大单体的合成及其静电纺丝成形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大单体又称大单体或者大分子单体,是一类分子量在10~3~10~4之间,分子链末端含有可继续参与聚合的活性官能团的聚合物中间体。这种大单体,既具有较高的分子量,又跟普通单体一样具有较高的反应活性。同小分子单体相比,大单体主要优点在于:随着分子量的增加其毒性和挥发性等都有所限制,反应速率可以通过控制链结构与长度来设计控制。目前大单体设计主要思想是根据最终材料所需的结构性能在最初制备结构单元时就选择具有不同功能的官能团和链节结构。最终形成不同结构的大单体用以研制开发新型的聚合物材料,这是高分子材料高性能化、功能化、精细化的一个主要研究方向。
     本文首先采用聚已二酸异丁二酯(PMPA)、异佛尔酮-二异氰酸酯(IPDI)和2-羟基甲基丙烯酸甲酯(HEMA)作为反应原料,通过两步法合成出了新型的基于PMPA的大单体。
     在第一步反应中,以PMPA为结构主体,选用-NCO活性不同的二异氰酸体IPDI为原料通过控制反应时间、反应温度、原料投料摩尔配比和反应溶剂体系制备了IPDI-PMPA-IPDI结构的预聚体化合物。
     在第二步反应中选用HEMA与IPDI-PMPA-IPDI中的第二个NCO反应通过调节反应温度、反应时间和催化剂,制备了末端为双键基团的不饱和聚酯大单体(UPM)。
     本文在两步反应过程中分别通过二正丁胺-盐酸滴定法对反映过程中游离的异氰酸酯基团的含量进行分析。并采用红外光谱和核磁手段表征了产物的化学结构。
     将低分子量且具有反应活性端的大单体进行静电纺丝并反应交联,这种方法可以通过控制大单体结构,交联点数量、分子链长短、反应交联剂使用及数量等多种变化,制备不同性能的交联纳米纤维,满足各种不同需要。但是这一方案同样面临一个问题,那就是小分子量的大单体溶液粘度较低,不具有静电纺丝所需的可纺性,因此可能导致静电纺丝过程中,只能收集到液滴而非纤维。
     本文提出了一种新颖的解决方法,就是选用羟基丁酸酯和羟基戊酸酯共聚物(PHBV)作为助纺剂,与不饱和大单体共混对纺丝溶液进行增稠处理。通过调节大单体与助纺剂的不同比例,配置纺丝原液,进行静电纺丝成形。实验发现PHBV的加入,相当于提高了共混体系的平均分子量,溶液的粘度也相应的有所提高,当分子量和粘度超过一定的阀值以后,就得到了规整均一的纤维,而低于这一阀值的话,由于分子量过低,体系内分子之间相互交叠和缠结不够,也没有足够的PHBV充当“骨架”,撑起整根纤维,纤维就发生塌缩和粘连。本体系的UPM/PHBV质量比例“阀值”在4:1附近,若高于4:1,一般较难得到形貌较好的纤维,而低于4:1,纤维的形貌差别不大。而检索文献未发现有研究使用80%高比例大单体成功进行静电纺丝。
     为进一步研究该新型UPM/PHBV体系静电纺丝工艺,本文较系统的研究了纺丝原液的浓度、粘度、电导率和外加电压、挤出速率等纺丝参数对纤维形态和直径的影响,并找出了最佳的纺丝条件。实验表明纺丝溶液粘度与纤维直径的关系为直径∝粘度~(0.6958);电导率的增加可明显降低纤维直径;溶液的挤出速率、接受距离与凝固浴的选择可以有效控制纤维串珠结构的变化;而外加电压对纤维的直径影响最小。
     通过改变接收浴可以改变串珠纤维的形态。本实验通过改变接收浴中蒸馏水和乙醇的配比,即随着接收浴中乙醇比例的增加,串珠明显呈现出从“球状”到“纺锤状”,再到“柳叶状”,直至得到几乎无串珠的电纺纤维。
     在可控制备UPM/PHBV静电纺丝纤维的基础上,本文通过热交联和紫外交联的方法对该纤维内UPM进行交联,详细讨论了合成的新型UPM交联时间、交联温度等因素对交联程度和交联后纤维结构形貌的影响,实验表明以过氧化苯甲酰(BPO)为引发剂的最佳引发温度和反应时间段为90℃和8小时。交联后的纤维直径与未交联前变化不大,纤维未出现大量的变形、塌缩、断裂,整体结构保持较好。以紫外法交联的最佳反应时间是10分钟。而交联25分钟的样品,整体结构也被严重破坏。原因可能是紫外辐射会破坏纤维内的分子结构,使分子发生降解。通过拉曼谱图,测试不饱和大单体交联反应1638cm~-1附近的C=C基团吸收峰,的消失证明了交联后纤维中的双键已被打开。
     本文对UPM/PHBV交联纤维毡与交联薄膜进行了耐溶剂性能测试,实验表明UPM/PHBV配比为80:20的样品薄膜和静电纺丝纤维毡形态基本能够得到保持,该实验证明UPM交联纤维具有非常良好的抗溶剂性能,其作为一种新型静电纺丝毡,在过滤材料领域具有广阔的利用前景。而配比为60:40的样品在三氯甲烷洗涤32小时后薄膜形态受到严重破坏。接触角实验说明PHBV本身是一种亲水的材料,而纯交联UPM具有一定的疏水性。同时交联共混膜与水的接触角也随着体系中UPM含量的升高而增大,即表现出越来越强的疏水性。静电成型所得到的纤维与水的接触角平均比交联共混膜与水的接触角高出20-30°。多孔电纺纤维毡的接触角要普遍大于无孔电纺纤维毡,其原因可能由于电纺纤维毡的多孔结构使得电纺纤维毡的表面进一步粗糙化,而使得电纺纤维毡的疏水性进一步提高所造成的。
     偏光热台显微镜与DSC测试表明UPM的交联体能够有效的减缓PHBV的结晶速度降低结晶温度。使结晶结构受限从而有效减少完整球晶的形成数量。初始熔融温度范围的变宽说明PHBV结晶规整度的破坏。而造成这一现象的原因是交联结构破坏了PHBV的堆砌完整性也可能是与PHBV的接枝造成的晶体结构被破坏。
     从热失重分析可以看出,UPM/PHBV交联共混体系在340℃之下的温度范围内稳定性较好,热分解温度比纯PHBV高出40℃以上。由此可见,UPM/PHBV交联共混体系具有的一定的耐高温性能。
     最后,本文选用乙烯基吡咯烷酮(NVP)为改性剂,制备了交联UPM/PHBV/NVP三元电纺纤维毡,并将此电纺纤维毡用作药物缓释载体。以交联UPM/PHBV电纺纤维毡和涂膜作为对比样与交联UPM/PHBV/NVP电纺纤维毡和涂膜进行了表面性能与载释药性能的初步分析探索。由载释药性能测试表明三元体系比二元体系具有更大的载药量和有效载药量,而二元、三元体系的释药过程基本相同;与薄膜相比,电纺纤维毡表现出更好的药物缓释效果。对于交联UPM/PHBV/PVP电纺纤维毡的制备及其在药物缓释方面的初探为进一步制备UPM/PHBV/PVP多孔交联电纺纤维毡并用于药物载体奠定了一定的基础。
Macromonomer'or'macromer'is an abbreviation for macromolecular monomer and hence it is a monomer and a polymer at the same time, with a molecular weight of, say,10~3-10~4. It usually contains polymerization groups on chain end, so that it can either homopolymerize to give a regular comb polymer or copolymerize with a conventional monomer to give a graft copolymer, or cross linked together.
     Compare with the small molecule, the major advantages of macromonomer is that the higher molecular weight can reduce its toxic and volatile and limit the reaction rate.
     Thus the macromonomer technique can be regarded to give access to well-defined special polymers, at least the chain length (degree of polymerization) of the macromonomer. And it is usually predetermined and that the chain length and the composition of the backbone or the main chain may also be controlled in principle by the subsequent polymerization or the copolymerization step.
     With much progress in the syntheses of end-functional polymers, we can even say that almost all types of conceivable macromonomers are available or at least can be prepared so that we can envisage enormous varieties of branched polymers with different architectures, combinations and compositions.
     In this paper, an unsaturated macromonomer polyester (UPM) was synthesized by using isophorone diisocyanate (IPDI), hydroxyethyl-methylacrylate (HEMA) and poly(2-methyl-1,3-propylene adipate) (PMPA) with two steps. The optimized synthesis condition, such as the reaction time, reaction temperature, rate of charge and the dosage of catalyzer of the two courses were investigated.
     The kinetics of synthetic was studied by using dibutyl amine/hydrochloride to analysis the isocyanate group content. IR and NMR were used to analysis the characterization of the chemical structure.
     It is showed that such UPM could not be electrospun directly as a result of its low solution viscosity which attributed to its low molecular weight, so poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), acyclic polyester, was used to improve the processability of the UPM.
     UPM/PHBV ratio decreased to 4:1, a successful electrospinning proceeded and a uniform fiber structure was observed. After electrospinning, a cross linked electrospun mat was prepared by thermally cross linking or photocrosslinking the ultra fine fibers. Some relevant measurements were done to characterize the structure and cross linking of the ultra fine fiber. To our knowledge, it is the first time that the thermal cross linked ultra fine fibers from macromonomers were prepared via electrospinning.
     For further study the new UPM/PHBV system, the spinning concentration, viscosity, conductivity and the applied voltage, extrusion rate of spinning parameters was studied. Experiments show that the viscosity~(0.6958) of spinning solution∝fibers' diameter. Conductivity can significantly reduce the fiber diameter. Solution extrusion rate, distance and the choice of coagulation bath can effectively change the fibers morphology. Applied voltage impact the fibers diameter negatively.
     The degree of cross linking and the solvent stability of the electrospun fibers were closely related to the thermal treatment time. With sufficient thermal cross linking (8 h) resulted in the fibers with good chloroform stability. The photocrosslinking time was controlled strictly and the best reaction time can't exceed more than 10 min.
     The Cross linked UPM/PHBV blend electrospun fibers mat and membranes with UPM/PHBV Ratio 80:20 show good solvent resistance. The UPM/PHBV ratio of 60:40 was severely damaged after washed in chloroform for 32 hours. Contact angle shows that PHBV is a hydrophilic material, and the pure cross-linked UPM is hydrophobic. The data of surface properties showed that the contact angle of cross-linked membranes was lower than electrospun sheets of 20-30°. The high hydrophobic property of electrospun sheets was mainly controlled by morphological structure.
     Fundamental properties of UPM/PHBV cross linked film and fiber mat have been characterized, including solvent-stability behaviors, thermal properties, crystallization properties and surface properties. TGA dates showed that the cross linked film had good resistance against high temperature. The result of DSC indicated that the cross linked film could restrain the crystallization of PHBV.
     Finally, UPM/PHBV/NVP cross linked ultra fine fiber sheets was prepared with the diameter at 100nm-l0um. The data from surface properties showed that UPM/PHBV system had high hydrophobic property comparing with the UPM/PHBV/PVP system. Tetracycline Hydrochloride as a model drug was loaded in electrospun sheets. During the 80 hours in vitro dissolution tests, it was clear that both of UPM/PHBV and UPM/PHBV/NVP electrospun sheets showed excellent drug-sustained release property, yet the TH mass released from UPM/PHBV fibers was always smaller than that from the UPM/PHBV/PVP fibers, indicating that the incorporation of NVP into the UPM/PHBV endowed the electrospun sheets better drug release-controlled property.
引文
[1]Thandavamoorthy Subbiah, G.S. Bhat, Journal of Applied Polymer Science.,2005,v96, 557-569,
    [2]Jesse T. McCann, Dan Li and Younan Xia, J. Mater. Chem.,2005,v15,735-738,
    [3]R. Dersch, M. Steinhart, U. Boudriot, Polym. Adv. Technol.,2005,v16,276-282,
    [4]Michael Bognitzki, Wolfgang Czado, Adv. Mater.2001, v13, n1,
    [5]Ioannis S. Chronakis, Journal of Materials Processing Technology,2005,v167,283-293,
    [6]Formhals, A. US Patent 1975504,1934
    [7]Formhals, A. US Patent 2160962,1939
    [8]Formhals, A. US Patent 2187306,1940
    [9]Taylor, G. I. Proc Roy Soc London, A313,453,1969
    [10]Baumgarten, P. K. J Colloid Interface Sci, v36, n71,1971
    [11]L. Larrondo, R. S.Manley, J. Polym. Sci., Part B:Polym. Phys.1981, v19,909,
    [12]L. Larrondo, R. S.Manley, J. Polym. Sci., Part B:Polym. Phys.,1981,v19,921,
    [13]L. Larrondo, R. S.Manley, J. Polym. Sci., Part B:Polym. Phys.,1981,v19,933,
    [14]Doshi,J. Reneker, D. H. J Electrostatics,1995,v35,151,
    [15]Reneker, D. H., Chun, I. Nanotechnology,1996,v7,216,
    [16]S.B. Warner, A.Buer.G.C. Rutledge, M.Y. Shin, National Textile Center Annual Report, November 1999
    [17]Hao Fong, Darrell H. Reneker, Journal of Polymer Science Part B:Polymer Physics, 1999,v37,3488-3493,
    [18]H.Fong, I. Chun, D.H. Reneker, Polymer,1999,v40,4585-4592, [80]Lei Huang, Karthik Nagapudi, J.Biomater. Sci. Polymer Edn,2001,v12, n9,979-993,
    [19]S-H.Tan, R.Inai, M.Kotaki, Polymer,2005,v46,6128-6134, [82]Audrey Frenot, IoannisS.Chronakis, Current Opinion in Colloid and Interface Science, 2003,v8,64-75,
    [20]Yuris Dzenis, Science,2004,v304, n25,1917-1918,
    [21]Seong Ok Han, Won Keun Son, Materials Letters,2005,v59,2998-3001, [85]Li Yao, Thomas W. Haas, Anthony Guiseppi-Elie, Chem. Mater.,2003,v15,1860-1864,
    [22]Joon Seok Lee, Kyu Ha Choi, Han Do Ghim, Journal of Applied Polymer Science,2004,v93, 1638-1646;
    [23]Y. Y. Zhao,Q. B. Yang, X. F. Lu, Journal of Polymer Science Part B:Polymer Physics, 2005v43,2190-2195;
    [24]Christopher Drew, Xianyan Wang, JOURNAL OF MACROMOLECULAR SCIENCE Part A:Pure and Applied Chemistry,2003,v40, n12,1415-1422,
    [25]Pankaj Gupta, Polymer,2005,v46,4799-4810,
    [26]Chang Kee Lee, Sun I.Kim, Synthetic Metals,2005, v154,209-212,
    [27]Jing Zeng,, Xuesi Chen, Qizhi Liang, Xiuling Xu, Xiabin Jing, Macromol. Biosci.2004,4, 1118-1125
    [28]Seema Agarwal, Sven Horst, Michael Bognitzki,Macromol. Mater. Eng.2006,291,592-601
    [29]T. Jarusuwannapoom et al./European Polymer Journal,2005,41,409-421
    [30]Cheryl L. Casper, Jean S. Stephens, Nancy G. Tassi, D. Bruce Chase, John F. Rabolt,Macromolecules,2004,Vol.37, No.2;
    [31]Teemu Ruotsalainen, Jani Turku,et,al, Soft Matter,2007,3,978-985
    [32]Suresh L. Shenoy, W. Douglas Bates, Harry L. Frisch, Gary E. Wnek,Polymer,2005,46 3372-3384;
    [33]Diego Fantini, Marco Zanetti, Luigi Costa. Macromol. Rapid Commun.2006,27,2038-2042
    [34]QingBiao Yang, Yen Wei, Journal of Polymer Science Part B:Polymer Physics, v42, 3721-3726,2004
    [35]He jihuan, Polym Int.2007,56,1323-1329;
    [36]J.M. Deitzel, J. Kleinmeyer, Polymer,2001,v42,261-272;
    [37]Veli E. Kalayci, Prabir K. Patra, Polymer,2005,v46,7191-7200;
    [38]Xiaohui Wu, Linge Wang, Journal of Applied Polymer Science,2005,v97,1292-1297,
    [39]Silke Megelski,Jean S. Stephens, Macromolecules,2002,v35,8456-8466,
    [40]R. Jaeger, H.Scholnherr, G. J. Vancso, Macromolecules,1996,v29,7634-7636,
    [41]Won Keun Son, Ji Ho Youk, Materials Letters,2005,v59,1571-1575,
    [42]Jean S.Stephens, D.Bruce Chase, Macromolecules,2004,v37,877-881,
    [43]Mao Wang, Hyoung-Joon Jin, David L. Kaplan, Macromolecules,2004,v37,6856-6864,
    [44]Yu Wang, Santiago Serrano, Synthetic Metals,2003,v138,423-427,
    [45]Song Ting Tan, Joachim H.Wendorff, ChemPhysChem,2005,v6,1461-1465,
    [46]Narayan Bhattarai, DongLi Cha, Journal of Polymer Science Part B:Polymer Physics, 2003,v41,1955-1964,
    [47]Joseph D. Berglund, Zorina S.Galis, British Journal of Pharmacology,2003,v140,627-636,
    [48]Robert Langer, David A.Tirrell, NATURE, APRIL 2004,VOL.428,
    [49]M P Lutolf, J A Hubbell, Nature Biotechnology,2005,VOL.23, No.1,
    [50]Junbo Gao, Robert C. Haddon,J. AM. CHEM.SOC,2004,v126,16698-16699,
    [51]Jun Hee Sung,Hyun Suk Kim, Macromolecules,2004,v37,9899-9902,
    [52]Darrell H.Reneker, Andreas Greiner, Stephen Z. D. Cheng,Chem. Mater.,2005,v17, 967-973,
    [53]Rahul Sen,Bin Zhao, Nano Lett.,2004,Vol.4, No.3,459-464,
    [54]G.M. Kim, G.H.Michler, P. Potschke, Polymer,2005,v46,7346-7351,
    [55]C. Shin, G.G. Chase, D.H.Reneker, Colloids and Surfaces A:Physicochem. Eng. spects, 2005,v262,211-215,
    [56]Kwangsok Kim, Meiki Yu, Biomaterials,2003,v24,4977-4985,
    [57]Benjamin S. Hsiao, Benjamin Chu, ENVIRON.SCI.& TECHNOL.,2005,v20, n2,77-85,
    [58]Minglin Ma, Gregory C. Rutledge, Langmuir,2005,v21,9934-9940,
    [59]Young You, Sung Won Lee, Seung Jin Lee, and Won Ho Park. Materials Letters 2006, v60, 1331.
    [60]Bin Ding, Hak Yong Kim, Se Chul Lee, Changlu Shao, Douk RaeLee, Soo Jin Park,Gyu
    Beom Kwag, and Kyung Ju Choi. Journal of Polymer Science:Part B:Polymer Physics 2002, v40, 1261.
    [61]Hodge R. M, Edward G.H, and Simon G. P. Polymer,1996,37,1371.
    [62]Li Yao, Thomas W. Haas, Anthony Guiseppi-Elie, Gary L. Bowlin, David. G. Simpson, and Gary E. Wnek. Chem. Mater,2003,15,1860.
    [63]Zuwei Ma, M. Kotaki, and S. Ramakrishna. Journal of Membrane Science.2006, v272,179.
    [64]Y.Z. Zhang, J. Venugopal, Z.M. Huang, C.T. Lim, and S. Ramakrishna. Polymer,2006, v47, 2911.
    [65]Pankaj Gupta, Scott R. Trenor, Timothy E. Long, and Garth L. Wilkes. Macromolecules,2004, v37,9211-9218.
    [66]Seong Han Kim, Sae-Hoon Kim, Sujith Nair, and Eric Moore. Macromolecules,2005, v38, 3719.
    [67]Feng Yi, Zhao-Xia Guo, Ping Hu, Zhuang-Xi Fang, Jian Yu, and Qiang Li. Macromol. Rapid Commun,2004, v25,1038.
    [68]Jun Zeng, Haoqing Hou, Joachim H. Wendorff, and Andreas Greiner. Macromol. Rapid. Commun,2005, v26,1557.
    [69]Lei Li, and You-Lo Hsieh. Polymer,2005,46,5133.
    [70]Biomaterials 2006,v27,1452-1461
    [71]Thompson, M. W. and Waite, F. A., BP 1,096,912,1967; Waite, F. A., J. Oil Chem. Chem.Assoc.,1971, v54,342.
    [72]Barrett, K. E. J. (Ed.), Dispersion Polymerization in Organic Media. Wiley, London,1975.
    [73]Milkovich, R. and Chiang, M. T., US Patent No.3,786,116,1974; Milkovich, R., ACS Polym.Prep.,1980,v21,40.
    [74]Milkovich, R., ACS Symp. Ser,1981, v166,41.
    [75]Schulz, G. O. and Milkovich, R., J. Appl. Polym. Sci.,1982, v27,4773.
    [76]Schulz, G.O. and Milkovich, R., J. Polym. Sci., Polym. Chem. Ed.,1984,22,1633.
    [77]Journal of Polymer Science:Part A:Polymer Chemistry DOI 10.1002/pola
    [78]Tsukahara, Y, Tsutsumi, K., Yamashita, Y. and Shimada, S., Macromolecules,1990,23,5201.
    [79]Masuda, E., Kishiro, S., Kitayamna, T. and Hatada, K., Polym. J.,1991,23,847.
    [80]Tsukahara, Y, Kohjiya, S., Tsutsumi, K. and Okamoto, Y, Macromolecules,1994,27,1662.
    [81]Grutke, S., Ederle, Y. and Lutz, P. J., Advanced Polymers via Macromolecular Engineering,Vassar Campus, New York, Abstracts,1996,24-28, p.28.
    [84]Hatada, K., Kitayama, T., Ute, K., Nishimura, T., Kobunshi Ronbunshu,1997, v54,723.
    [85]Quirk, R. P. and Yoo, T.,Polym. Bull.,1993, v31,29.
    [86]Takano, A., Furutani, T. and Isono, Y., Macromolecules,1994, v27,7914.
    [87]Takenaka, K., Hirao, A. and Nakahama,S., Macromol. Chem. Phys.,1995, v196,1687.
    [88]Tsukahara, Y, Inoue, J., Ohta, Y., Kohjiya, S. and Okamoto, Y., Polym. J.,1994, v26,1013.
    [89]Se, K., Suzuki, M., Matsuo, T., Umeda, T. and Ueno, M., Kobunshi Ronbunshu,1992,v49,8 17.
    [90]Norton, R. L. and McCarthy, T. J., Macromolecules,1989, v22,1022.
    [91]Rohrback, P., Heitz, T., Keul, H. and Hacker, H., Makromol. Chem.,1994, v194,1627.
    [92]Heitz, T. and Hacker, H., Makromol. Chem.,1988, v189,777.
    [93]Lutz, P., Masson, P., Beinert, G. and Rempp, P., Polym. Bull..1984, v12,79.
    [94]Yoshida, H., Itsuno, S. and Ito, K., Can. J. Chem.,1995, v73,1757.
    [95]Antoin, K., Lamps, J.-P., Rempp, P. and Gnanou, Y., Polymer,1990, v31,967.
    166. Lao, P., Masson, P., Lutz, P., Beinert, G. and Rempp, P., Polym. Bull.,1984, v11,115.
    [96]崔英德,易国斌,廖列文,聚乙烯基吡咯烷酮的合成与应用,科学出版社,2001,北京,15-13.
    [97]Sairam M, Ramesh Babu V R, Krishna Rao K S V, Aminabhavi T M, J Appl Polym Sci,2007, v104,1860-1865.
    [98]Kallrot M, Edlund U, Albertsson A C, Biomaterials,2006, v27,1788-1796.
    [99]Cook S E, Park I K, Kim E M, Jeong H, Akaikea T, Park T G,Jaie Y, Cho C S, J Control Release,2005,105,151-163.
    [100]Caykara T, Alaslan A, Eroglu M S, Guven O, Appl Surf Sci,2006,252,7430-7435.
    [101]Anjali Devi D, Smitha B, Sridhar S, J Membrane Sci,2006,280,45-53.
    [102]周立明,聚氨酯丙烯酸酯大分子单体及其聚合物的研究[硕士学位论文]2004]。
    [103]高军波等,功能高分子学报1999,Vol.12,269-272,
    [104]沈良骏,李庆海,安徽师范大学学报,2002,v25,2
    [105]WEIJIE XU, J. Biomater. Sci. Polymer Edn,2007,Vol.18, No.11, pp.1369-1385
    [106]Raymond T. Bartus, Science 21 August 1998,Vol.281. no.5380, pp.1161-1162,
    [107]B. Fei, C. Chen, H. Wu, S. W. Peng, X. Y. Wang, L. S. Dong and J. H. Xin, Polymer,2004, 45(18),6275-6284
    [108]Mahoney, M. J. & Saltzman, W. M.,Nature Biotechnol.,2001, v19,934-939;
    [109]Lo, H., Ponticello, M. & Leong, K.,Tissue Eng,1995, v1,15;
    [110]Mann, B. K., Gobin, A. S., Tsai, A. T., Schmedlen, R. H.&West, J. L..Biomaterials,2001,v22,3045-3051
    [111]Chew S Y, Wen J, Yim E K F, Leong K W, Biomacromolecules,2005,6,2017-2024.
    [112]董其宝,大分子单体法合成反应性双亲聚合物,[硕士论文]2003
    [1]. Kro IP., J Appl Polym Sci,1995,vol57,739-749,.
    [2]. Eceiza A., de la Caba K., Gascon V., Corcuera M.A., I.Mondragon. Eur Polym J,2001,vol37 1685-1693,
    [3]. Piotr K., Joanna Wojturska., J Appl Polym Sci,2003,v88,327-336,
    [4]. Burel F., Feldman A., Bunel C,Polym,2005,v46,15-25,.
    [5]. Odile F., Frederic V., Judith L., Dominique Teyssie, Part Ⅰ, Polym,2005,v46,37-47,.
    [6].王绪根,谭心舜,青岛科技大学学报,2005,v5(26):382-385
    [7].张学同,罗运军,谭惠民,沈剑波,化学进展,2002,v5(14):339-346
    [8]. Iskender Yilgor, Brain D. Mather, Serkan Unal, Emel Yilgor, Timothy E. Long, Polymer,2004, vol45,5829-5836.
    [9]. Hepburn C., Iranian Journal of Polymer Science & Technology (English Edition), 1992,vl(2),84-110.
    [10]. Rochery M., Vroman I., Lam T.M., J Macromol Sci, Pure Appl Chem 2000;v37:259-75.
    [11]. Goetz H., Beginn U., Bartelink C.F., Gruenbauer H.J.M., Moeller M., Macromol Mater Engng 2002;vol287,223-30.
    [12]. HiRO-KUNI ONO, FRANK N, JONES, S. PETER PAPPAS, J Polym Sci:polymer lett 1985, vol23,509-515
    [13].BurelF., Feldman A., Bunel C, Polym,2005,vol46,15-25.
    [14].山西省化工研究所编,聚氨酯弹性体手册,化学工业出版社,2001
    [15].朱吕民,聚氨酯合成材料,江苏科学技术出版社,2002
    [16].从树枫,喻露如,化学工业出版社,2003
    [17].Marcello Laporta, Mario Pegoraro et al., Polymer International,2005, v54,644-658
    [18]. QIWEN HAN, MAREK W.URBAN,Journal of Applied Polymer Science,2001, v81,2045-2054
    [19]Piotr Krol, Barbara Pilch-Pitera, Polymer,2003, v44,5075-5101
    [20]M. A. Semsarzadeh, A. H. Navarchian, Journal of Applied Polymer Science,2003, v90, 963-972
    [21]B.K.KENDAGANNASWAMY, SIDDARAMAIAH, Journal of Applied Polymer Science,2002, v84,359-369
    [22]尹伟,储玖龙,涂料工业,1999,v2,34-36
    [23]潘敏琪,化工新型材料,1999,v27,41-44
    [24]Umit Makal, Tomoko Fujiwara et al., Langmuir,2005, v21,10749-10755
    [25]廖桂英,姜胜武,精细石油化工进展,2001,v2,5-9
    [26]石元昌,吴佑实,精细石油化工,2002,v5,38-40
    [27]Qiang Zhao, Guoxiang Cheng, Polymer,2005, v46,10561-10567
    [28]沈德言,红外光谱法在高分子研究中德应用,科学出版社,1982
    [29]赵天曾,核磁共振氢谱,北京大学出版社,1983
    [1]Jean S.Stephens, D.Bruce Chase, John F.Rabolt, Macromolecules,2004, v37,877-881
    [2]Won Keun Sona, Ji Ho Youk, Materials Letters,2005, v59,1571-1575
    [3]Teeradech Jarusuwannapoom, Walaiporn Hongrojjanawiwat et al, European Polymer Journal, 2005, v41,409-421
    [4]Chidchanok Mit-uppatham, Pitt Supaphol, Macromol.Symp.,2004,v216,293-299
    [5]Angelo Pedicini, Richard J. Farris, Polymer,2003, v44,6857-6862
    [6]QINGBIAO YANG, ZHENYU LI et al, Journal of Polymer Science:Part B:Polymer Physics, 2004, v42,3721-3726
    [7]Silke Megelski, Jean S. Stephens et al., Macromolecules,2002, v35,8456-8466
    [8]Y. Y. ZHAO, Q. B. YANG, X. F. LU, C. WANQ Y. WEI, Journal of Polymer Science:Part B: Polymer Physics,2005, v43,2190-2195
    [9]S-H. Tana, R. Inaia, M. Kotakib, S. Ramakrishna, Polymer,2005, v46,6128-6134
    [10]J.M.Deitzel, J.Kleinmeyer, D.Harris, N.C.Beck Tan, Polymer,2001,v42,261-272
    [11]Christopher Drew.Xianyan Wang,Lynne A.Samuelson, Jayant Kumar, JOURNAL OF MACROMOLECULAR SCIENCE1:Part A:Pure and Applied Chemistry, 2003,v40,1415-1422
    [12]Jian H.Yu, Sergey V.Fridrikh, Gregory C.Rutledge, Polymer,2006, v47,4789-4797
    [13]Pitt Supaphol, Chidchanok Mit-uppatham, Manit Nithitanakul, Macromol. Mater.Eng,2005,v290,933-942
    [14]HAO FONG, DARRELL H. RENEKER, Journal of Polymer Science:Part B:Polymer Physics,1999, v37,3488-3493
    [15]Matthew G. McKee, Taigyoo Park et al., Polymer,2005, v46,2011-2015
    [16]Yangxin Zhou, Marcus Freitag, James Hone et al., APPLIED PHYSICS LETTERS VOLUME, 2003, v83,3800-3802
    [17]Chang Kee Lee, Sun I.Kim, Seon Jeong Kim, Synthetic Matels,2005, v154,209-212
    [18]Jae Shin Choia, Sung Won Leea et al., International Journal of Biological Macromolecules, 2004, v34,249-256
    [19]Gunaranjan Viswanathan, Saravanababu Murugesan, Biomacromolecules,2006,v7,415-418
    [20]HAIQING LIU, YOU-LO HSIEH, Journal of Polymer Science:Part B:Polymer Physics,2002,v40,2119-2129
    [21]Gokul Srinivasan, Darrell H. Reneker, Polymer International,1995, v36,195-201
    [22]John J. Stankusa, Jianjun Guan, Kazuro Fujimoto, William R. Wagner, Biomaterials,2006, v27,735-744
    [23]Pankaj Gupta, Garth L.Wilkes, Polymer,2003, v44,6353-6359
    [24]K.H.Lee, H.Y.Kim, Polymer,2003, v44,1287-1294
    [25]Patcharaporn Wutticharoenmongkol, Neeracha Sanchavanakit, Macromol. Biosci.,2006, v6, 70-77
    [26]Xiaofeng Lu, Yiyang Zhao, Ce Wang, Yen Wei, Macromol. Rapid Commun.,2005, v26, 1325-1329
    [27]F.Burel, A. Feldman, C. Bunel, Polymer,2005, v46,15-25
    [28]Fernanda M.B. Coutinho, Marcia C. Delpech, Lairton S. Alves, Journal of Applied Polymer Science,2001, v80,566-572
    [29]M.A.Semsarzadeh, A.H.Navarchian, Journal of Polymer Engineering,2003, v23,225-239
    [30]Seong Han Kim, Sae-Hoon Kim, Sujith Nair, Eric Moore, Macromolecules,2005, v38, 3719-3723
    [31]E.J.Robinette, G.R.Palmese et al., Nuclear Instruments and Methods in Physics Research B, 2005, v236,216-222
    [32]Hongliang Jiang, Dufei Fang, Benjamin Chu, Biomacromolecules,2004, v5,326-333
    [33]Youliang Honga, Tiecun Shang et al., Journal of Membrane Science,2006, v276,1-7
    [34]S.S.Choi, J.P.Hong, Y.S.Seo, S.M.Chung, C.Nah, Journal of Applied Polymer Science,2006, v101,2333-2337
    [35]Pankaj Gupta, Scott R. Trenor, Timothy E. Long, Garth L. Wilkes, Macromolecules 2004, v37,9211-9218
    [36]Feng Yi, Zhao-Xia Guo et al., Macromol. Rapid Commun.,2004, v25,1038-1043
    [37]Jun Zeng, Haoqing Hou, Joachim H. Wendorff, Andreas Greiner, Macromol. Rapid Commun.,2005, v26,1557-1562
    [38]Y.Z. Zhang, J. Venugopal, Polymer,2006, v47,2911-2917
    [39]Lili Wu, Xiaoyan Yuan, Jing Sheng, Journal of Membrane Science,2005 v250,167-173
    [40]Young You, Sung Won Lee, Seung Jin Lee, Won Ho Park, Materials Letters,2006, v60, 1331-1333
    [41]Y.C. Ahn, S.K. Park, Current Applied Physics,2006, v6,1030-1035
    [42]Renuga Gopal, Satinderpal Kaur et al., Journal of Membrane Science 2006, v281,581-586
    [43]A.V.Tovmash, V.V.Polevov et al, Fibre Chemistry,2005, v37,187-191
    [44]Xiao-Hong Qin, Shan-Yuan Wang, Journal of Applied Polymer Science,2006, v1O2, 1285-1290
    [45]A. A. Shutov, E. Yu. Astakhov, Technical Physics,2006, v51,1093-1096
    [46]Harry R Allcock, Lee B Steely, Anurima Singh, Polym Int,2006, v55,621-625
    [47]Phillip Gibson, Heidi Schreuder-Gibson, Donald Rivin, Colloids and Surfaces,2001, v187, 469-481
    [48]Laura M. Hansen, Daniel J. Smith, Darrell H. Reneker, Journal of Applied Polymer Science, 2005, v95,427-434
    [49]Seong Hana, Won Keun Sonb, Polymer Degradation and Stability,2004, v86,257-262
    [50]B.M.P. Ferreira, C.A.C. Zavaglia, E.A.R. Duek, Journal of Applied Polymer Science,2002, v86,2898-2906
    [51]Changlu Shao, Hak-Yong Kim et al, Materials Letters,2003, v57,1579-1584
    [52]Yeng-Fong Shih, Ru-Jong Jeng et al, Polymer Degradation and Stability,2006, v91,823-831
    [53]P. Banu, G. Radhakrishnan, European Polymer Journal,2004, v40,1887-1894
    [1]Jingwei Xie, Parmaceutical Research,2006,Vol.23, No.8,333;
    [2]Tasha Ronell Williams,, The Graduate Faculty of The University of Akron,2007;
    [3]Christian Burger,, NANOFIBROUSMATERIALS AND THEIR APPLICATIONS Annu. Rev. Mater. Res.,2006,36,33-68;
    [4]El-Refaie Kenawy, Journal of Controlled Release,2002,81,57-64:
    [5]崔英德,易国斌,廖列文,聚乙烯基毗咯烷酮的合成与应用,科学出版社,北京,2001,15-13.
    [6]Sairam M, Ramesh Babu V R, Krishna Rao K S V, Aminabhavi T M,,J Appl Polym Sci, 2007,104,1860-1865;
    [7]Kallrot M, Edlund U, Albertsson A C, Biomaterials,2006,27,1788-1796.
    [8]Cook S E, Park 1 K, Kim E M, Jeong H,Akaikea T, Park T G, Jaie Y, Cho C S, Galactosylated, J Control Release,2005,105,151-163.
    [9]Caykara T, Alaslan A, Eroglu M S, Guven O, Appl Surf Sci,2006,252,7430-7435.
    [10]Anjali Devi D, Smitha B, Sridhar S, Aminabhavi T M, J Membrane Sci,2006,280,45-53.
    [11]F.Haaf, etc, Polymer Journal,1985,Vol.17 No 1,P143-152;
    [12].Sanders,E.H.;Kloefkorn,R.;Bowlin,G.L.;Simpson,D.G.;Wnek,G. E.Macromolecules,2003,36, 3803-3805;
    [13].Jin, H. J.; Chen, J.; Karageorgiou, V.; Altman, G. H.; Kaplan, D. L,, Biomaterials,2004,25, 1039-1047;
    [14].Kenawy, E. R.; Bowlin, G. L.; Mansfield, K.; Layman, J.; Simpson.D. G; Sanders, E. H.; Wnek, G. E., J. Controlled Release,2002,81,5764.
    [15]汪蔚,PHBV-g-PVP接枝共聚物及其药物缓释材料的制备及性能表征,[博士学位论文]2008:
    [16].Anish Tuteja, Gareth H. McKinley, Robert E. Cohen, SCIENCE,2007,318,1618-1619
    [17]LEI JIANG, YONG ZHAO, and JIN ZHAI, Angew.Chem. Int,2004,43,4338.
    [18]KAZIM ACATAY, SIMSEK EREN, OW-YANG CLEVA and YUSUF Z. MENCELOGLU, IBID,2004,43,5210;
    [19]MEIFANG ZHU, WEIWEI ZUO, J MATER SCI,2006,41,3793-3797
    [20].Huang,L.;Nagapudi,K.;Apkarian,R.P.;Chaikof,E.L, J. Biomater. Sci., Polym. Ed,2001,12 (9), 979-993;
    [21].Wnek, G. E.; Carr, M. E.; Simpson, D. G.; Bowlin, G.L., NanoLett,2003,3 (2),213-216.
    [22]W.Mark Saltzman, William L. Olbricht, NATURE REVIEWS,DRUG DISCOVERY MARCH,2002,VOLUME 11, P177-186
    [23]El-Refaie Kenawy, Journal of Controlled Release,2002,81,57-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700