梁式桥基于性能抗震设计方法研究973项目之
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗震设计是人们在生产实践中抵御地震自然灾害唯一有效手段,抗震设防的目的由单一的保障生命安全,逐渐转变为保障生命安全的同时减少灾害经济损失的双重要求。基于性能的抗震设计理论代表了当前抗震设计理论发展的新高度,为未来抗震设计理论的研究指明了方向。论文从四个方面系统总结了基于性能抗震设计的理论框架,这五个方面包括:地震设防水准、结构抗震性能水准、抗震性能目标、结构抗震性能分析方法和结构抗震设计方法等。并以抗震性能分析方法中的静力弹塑性分析方法为重点,介绍了其传统方法及其改进方法—改进能力谱法的原理和实施步骤。
     桥梁基于性能的抗震设计成为时下桥梁抗震设计研究的热点。桥梁墩柱作为桥梁主要抗侧力构件,在桥梁抗震设计研究中理应受到重视。众多研究多集中在墩柱直接基于位移的抗震设计研究。论文通过等强度延性谱构造非弹性位移反应谱,促进了等强度延性谱在抗震设计中应用;并以一个设计实例检验了该设计流程。
     论文结合开源软件OpenSees采用改进能力谱法和增量动力分析方法对一座实例桥墩的纵、横向抗震性能从静力和动力两个角度进行了分析和评价;四种设防水准下,静力方法计算结果比动力分析要小,且实例桥墩纵横向抗震性能存在较大差异;利用从PGMD中挑选的加速度时程记录,对实例桥墩进行了增量动力分析,获得了墩顶位移的IDA曲线;分析表明实例桥墩横桥向具有较强的抗震性能。并在原模型的基础上对相同截面形式的墩柱的抗震性能做了参数化研究;对比发现,随着高度的增加,墩顶位移逐渐增大。
Seismic design is the only effective means to withstand earthquakes of natural disasters in people's production practice. For decades seismic fortification purposes gradually shift from a single one guarantying life safety to dual requirements of protecting safety of life and reducing economic losses. Performance-based seismic design theory represents new heights of the current seismic design theory development,which points out the direction for the future seismic design theory research. This paper completely summarizes the content of performance-based seismic design theory framework from five aspects, which includes: seismic fortification level, seismic performance level, seismic performance objectives, structure seismic performance analysis methods and seismic design methods. And among seismic performance analysis methods pushover analysis methods is introduced detailedly, focusing on the principle and implementation steps of the traditional methods and its improved methods.
     Performance-based seismic design of bridge structures nowadays become a hot research on bridge seismic design. The pier is the main component of a bridge that resists the lateral force subjected to the bridge, therefore the seismic design of pier among the bridge seismic design study should be taken seriously. Numerous studies have mostly concentrated on the directly displacement-based seismic design studies of piers. In this method, the top displacement (the drift rate) of a pier is choosed as the design performance goal. The pier computational cycles can be determined through combining the design performance goal with the displacement response spectrum, and then get on the pier design forces for section design, and check the design pier seismic performance at last. In this paper, the inelastic displacement response spectrum is formed by equal strength ductility spectrum, and in according with the inelastic displacement response spectrum a new design iteration process is proposed, which promotes the engineering application of the equal strength ductility spectrum inseismic design. At last section in this chapter a piler example is designed to examine the design process proposed above.
     The vertical and horizontal seismic performance of an instance of the pier are analyzed and evaluated from static and dynamic two angles using the improved capacity spectrum method and the incremental dynamic analysis method in the paper with the open source software OpenSees. in four kinds fortification level,the results from the static method is smaller than tieh ones of the dynamic analysis and there is a big difference betwween the vertical and horizontal seismic performance of the pier instances. Utilizing the acceleration time history records selected from PGMD, an incremental dynamic analysis for instance pier is performed, and the pier top displacement IDA curve is obtained; analysis show that the transverse seismic performance of the example pier direction is strong. And the seismic performance of piers with the same cross-section as the original model do parametric study. Through comparison, as the height increases, the pier top displacement increases.
引文
[1]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社.2001.4
    [2]谢礼立等.基于性态的抗震设防与设计地震动[M].北京:科学出版社.2009
    [3]胡聿贤.地震工程学(第二版)[M].北京:地震出版社.2006.1
    [4]柳春光.桥梁结构地震响应与抗震性能分析[M].北京:中国建筑工业出版社.2009
    [5]谢礼立,马玉宏.现代抗震设计理论的发展过程[J].国际地震动态,2003,298(10):1-8
    [6]孙俊,刘铮,刘永芳.工程结构基于性能的抗震设计方法研究[J].四川建筑科学研究,2005,Vol.31(3):98-101
    [7]贾立哲,段忠东.基于性能的地震工程理念的研究现状与分析[J].工程抗震与加固改造,2011,Vol.33(2):122-129
    [8]李晓莉,吴敏哲,郭棣.基于性能的结构抗震设计研究[J].世界地震工程,2004,Vol.20(1):153-156
    [9]梁兴文.结构抗震性能设计理论与方法[M].北京:科学出版社.2011.3
    [10]张新培.基于性能的抗震结构设计理论的若干进展[J].四川建筑科学研究,2001,Vol.27(1):34-35
    [11]白晓红,白国良.基于性能的抗震设计理论的研究现状及展望[J].河南科技大学学报(自然科学版),2005,Vol.26(6):74-77
    [12]张静怡,李春祥.抗震性能设计的发展[J].自然灾害学报,2004,Vol.13(5):128-135
    [13]沈章春,王全风.基于性能抗震设计理论与实用方法[J].四川建筑科学研究,2008,Vo1.34(3):Vo1.136-140
    [14]陆文强,陈瑛.几种基于性能的结构抗震设计方法研究[J].工程抗震与加固改造,2011,Vo1.33(6):82-86
    [15]韩建平,吕西林,李慧.基于性能的地震工程研究的新进展及对结构非线性分析的要求[J].地震工程与工程振动,2007,Vo1.27(4):15-23
    [16]北京金土木软件技术有限公司.Pushover分析在建筑工程抗震设计中的应用[M].北京:中国建筑工业出版社.2010
    [17]管民生.Pushover分析方法研究[J].广东工业大学学报,2009,Vol.26(2):1-6
    [18]何鹏辉,温换玲,高晓莉.Pushover分析的基本原理和设计方法[J].低温建筑技术,2009,Vol.9:62-64
    [19]叶燎原,潘文.结构静力弹塑性分析(Pushover)的原理和计算实例[J].建筑结构学报,2000,Vol.21(1):37-51
    [20]缪志伟,马千里,叶列平,陆新征.Pushover方法的准确性和适应性研究[J].工程抗震与加固改造,2008,Vol.30(1):55-59
    [21]尹华伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究和改进[J].工程力学,2003,Vol.20(4):45-49
    [22]刘跃宇.结构抗震静力弹塑性分析方法(Pushover)的研究与改进[D].中南大学,2011,5
    [23]杨溥,李英民,王亚勇,赖明.结构静力弹塑性分析(Pushover)方法的改进[J].建筑结构学报,2000,Vol.21(1):44-51
    [24]侯爱波,汪梦甫,周锡元.Pushover分析方法中各种不同的侧向荷载分布方式的影响[J].世界地震工程,2007,Vol.23(3):120-128
    [25]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响[J].地震工程与工程振动,2004,Vol.24(3):89-97
    [26]熊向阳,戚震华.侧向荷载分布方式对静力弹塑性分析结果的影响[J].建筑科学,2001,Vol.17(5):8-13
    [27]贾红梅,阎贵平.Pushover方法在双柱桥墩抗震性能评估上的应用[J].北方交通大学学报,2008,Vol.32(1):74-78
    [28]赵静,李睿.Pushover法的独柱墩桥梁抗震性能研究[J].科学技术与工程,2011,Vol.11(2):415-418
    [29]盛光祖.Pushover分析方法的发展及其在桥梁结构中的应用[J].华北地震科学,2008,Vol.26(4):25-30
    [30]柳春光,秦泗凤,林皋,王会利.改进的适应谱Pushover方法评价桥梁结构的抗震性能[J].哈尔滨工业大学学报,2008,Vol.40(10):1644-1648
    [31]唐必刚.基于Pushover和能力谱法的桥梁结构抗震性能研究[D].湖南大学,2010
    [32]陈滔,黄宗明.钢筋混凝土框架非弹性地震反应分析模型研究进展[J].世界地震工 程,2002,Vol.18(1):91-97
    [33]叶列平,陆新征,马王里等.混凝土结构抗震非线性分析模型、方法及算例[J].工程力学,2006,Vol.23 Sup.Ⅱ:131-140
    [34]Clough R W, Benuska K L. Inelastic earthquake response of tall buildings[A]. Proc.3rd world Conf. On Earthquake Engrg[C], New Zealand,1965
    [35]Freeman S A, Nicoletti J P, Tyrdl J V. Evaluation of existing buildings for seismic risk-A case study of puget sound naval shipyard[C]. Proceedings of 1st U.S. National Conference Earthquake Engineering, EERI, Berkley,1975:113-122
    [36]梁仁杰,吴京,孟少平.能力谱法中等效阻尼比的误差分析及假设检验[J].土木工程学报,2010,Vol.43 Sup.:33-36
    [37]Chopra A K, Goel R K. Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures:SDF Systerm[R]. Report NO. PEER-1999/02. Berkely:Pacific Earthquake Engineering Research Center,1999:1-65
    [38]袁万城,杨俊,冯清海.能力谱方法在梁桥抗震性能评估中的比较研究[J].地震工程与工程振动,2008,Vol.28(6):90-96
    [39]史庆轩,门进杰.建筑结构基于性能的抗震评估的等白延性谱法[J].地震工程与工程振动,2007,Vol.27(1):54-58
    [40]丁建国,陈伟.弹塑性反应谱的分析[J].南京理工大学学报,2011,Vol.35(4):573-578
    [41]丁建国.弹塑性反应谱及其在抗震设计中的应用[J].南京理工大学学报,2007,Vol.31(6):780-783
    [42]何浩祥,李宏男.基于规范弹性反应谱建立需求谱的方法[J].世界地震工程,2002,Vol.18(3):57-63
    [43]易伟健,张海燕.弹塑性反应谱的比较及其应用[J].湖南大学学报(自然科学版),2005,Vol.32(2):42-45
    [44]张海燕,易伟健.强度需求谱与延性需求谱之比较[J].工程抗震与加固改造,2008,Vol.30(3):1-4
    [45]吕西林,周定松.考虑场地类别和设计分组的延性需求谱和弹塑性位移反应谱[J].地震工程与工程振动,2004,Vol.24(1):39-48
    [46]徐福江,钱稼茹.常延性系数弹塑性位移谱及其应用[J].工程力学,2007,Vol.24(6):15-20
    [47]Newmark N M, Hall W J. Procedures and criteria for earthquake resistant design on building research series NO.46[R]. Washington:U.S. Dept of Commerce, National Bureau of Standards,1973,209-236
    [48]Nassar A A, Krawinkler H. Seismic demands for SDOF and MDOF system in earthquake engineering center report NO.95 [R]. Stanford, California, USA:The John A Blume Earthquake Engineering Center Stanford University,1991
    [49]Miranda E. Site-dependent strength reduction factors[J]. Journal of Structural Engineering,1993,116(12):3503-3519
    [50]Vindic T, Fajfar P. Consistent inelastic design spectra Strength and displacement[J]. Earthquake Engineering and Structural Dynamics,1994,24(5):507-521
    [51]罗文斌,钱稼茹.钢筋混凝土框架基于位移的抗震设计[J].土木工程学报,2003,Vol.36(5):22-29
    [52]马宏旺.一种直接基于位移的抗震设计方法[J].地震工程与工程振动,2007,Vol.27(2):45-50
    [53]吴波,熊焱.一种直接基于位移的结构抗震设计方法[J].地震工程与工程振动,2005,Vol.25(2):62-67
    [54]吕大刚,贾明明,李佳,张素梅.钢框架结构直接基于位移的抗震性能设计[J].哈尔滨工业大学学报,2011,Vol.43(2):14-18
    [55]郭磊,李建中,范立础.直接基于位移的结构抗震设计理论研究进展[J].世界地震工程,2005,Vol.21(4):157-164
    [56]蒋欢军,郑建波,张桦.基于位移的抗震设计研究进展[J].工业建筑,2008,Vol.21(4):1-5
    [57]赵冠远,阎贵平.一种基于能力谱法的位移抗震设计方法[J].中国铁道科学,2002,Vol.23(3):64-67
    [58]王东升,李宏男,赵颖华,王国新.钢筋混凝土桥墩基于位移的抗震设计方法[J].土木工程学报,2006,Vol.39(10):80-86
    [59]Calvi G M, Kingsley G R. Displacement-based seismic design of multi-degree of freedom bridge structures [J]. Earthquake Engineering and Structural Dynamic, 1995,24(9):1247-1266
    [60]Kowalsky M J. A displacement-based approach for the seismic design of continuous concrete bridges[J], Earthquake Engineering and Structural Dynamics,2002,31(3): 719-747
    [61]Priestley M J N, Kowalsky M J. Direct displacement-based seismic design of concrete buildings[J]. Bulletin of the New Zealand National Seciety for Earthquake Engineering, 2000,33(4):421-444
    [62]欧进萍,何政,吴斌,邱法维.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,Vol.19(1):21-30
    [63]李建中,管仲国.基于性能桥梁抗震设计理论发展[J].工程力学,2011,Vol.28Sup.Ⅱ:24-30
    [64]夏修身,王常峰.钢筋混凝土桥墩基于性能的抗震设计研究[J].西安建筑科技大学学报(自然科学版),2010,Vol.42(2):294-299
    [65]周道传,陈国荣,聂利英.以位移为基础的钢筋混凝土桥梁墩柱抗震设计方法研究[J].公路交通科技,2009,Vol.26(10):87-92
    [66]弓俊青等.以位移为基础的钢筋混凝土桥梁墩柱抗震设计方法[J].中国公路学报,2001,Vol.14(4):42-46
    [67]陆本燕,刘伯权等.桥梁结构基于性能的抗震设防目标与性能指标研究[J].工程力学,2011,Vol.8(17):96-103
    [68]孙颖,卓卫东,房贞政.规则桥梁抗震性能水准的定义及其量化描述[J].地震工程与工程振动,2011,Vol.31(5):104-112
    [69]Priestley M J N, Seible F, Calvi G M. Seismic design and retrofit of bridges[M]. New York, John wiley & Sons,1996
    [70]Kowalsky M J. Deformation limit states for circular reinforced concrete bridge columns[J]. Journal of Structural Engineering, ASCE,2000,126(8):869-878
    [71]吕西林,周定松,蒋欢君.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动,2005,Vol.24(6):53-60
    [72]刘燕辉,赵世春,强士中.城市高架桥抗震性能水准的量化[J].西南交通大学学报,2010,Vol.45(1):54-58
    [73]Hindi, R A, Sexsmith R G. A proposed damage model for RC bridge columns under cyclic loading[J]. Earthquake Spectra,2001,17(2):261-289
    [74]Fajfar P. Equivalent ductility factors taking into account low-cycle fatigue[J]. Earthquake Engineering and Structural Dynamics,1992,21(10):837-848
    [75]江辉,朱晞.以性能指标为控制变量的强度折减因子[J].铁道学报,2008,Vol.30(6):88-95
    [76]Hose Y D, Seible F. Performance evaluation database for concrete bridge componets and systems under simulated seismic loads[R]. Report NO. PEER-1999/11, Pacific Earthquake Engineering Research Center University of California, Berkeley,1999
    [77]刘庆华.钢筋混凝土桥墩的延性分析[J].同济大学学报,1998,Vol.26(3):245-249
    [78]Paulay T, Priestley M J N. Seismic Design of Reinforced Concrete and Masonry Buildings[M]. New Yark:John Wiley & Sons,1992
    [79]Watson S, Zahn S A, Park R. Confining Reinforcement for Concrete Columns[J]. J. Structural Eng., ASCE,1994, Vol.120(6):1798-1824
    [80]卓卫东,范立础.延性桥墩塑性铰区最低约束箍筋用量[J].土木工程学报,2002,Vol.35(5):47-51
    [81]贺国京,阎奇武,袁锦根.工程结构弹塑性地震反应[M].北京:中国铁道出版社.2005.7
    [82]张新培.钢筋混凝土抗震结构非线性分析[M].北京:科学出版社.2003
    [83]李爱群,丁幼亮.工程结构抗震分析[M].北京:高等教育出版社.2010
    [84]陈玲莉.工程结构动力分析数值方法[M].西安:西安交通大学出版社.2006.9
    [85]陈滔,黄宗明.钢筋混凝土框架非弹性地震反应分析模型研究进展[J].世界地震工程,2002,Vol.18(1):91-96
    [86]叶列平,陆新征等.混凝土结构抗震非线性分析模型、方法及算例[J].工程力学,2006,Vol.23 Sup.Ⅱ:131-140
    [87]艾庆华,王东升,向敏.基于纤维单元的钢筋混凝土桥墩地震损伤评价[J].计算力学学报,2011,Vol.28(5):737-742
    [88]梁智垚,彭伟.桥梁结构弹塑性地震反应分析新进展[J].世界地震工程,2007,Vol.23(4):163-169
    [89]杨琪,黄建跃.大跨度桥梁空间几何非线性仿真分析的研究[J].中南公路工程,2005, Vol.30(1):59-62
    [90]江卫国,夏勇,陈忠范,程文.分布塑性梁柱单元非线性分析方法研究[J].工程抗震与加固改造,2008,Vol.30(6):49-54
    [91]陈滔,黄宗明.基于有限单元柔度法的材料与几何双重非线性空间梁柱单元[J].计算力学学报,2006,Vol.23(5):524-528
    [92]陈滔.基于有限单元柔度法的钢筋混凝土框架三维非弹性地震反应分析[D].重庆大学,博士学位论文,2003
    [93]黄宗明,陈滔.基于有限单元柔度法和刚度法的非线性梁柱单元比较研究[J].工程力学,2003,Vol.20(5):24-31
    [94]陈滔,黄宗明.基于有限单元柔度法和刚度法的几何非线性梁柱单元比较研究[J].工程力学,2005,Vol.22(3):31-38
    [95]聂利英,李建中,范立础.弹塑性纤维梁柱单元及其单元参数分析[J].工程力学,2004,Vol.21(3):15-20
    [96]杨红,张睿等.纤维模型中非线性剪切效应的模拟方法及校核[J].四川大学学报(工程科学版),2011,Vol.43(1):8-16
    [97]杨红,徐海英,王志军.考虑柱底纵筋滑移的纤维模型及框架地震反应分析[J].建筑结构学报,2009,Vol.30(4):130-137
    [98]周凌远,李乔.钢筋混凝土梁非线性有限元分析方法[J].工程力学,2011,Vol.28(1):82-86
    [99]周凌远,李乔.基于柔度的网格截面非线性梁单元[J].工程力学,2010,Vol.27(1):47-51
    [100]周凌远,李彤梅,李乔.基于网格截面法的非线性梁单元[J].西南交通大学学报,2009,Vol.44(5):726-731
    [101]秦从律,张爱晖.基于截面纤维模型的弹塑性时程分析方法[J].浙江大学学报(工学版),2005,Vol.39(7):1003-1008
    [102]王志军,刘南科.混凝土结构非线性全过程分析中的迭代法控制研究[J].重庆建筑大学学报,1998,Vol.24(8):14-20
    [103]Kent D C, Park R. Flexural members with confined concrete. Journal of the Structural Division, ASCE,1971,97(7):1969-1990
    [104]Scott B D, Park R, Priestley N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain ratio. ACTT,1982,79(1):13-27
    [105]Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete. Journal of Structure Engineering,1988,114(8):1804-1826
    [106]Mander J B, PriestleyM J N, Park R. Seismic design of bridge pilers. In:Research Report 84-2, Christchurch(New Zealand):Department of Civil Engineering, University of Canterbury,1984
    [107]Rodriguez M E, Botero J C, Villa J. Cyclic stress-strain behavior of reinforcing steel including effect of buckling. Journal of Structural Engingeering, ASCE,1999,125: 605-612
    [108]Menegotto M, Pinto P E. Method of analysis of cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under normal force and bending. Preliminary Report IABSE,1973,13:15-22
    [109]Filippou F C. Effects of Bond Deterioration on Hysteretic. Behavior of Reinforced Concrete Joints. Report NO. UCB/EERC 83-19. Berkeley:EERC, University of California,1983
    [110]Silvia Mazzoni, Frank McKenna, Michael H.Scott, Gregory L.Fenves et al. OpenSees Command Language Manual, Printed on 1 July,2007
    [111]齐虎,孙景江,林淋.OPENSEES中的纤维模型的研究[J].世界地震工程,2007,Vol.23(4):48-54
    [112]李笑然,王元丰,钟铭,吴寒亮.基于OpenSees的钢筋混凝土桥墩抗震性能分析[J].华中科技大学学报(自然科学版),2011,Vol.39(8):49-52
    [113]周丽丽,毛晨曦.基于OPENSEES的新单轴材料模型的实现[J].低温建筑技术,2010,01,69-70
    [114]Dimitrios Vamvatsikos, C Allin Cornell. Incremental dynamic analysis[J]. Earthquake Engineering And Structural Dynamics,2002,31:491-514
    [115]李立峰,黄佳梅,吴文朋,王连华.基于IDA的高墩大跨桥梁抗震性能评估[J].2012,Vol.32(1):68-77
    [116]冯清海,袁万成.基于IDA的钢筋混凝土桥墩随机地震响应概率特征分析[J].武汉理工大学学报(交通科学与工程版),2009,Vol.33(5):936-939
    [117]汪梦甫,汪帜辉,刘飞飞.增量动力弹塑性分析方法的改进及其应用[J].地震工程与工程振动,2012,Vol.32(1):30-35
    [118]汪梦甫,曹秀娟,孙文林.增量动力分析方法的改进及其在高层混合结构地震危害性评估中的应用[J].工程抗震与加固改造,2010,Vol.32(1):104-109
    [119]王凤霞,欧进萍.基于能力谱法的SSI体系抗震Pushover分析方法[J].地震工程与工程振动,2006,Vol.26(5):88-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700