese, R. W. Clark and J. Davis. Demonstration of Population Inversion by Resonant Photopumping in a Neon Gas Cell Irradiated by A Sodium Z Pinch[J]. Physical Review Letter. 1992, 68(6): 796~799.
    [28] F. E. Irons and N. J. Peacock. A Spectroscopic Study of the Recombination ofC6+ to C5+ in an Expanding Laser-Produced Plasma[J]. Journal of Physics B. 1974, 7(15): 2084~2087.
    [29] C. Chenai-Popovics, R. Corbett, C.J. Hooker, M. H. Key, G. P. Kiehn, C. L. Lewis, G. J. Pert, C. Regan, S. J. Rose, S. Sadaat, R. Smith, T. Tomie and aO. Willi. Laser Amplification at 18.2nm in Recombining Plasma from a Laser-Irradiated Carbon Fiber[J]. Physical Review Letter. 1987, 59(19): 2161~2164.
    [30] C.L.S. Lewis, R. Corbett, D. O’Neil, C. Regan and S. Saadat. Status of Soft X-Ray Laser Research at the Rutherford-Appleton Laboratory[J]. Plasma Physics and Controlled Fusion. 1988, 30(1): 35~44.
    [31] J. Zhang, M. H. Key, P. A. Norreys, G. J. Tallents, A. Behjat, C. Danson, A. Demir, L. Dwivedi, M. Holden, P. B. Holden, C. L. Lewis, A. G. Macphee, D. Neely, G. J. Pert, S. A. Ramsden, S. J. Rose, Y. F. Shao, O. Thomas. F. Walsh and Y. L. You. Demonstration of High Gain in a Recombination XUV Laser at 18.2nm Driven by a 20J, 20ps Glass Laser[J]. Physical Review Letters. 1995, 74(8): 1335~1338.
    [32] Z. Z. Xu, Z. Q. Zhang, P. Z. Fan, S. S. Chen, L. H. Lin, P. X. Lu, X. P. Feng, X. F. Wang, J. Z. Zhou and A. D. Qian. Soft-X-Ray Amplication by Li-Like Al-10+ and Si-11+ Ions in Recombining Plasmas[J]. Applied Physics B. 1990, 50(3): 147~151.
    [33] Z. Z. Xu, Z. Q. Zhang, P. Z. Fan, S. S. Chen, L. H. Lin, P. X. Lu, X. F. Wang, A. D. Qian, J. J. Yu and X. P. Feng. Experimental Studies on Soft-X-Ray Laser Gain[J]. Science in China Series A. 1990, 33(11): 1346~1357.
    [34]陈时胜,徐至展,林礼煌,范品忠,张正泉.类锂铝离子4f-3d跃迁的软X射线ASE增益实验[J].光学学报. 1990, 10(9): 769~774.
    [35]徐至展,范品忠,张正泉,陈时胜,林礼煌,陆培祥,孙岚,吴敏春,钱爱娣,余加进,王永昌.复合泵浦类锂硅离子软X射线激光[J].中国科学A辑. 1991, 4: 414~423.
    [36] Z.Z. Xu, Z.P. Zhang, L.H. Lin, Y. L. Li, X. F. Wang, P. X. Lu, R. X Li, S. S. Han, L. Sun, A. D. Qian, B. F. Shen, Z. M. Jiang, Z. Q. Zhang and J. Z. Zhou. Space- and Time-Resolved Investigation of Short Wavelength X-Ray Laser in Li-Like Ca Ions[J]. Appllied Physics Letters. 1993, 63(8): 1023~1025.
    [37]何绍堂,沈华忠,魏晓峰,王明达,何安,淳于书泰,庄秀群,彭翰生,杨建国.类锂铝10.57和15.47纳米X光激光增益研究[J].强激光与粒子束. 1990, 2(3): 291~297.
    [38] C. D. Macchietto, B. R. Benware and J. J. Rocca. Generation ofMillijoule-Level Soft-X-Ray Laser Pulses at a 4-Hz Repetition Rate in a Highly Saturated Tabletop Capillary Discharge Amplifier[J]. Optics Letters. 1999, 24(16): 1115~1117.
    [39] J. J. Rocca, C. H. Moreno, C. M. Marconi and K. Kanizay. Soft-X-Ray Laser Interferometry of a Plasma with a Tabletop Laser and a Lloyd’s Mirror[J]. Optics Letters. 1999, 24(6): 420~422.
    [40] S. Heinbuch, F. Dong, J. J. Rocca and E. T. Bernstein. Neutral Nanocluster Chemistry Studied by Soft X-Ray Laser Single-Photon Ionization: Application to Soft X-Ray Optical Surface Contamination Studies: SimOn and TimOn[C]. Proceedings of SPIE, 2007, 6702: 67020K-1.
    [41] P.V. Nickles, V.N. Shlyaptsev, M. Kalacknikov, M. Schnurer, I. Will and W. Sandner. Short Pulse X-Ray Laser at 32.6nm Based on Transient Gain in Ne-Like Titanium[J]. Physical Review Letters. 1997, 78(14): 2748~2751.
    [42] J. Dunn, A.L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev and R. E. Stewart. Demonstration of X-Ray Amplification in Transient Gain Nickel-Like Palladium Scheme[J]. Physical Review Letters. 1998, 80(13): 2825~2828.
    [43] J. Dunn, Y. Li, A.L. Osterheld, J. Nilsen, J.R. Hunter and V. N. Shlyaptsev. Gain Saturation Regime for Laser-Driven TableTop, Transient Ni-Like Ion X-Ray Lasers[J]. Physical Review Letters. 2000, 84(21): 4834~4837.
    [44] T. Kawachi, A. Sasaki, M. Tanaka, M. Kishimoto, N. Hasegawa, K. Nagashima, M. Koike, H. Daido and Y. Kato. Observation of Strong Soft-X-Ray Amplification at 8.8 nm in the Transient Collisional-Excitation Scheme[J]. Physical Review A. 2004, 69(3): 033805.
    [45] P. B. Corkum and N. H. Burnett. Short Wavelength Coherent Radiation: Generation and Applications[C]. OSA, Proceedings. 1988, 2: 225.
    [46] N.H. Burnett and P.B. Corkum. Cold-Plasma Production for Recombination of Extremeultraviolet Lasers by Optical-Field-Induced Ionization[J]. Journal of the Optical Society of America B. 1989, 6(6): 1195~1199.
    [47] B.E Lemoff, G.Y. Yin, C.L. GordonⅢ, C. P. J. Barty and S. E. Harris. Demonstration of A 10-Hz Femtosecond-Pulse-Driven XUV Lasers at 41.8nm XeⅨ[J]. Physical Review Letters. 1995, 74(9): 1574~1577.
    [48] S. Sebban, R. Haroutunian, Ph. Balcou, G. Grillo, A. Rousse, S. Kazamias, T. Marin, J. P. Rousseau, L. Notebaert, M. Pittman, J. P. Chambret, A. Antonetti, D. Hulin, D. Ros, A. Klisnick, A. Carillon, P. Jaegle, G. Jamelot and J. F. Wyart. Saturated Amplification of a Collisionally Pumped Optical-Field-Ionization Soft X-Ray Laser at 41.8nm[J]. Physical ReviewLetters. 2001, 86(14): 3004~3007.
    [49] J. J. Rocca, Y. Wang, B. M. Luther, M. Berrill, M. A. Larotonda, E. Granados, D. Alessi, D. Martz, F. Redacci, D. Patel, V. N. Shlyaptsev and C. S. Menoni. High Brightness Table-Tob Soft X- Ray Lasers at High Repetition Rate: Injection- Seeding of Solid Target Plasma Amplifiers and Other Developments[C]. Proceedings of SPIE, 2007, 6702: 670202.
    [50] Y. Wang, M. Berrill, F. Pedaci, M. M. Shakya, S. Gilbertson, Zenghu Chang, E. Granados, B. M. Luther, M. A. Larotonda and J. J. Rocca. Measurement of 1-ps Soft-X-Ray Laser Pulses from an Injection-Seeded Plasma Amplifier[J]. Physical Review A. 2009, 79(2): 023810.
    [51] P. Amendt, D. C. Eder and S. C. Wilks. X-Ray Lasing by Optical-Field-Induced Ionization[J]. Physical Review Letters. 1991, 66(20): 2589~2592
    [52] D. C. Eder, P. Amendt and S. C. Wilks. Optical-Field-Ionization Plasma X-Ray Lasers. Physical Review A. 1992, 45(9): 6761~6772.
    [53] B. M. Penetrante and J. N. Bardsley. Residual Energy in Plasmas Produced by Intense Subpicosecond Lasers[J]. Physical Review A. 1991, 43(6): 3100~3113
    [54] Y. Nagata, K. Midorikawa, S. Kabodera, M. Obara, H. Tashiro and K. Toyoda. Soft-X-Ray Amplification of the Lyman-αTransition by Optical-Field-Induced Ionization[J]. Physical Review Letters. 1994, 71(23): 3774~3777.
    [55] K. Krushelnick, W. Tighe, and S. Suckewer. Harmonic Generation from Ions in Underdense Aluminum and Lithium-Fluorine Plasmas[J]. Journal of the Optical Society of America B. 1997, 14(7): 1687~1691.
    [56] D. V. Korobkin, C. H. Nam and S. Suckewer. Demonstration of Soft X-Ray Lasing to Ground State in LiⅢ[J]. Physical Review Letters. 1996, 77(26): 5206~5209.
    [57] J.J.Rocca, D.C.Beethe and M.C.Marconi. Proposal for Soft-X-Ray and XUV Lasers in Capillary Discharges[J]. Optics Letters. 1988, 13(7): 565~567.
    [58] C. H. Zhang, S. Katsuki, H. Akiyama and D. G. Xu. Extreme Ultraviolet Source Radiated from Pinch Plasma for Semiconductor Manufactruing[J]. Micro& Nano Letters. 2006, 1(2): 99~102.
    [59] K. N. Langier, L. Jakubowski, E. O. Baronova, K. Czaus, M. Rabinsk and M. J. Jakubowski. Observations of Extreme Ultraviolet Emission from Plasma Produced by Capillary Discharges[J]. European Physical Journal D. 2009, 52(2): 377~382.
    [60] P. Zuppella, A. Reale, A. Ritucci, P. Tucceri, S. Prezioso, F. Flora, L. Mezi and P. Dunne. Spectral Enhancement of a Xe-Based EUV Discharge Plasma Source[J]. Plasma Sources Science and Technology. 2009, 18(2): 1~4.
    [61] C.Steden and H.J.Kunze. Observation of Gain at 18.22nm in the Carbon Plasma of a Capillary Discharge[J]. Physical Letters A. 1990, 151(9): 534~537.
    [62] J.J.Rocca, M.C.Marconi and F.G.Tomasel. Study of the Soft X-Ray Emission from Carbon Ions in a Capillary Discharge[J]. IEEE Journal of Quantum Electronics. 1993, 29(1): 182~191.
    [63] N. Edison, P. E. Young, N. Holmes, R. W. Lee, N. C. Woolsey, J. S. Wark and W. J. Blyth. Characterization of a Capillary Discharge Plasma[J]. Physical Review E. 1993, 47(2): 1305~1308.
    [64] H. J. Shin, D. E. Kim and T. N. Lee. Soft-X-Ray Amplification in a Capillary Discharge[J]. Physical Review E. 1994, 50(2): 1376~1382.
    [65] J. J. Rocca, O. D. Cortazer, B. Szapiro, K. Floyd and F. G. Tomasel. Fast-Discharge Excitation of Hot Capillary Plasma for Soft-X-Ray Amplifier[J]. Physical Review E. 1993, 47(2): 1299~1304.
    [66] J. J. Rocca, O. D. Cortazer, F. G. Tomasel and B. T. Szapiro. Efficient Generation of Highly Ionized Calcium and Titanium Plasma Columns for Collisionally Excited Soft-X-Ray Laser in a Fast Capillary Discharge[J]. Physical Review E. 1993, 48(4): 2378~1304.
    [67] J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortazar, D. Hartshorn and J. L. A. Chilla. Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser[J]. Physical Review Letters. 1994, 73(6): 2192~2195.
    [68] J. J. Rocca, F. G. Tomasel, M. C. Marconi, V. N. Shlyaptsev, J. L. A. Chilla, B. T. Szapiro and G. Giudice. Discharge-Pumped Soft-X-Ray Laser in Neon-Like Argon[J]. Physics Plasmas. 1995, 2(6): 2547~2554.
    [69] J. J. Rocca, D. P. Clark, J. L. A.Chilla and V. N. Shlyaptsev. Energy Extraction and Achievement of the Saturation Limit in a Discharge-Pumped Table-Top Soft X-Ray Amplifier. Physical Review Letters. 1996, 77(8): 1476~1479.
    [70] F. G. Tomasel, V. N. Shlyaptsev and J. J. Rocca. Enhanced Beam Characteristics of a Discharge-Pumped Soft-X-Ray Amplifier by an Axial Magnetic Field[J]. Physical Review A. 1996, 54(3): 2474~2478.
    [71] J. L. A. Chilla and J. J. Rocca. Beam Optics of Gain-Guided Soft-X-Ray Lasers in Cylindrical Plasmas[J]. Journal of the Optical Society of America B. 1996, 13(12): 2841~2851.
    [72] M. C. Marconi, J. L. A. Chilla, C. H. Moreno, B. R. Benware and J. J. Rocca. Measurement of the Spatial Coherence Buildup in a Discharge Pumped Table-Top Soft X-Ray Laser[J]. Physical Review Letters. 1997, 79(15): 2800~2802.
    [73] J. J. Rocca, C. H. Moreno and B. R. Benware New Results in the Development of the Table-Top Capillary Discharge Soft X-Ray Lasers: Demonstration of High Average Power and Realization of First Application. X-Ray Laser[J]. 1998~ 1999 IOP Publishing Ltd: 9~16.
    [74] C.H.Moreno, M.C.Marconi, V.N.Shlyaptsev, B. R. Benware, C. D. Macchietto, J. L. A. Chilla and J. J. Rocca. Two-Dimensional near-Field and Far-Field Imaging of a Ne-Like Ar Capillary Discharge Table-Top Soft-X-Ray Laser[J]. Physical Review A. 1998, 58(2): 1509~1514.
    [75] I. A. Artioukov, B. R. Benware, J. J. Rocca, M. Forsythe, Yu. A. Uspenskii and A. V. Vinogradov. Determination of XUV Optical Constants by Reflectometry Using a High-Repetition Rate 46.9-nm Laser[J]. IEEE Journal of Selected Topics in Quantum Electronics. 1999, 5(6): 1495~1501.
    [76] M. A. Purvis, J. Grava, J. Filevich, M. C. Marconi, J. Dunn, S. J. Moon, V. N. Shlyaptsev, E. Jankowska and J. J. Rocca. Soft X-Ray Laser Interferometry of Colliding Laser-Created Plasmas in Semicylindrical Cavities[C]. IEEE Transactions on Plasma Science. 2008, 36(4): 1134~1135.
    [77] J. J. Rocca, Y. Wang, B. M. Luther, M. Berrill, M. A. Larotonda, E. Granados, D. Alessi, D. Martz, F. Pedaccif, D. Patel, V. N. Shyaptsev and C. S. Menoni. High Brightness Table-Top Soft X-Ray Lasers at High Repetition Rate: Injection-Seeding of Solid Target Plasma Amplifiers and Other Developments[J]. Proceedings of SPIE, 2007, 6702: 670202-1.
    [78] S. Heinbuch, F. dong, J. J. Rocca and E. R. Bernstein. Gas Phase Study of the Reactivity of Optical Coating Materials with Hydrocarbons Using a Desk-Top Size EUV Laser[J]. Proceedings of SPIE, 2008, 6921: 69213F-1.
    [79] M. A. Purvis, J. Grava, J. Filevich, M. C. Marconi, J. Dunn, S. J. Moon, V. N. Shlyaptsev, E. Jankowska and J. J. Rocca. Soft X-Ray Laser Interferometry of Colliding Laser-Created Plasmas in Semi-Cylindrical Cavities[C]. IEEE Transactions on Plasma Science, 2008, 36(4): 1134~1135.
    [80] L. Juha, V. Hajkova, J. Chalupsky, V. Vorlicek, A. Ritucci, A. Reale, P. Zuppella and M. Stormer. Radiation Damage to Amorphous Carbon Thin Films Irradiated by Multiple 46.9nm Laser Shots Below the Single-Shot Damage Threshold[J]. Journal of Applied Physics. 2009, 105(9): 093117.
    [81] C. A. Brewer, F. Brizuela, D. Martz, G. Vaschenko, M. C. Marconi, W. Chao,E. H. Andson, D. T. Attwood, A. V. Vinogradov, I. A. Artioukov, Y. P. Pershyn, V. V. Kondratenko, J. J. Rocca and C. S. Menoni. High Spatial Resolution Full-Field Microscopy Using a Desktop-Size Soft X-Ray Laser[C]. Proceedings of SPIE, 2007, 6702: 67020M-1.
    [82] M. G. Capeluto, G. Vaschenko, M. Grisham, M. C. Marconi, S. Luduena, L. Pietrasanta. Nanopatterning With Interferometric Lithography Using a Compactλ=46.9-nm Laser[C]. IEEE Transactions on Nanotechnolgy, 2006, 5(1): 3~7.
    [83] F. G. tomasel, J. J. Rocca, V. N. shlyaptsev and C. D. Macchietto. Lasing at 60.8nm in Ne-Like Sulfur Ions in Ablated Material Excited by a Capillary Discharge[J]. Physical Review A. 1997, 55(2): 1437~1440.
    [84] M. Frati, M. Seminario and J.J.Rocca. Demonstration of a 10-μJ Tabletop Laser at 52.9 nm in Neonlike Chlorine[J]. Optics Letters. 2000, 25(14): 1022~1024.
    [85] F. G. Tomasel, V. N. Shlyaptsev and J. J. Rocca. Spectroscopically Pure Metal Vapor Source for Highly Charged Ion Spectroscopy and Capillary Discharge Soft X-Ray Lasers[J]. Review of Scientific Instruments. 2008, 79(1): 013503.
    [86] A. Ben-Kish, R. A. Nemirovsky, M. Shuker, A. Fisher, A. Ron and J. L. Schwob. Parametric Investigation of Capillary Discharge Experiment for Collisional Excitation X-ray Lasers[C]. Proceedings of SPIE. 1999, 3776(166): 166~174.
    [87] R. A. Nemirovsky, A. Ben-Kish, M. Shuker and A. Ron. Effect of Neutral Atoms on a Capillary-Discharge Z Pinch[J]. Physical Review Letters. 1999, 82(17): 3436~3439.
    [88] A. Ben-Kish, M. Shuker, R. A. Nemirovsky, A. Fisher, A. Ron and J. L. Schwob. Plasma Dynamics in Capillary Discharge Soft X-Ray Lasers[J]. Physical Review Letters. 2001, 87(1): 015002.
    [89] N. S. Kampel, A. Rickanati, I. Be’ery, A. Ben-kish, A. Fisher and A. Ron. Feasibility of a Nitrogen-Recombination Soft-X-Ray laser Using Capillary Discharge Z Pinch[J]. Physical Review E. 2008, 78(5): 056404.
    [90] G. Niimi, Y. Hayashi, M. Nakajima, M. Watanabe, A. Okino, K. Horioka and E. Hotta. Observation of Multi-pulse Soft X-ray Lasing in a Fast Capillary Discharge[J]. Journal of Physics D: Applied Physics. 2001, 34(14): 2123~2126.
    [91] G. Niimi, Y. Hayashi, N. Sakamoto, M. Okino, A. Watanabe, M. Horioka, E. Hotta. Development and Characterization of a Low Current Capillary Discharge for X-Ray Laser Studies[C]. IEEE Transactions on Plasma Science.2002, 30(2): 616~621.
    [92] Y. Hayashi, N. Sakamoto, Y. P. Zhao, Y. L. Cheng, P. Chalise, M. Watanabe, A. Okino, K. Horioka and E. Hotta. On the Time of Lasing Onset and the End-Effect of A Soft X-Ray Laser Device Using A Capillary Z-Pinch Discharge[J]. Plasma Source Science and Technology. 2004, 13(4): 675~679.
    [93] Y. Hayashi, Y. F. Xiao, N. Sakamoto, H. Miyahara, G. Niimi, M. Watanabe, A. Okino, K. Horioka and E. Hotta. Performances of Ne-like Ar Soft X-Ray Laser Using Capillary Z-Pinch Discharge[J]. Japanese Journal of Applied Physics. 2003, 42(8): 5285~5289.
    [94] G. Tomassetti, A. Ritucci, A. Reale, L. Palladino, L. Reale, S.V. Kukhlevsky, F. Flora, L. Mezi, J. Kaiser and A. Faenov. Capillary Discharge Soft X-Ray Lasing in Ne-Like Ar Pumped by Long Current Pulses[J]. European Physical Journal D. 2002, 19(1): 73~77.
    [95] A. Ritucci, G. Tomassetti, A. Reale, L. Palladino, L. Reale, L. Mezi, S. V. Kukhlevsky, A. Faenov and T. Pikuz. Investigation of a Highly Saturated Soft X-Ray Amplification in a Capillary Discharge Plasma Waveguide[J]. Applied Physics B. 2004, 78(7-8): 965~969.
    [96] A. Ritucci, G. Tomassetti, A. Reale, L. Palladino, L. Reale, T. Limongi, F. Flora, L. Mezi, S. V. Khuklevsky, A. Faenov, T. Pikuz and J. Kaiser. Role of the Wall Ablation in the Operation of a 46.9nm Ar Capillary Discharge Soft X-Ray Laser[J]. Plasma Physics. 2003, 43(2): 88~93.
    [97] A. Ritucci, G. Tomassetti, A. Reale, F. Flora and L. Mezi. Coherence Properties of a Quasi-Gaussian Submilliradiant Divergence Soft-X-Ray Laser Pumped by Capillary Discharges[J]. Physical Review A. 2004, 70(2): 023818.
    [98] V. I. Ostashev, A. M. Gafarov, V. Y. Politov, A. N. Shushlebin and L. V. Antonova. Evidence of Soft X-Ray Lasing in Signal Pulsed-Power Facility Experiments With Argon Capillary Plasma[C]. IEEE Transactions on Plasma Science. 2006, 34(5): 2368~2376.
    [99] C. A. Tan and K. H. Kwek. Development of A Low Current Discharge-Driven Soft X-Ray Laser[J]. Journal of Physics D: Applied Physics. 2007, 40(16): 4787~4792.
    [100] C. A. Tan and K. H. Kwek. A Gigawatt High-Voltage Generator for Coherent Soft X-Ray Generation[C]. IEEE Transactions on Instrumentation and Measurement. 2008, 57(5): 1023~1028.
    [101] C. A. Tan and K. H. Kwek. Influence of Current Prepulse on Capillary-Discharge Extreme-Ultraviolet Laser[J]. Physical Review A. 2007, 75(4): 043808.
    [102] Y. P. Zhao, Y. L. Chen, Y. C. Wu, B. H. Luan and Q. Wang. Effects of Capillary Discharge Current on the Time of Lasing Onset of Soft X-Ray Laser at Low Pressure. Journal of Physics D: Applied Physics. 2006, 39(2): 342~346.
    [103]赵永蓬,李岩,谢耀,栾伯晗,朱秋石,程元丽,王骐,杨大为.毛细管放电装置主开关结构对产生软X射线激光的影响[J].中国激光, 2006, 33(9): 1176~1179.
    [104] B. H. Luan, Y. P. Zhao, Q. Wang, Y. L. Cheng, Y. Xie. A New Discharge Scheme of a Prepulse Plus Two Main Pulses for Capillary-Discharge Soft-X-Ray Laser. Chinese Physics Letters. 2007, 24(6): 1580~1582.
    [105] B. H. Luan, Y. P. Zhao, Q. Wang, Y. L. Cheng, Y. Xie. Testifying Experiment of the Multi-pulse Phenomena of Capillary Discharge Soft-X-Ray Laser[J]. Chinese Optics Letters, 2008, 6(5): 353~355.
    [106] Y. P. Zhao, M. Z. Mo, Y. Xie, S. T. Yang and Q. Wang, Observation of a Saturated Soft X-ray Laser in a Low Current Capillary Discharge[C]. CLEO/Pacific Rim 2009 Shanghai, China, August 31-September 3, 2009.
    [107]张国平,盛家田,彭惠民,邵云峰.电子碰撞激发产生软X射线激光的理论研究[J].强激光与粒子束. 1990, 2(3): 298~310.
    [108]梁曦东,陈昌渔,周远翔.高电压工程[M].清华大学出版社. 2003: 71~72
    [109] K. Lan, Y. Q. Zhang and W. D. Zheng. Theoretical Study on Discharge-Pumped Soft X-Ray Laser in Ne-Like Ar[J]. Physics of Plasmas. 1999, 6(11): 4343~4348.
    [110] Y. P. Zhao, Q. Wang, Y. Xie, Y. L. Cheng and B. H. Luan. Laser ooutput and Multiple Pinches of Plasma in Capillary Discharge[J]. Journal of Plasma Physics. 2008, 74(6): 839~846.
    [111] Y. P. Zhao, S. Jiang, Y. Xie and Q. Wang. Influence of Z-pinch Evolution on Laser Pulse Duration at 46.9nm in Ne-Like Ar Ions[J]. Applied Physics B. 2010, 99(3): 535~542.
    [112] Y. Hayashi, H. Ghomi, Y. P. Zhao, Y. L. Cheng, Y. Sakai, M.Watanabe, A. Okino, K. Horioka and E. Hotta. Measurement of Divergence of Ne-like Ar Soft X-ray Laser Generated by Capillary Discharge[J]. Japanese Journal of Applied Physics. 2008, 47(2): 977~979.
    [113]赵永蓬,程元丽,王骐,林靖,崛田荣喜.毛细管放电激励软X射线激光的产生时间[J].物理学报. 2005, 54(6): 2731~2734.
    [114] I. Song, K. Iwata, Y. Homma, S. R. Mohanty, M. Watanabe, T. Kawamura, A. okino, K. Yasuoka, K. Horoka and E. Hotta. A Comparative Study on ThePerformance of a Xenon Capillary Z-pinch EUV Lithography Light Source Using a Pinhole Camera[J]. Plasma Sources Science and Technology. 2006, 15(3): 322~327.
    [115] H. Akiyama, S. Katsuki, T. Namihira, T. Sakugawa and H. Imamura. Extreme Ultraviolet Radiation from Z-pinch Plasmas for Next Generation Lithography[C]. Power Modulator Symposium. 2006: 356~359.
    [116] C. H. Zhang, P. Lv, S. Katsuki and H. Akiyama. Gas Flow Rate Effects from a Z-Pinch Dsicharge Plasma on Extreme Ultraviolet Emission[J]. Electrical and Computer Engineering. 2009: 958~961.
    [117]刘鹏.毛细管放电泵浦X光激光装置及荧光谱实验研究[D].哈尔滨工业大学博士论文. 2002: 21~50.
    [118] R. A. London. Beam Optics of Exploding Foil Plasma X-Ray Lasers[J]. Physics of Fluids. 1988, 31(1): 184~192.
    [119] Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca and D. T. Attwood. Achievement of essentially full spatial coherence in a high-average-power soft-X-ray laser[J]. Physical Review A, 2001, 63(3): 033802.
    [120]程元丽,朱秋石,黄斌,赵永蓬,王骐.结构简单的X射线二极管及其性能指标测定.中国激光. 2008, 35(9): 1338~1341.
    [121] G.Tomassetti, A.Ritucci, A.Reale, L.Palladino, L.Reale, S.V.Kukhlevsky, F.Flora, L.Mezi, A.Faenov, T.Pikuz, A.Gaudieri. Toward a full optimization of highly saturated soft-X-ray laser beam produced in extremely long capillary discharge amplifiers[J]. Optics Communications. 2004, 231(1-6): 403~411.
    [122]栾伯晗.毛细管放电等离子体状态研究及低气压X光激光输出[D].哈尔滨工业大学博士论文. 2007: 109~111.
    [123] S. Sebban, T. Mocek, D. Ros, L. Upcraft, Ph. Balcou, R. Haroutunian, G. Grillon, B. Rus, A. Klisnick, A. Carillon, G. Jamelot, C. Valentin, A. Rousse, J. P. Rousseau, L. Notebaert, M. Pittman and D. Hulin. Demonstration of a Ni-Like Kr Optical-Field-Ionization Collisional Soft X-Ray Laser at 32.8nm[J]. Physical Review Letters. 2002, 89(25): 253901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700