微博用户行为分析和网络结构演化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联网络、尤其移动互联网络的飞速发展,微博已经成为一种非常重要的在线社会网络形式。在微博网络中,用户接入方式更加方便多样,交互方式更加灵活快捷,信息传播更加迅速广泛,其中用户行为和网络结构是影响信息传播过程的两个关键因素。鉴于此,本文采用交叉学科的思想和方法,针对微博中用户行为特征和模型、用户特征量分布形成机制和增长规律、网络中心性和信息传播度量、网络拓扑结构特征和演化模型等问题进行了研究,尝试发现微博用户行为模式和网络结构演化规律,建立能够刻画这些规律的数学模型,并寻找可以预测用户行为的相关策略。论文的工作有助于认识微博用户行为特征,加深对微博网络结构和信息传播关系的认识,也为复杂网络和社会网络的理论研究提供一些探索性的结果。
     论文的研究工作得到了国家自然科学基金项目(No.61172072、61271308)、北京市自然科学基金项目(No.4112045)和中央高校基本科研业务费专项资金研究生创新项目(No.2011YJS215)的支持,主要工作和创新点包括以下几个方面:
     1.研究微博用户特征量的分布和用户发布行为规律,建立用户发布微博的行为模型。实证分析发现新浪微博用户特征量具有不同幂律分布特征,且互相之间存在不同的相关性。发现用户个体和群体发布微博的时间间隔均呈现幂律分布,幂律指数与用户活跃程度成正比;用户发布兴趣受到其他用户交互行为的影响,并有明显的周期性;用户发布行为具有自相似特征。本文分析了基于社交驱动和兴趣驱动共同影响的微博用户发布模型,提出了一种基于用户兴趣衰减服从Logistic函数的用户发布模型,并使用该模型仿真验证了用户发布微博的时间间隔分布特征。此研究有助于更深入地理解微博用户的行为特征,为进一步研究微博网络结构和信息传播模式提供理论依据和形式参考。
     2.研究微博用户特征量分布的形成机制和增长规律。使用双帕累托对数正态(DPLN)分布对用户特征量分布进行拟合,相比对数正态分布和幂律分布,可以得到更优的效果,同时用户活跃时间服从指数分布,不同活跃时间的用户特征量都近似服从对数正态分布,用户特征量的增长率服从对数正态分布,且与特征量自身的规模无关,因此使用双帕累托对数正态分布模型解释了用户特征量的双段幂律形成机制。基于向量余弦距离相似性的K-means聚类算法,提出一种分析微博用户特征量增长模式的计算方法,并对不同排序和初始规模实际用户特征量的时间序列数据进行聚类分析;分析导致用户粉丝数爆发式增长的原因,并发现微博用户特征量和用户数增长之间存在异速增长现象。
     3.分析微博网络节点中心性特征并提出用户影响力度量方法。根据新浪微博实际用户数据,构造了两个基于双向“关注”的用户关系网络;通过分析网络拓扑统计特征,发现上述两个网络都具有小世界和无标度的特征;然后分别对两个网络的四种中心性指标(节点度、紧密度、介数和k-Core)及其相关性进行分析;在此基础上,借助基于传染病动力学的SIR信息传播模型,分别分析两个网络中具有不同中心性指标的初始传播节点对信息传播速度和范围的影响。结果表明,紧密度和k-Core较其他指标可以更加准确的描述节点在信息传播中所处的网络核心位置。进一步的分析可知上述两个指标有助于识别信息传播拓扑网络中的关键节点。该方法可为微博营销、用户推荐、网络舆情分析等领域的应用提供理论支撑。
     4.提出一种基于社团和混合连接特征的网络演化模型。通过对两个微博用户双向关注网络拓扑特征的进一步分析,发现二者均为异配网络,具有分层性质和社团结构,其社团规模呈指数分布。然后,根据微博用户双向关注数近似符合对数正态分布,以及真实微博双向关注网络的结构特点及其生成机制,提出了一种基于社团结构和混合连接特征的网络生成模型,该模型的混合连接机制包括:新增节点在社团内部分别采用服从对数正态分布适应度的择优连接和随机连接机制;已有节点在社团内择优选择后分别采用近邻互联和全局互联机制。仿真结果表明,该模型生成网络的度分布、聚类系数、度相关性、最短路径长度和社团结构等网络性质和特征参数能较好的符合实际网络,通过调节参数可以生成不同度分布和聚类系数的网络。
:Driven by the fast development of the Web2.0and mobile network technology, Microblogs have been the most popular form of online social networking. As a self-media, users in Microblogs networks can participate in the interactions with other individuals anytime, anywhere and by utilizing a variety of access methods. Anew kind of complex network constitutes by user interaction become more flexible and quick. At the same time, user behavior and network structure has a direct influence on the process of information spreading. In view of this, we use the interdisciplinary ideas and methods to study user behavior and network evolution in Microblogs networks, trying to find out their statistics features, to reveal the underlying mechanism dominating their evolution, to establish mathematical models which can characterize these laws, and to put forword relevant strategies which can predict user behavior. Our work may help to understand the user behavior characteristics and the evolution process of network structure in Microblogs networks, to also provide some of exploratory theoretical results for the study of complex systems. The work of the dissertation is supported by the National Natural Science Foundation of China (No.61172072,61271308), Beijing Natural Science Foundation (No.4102047,4112045), and the Fundamental Research Funds for the Central Universities (No.2011YJS215). Main contributions of the dissertation are as follows:
     1. We study the user characteristics and posting behavior, and present a model of user posting behavior in microblog. Firstly, empirical analysis reveals statistical features and the relations of user characteristics. Secondly, it is found that the interval distribution of user's posting behavior follows power-law at both individual and group level, and there is positive correlation between users' active and the power-law exponent. The user's posting time series has self-similarity characteristics and there is also periodicity on user's posting behavior. Further study show that interval time distribution exponent is positively correlation with user interaction, and user's interest is also influenced by retweet and comment behaviors. Considering these effects, we dicussed an improved model based on social-driven, interest-driven effect and the analysis results. We also proposed anther model where user interest changes with Logistic function. These models can restore the basic characteristics of the interval between statuses releases in the Microblogs networks.
     2. We study the user characteristics and growth rates distribution. Based on the actual data from Sina Weibo, we studied the distribution of three users'characteristics, such as the number of followers, friends and statues, which are subject to the double power-law distribution and different types of users with various features. It is found find that the double Pareto lognormal (DPLN) distribution can better fit the overall distribution of user three characteristics than the lognormal distribution and power-law distribution. The user activity span is found to be exponentially distributed and the number of these three users'characteristics approximately follows the lognormal distribution in the different active spans. Furthermore, it is observed that these users'characteristics growth rates follow lognormal distribution and are independent with users'characteristics. This phenomenon is consistent with the double Pareto lognormal distribution model and can explain the formation mechanism of the use characteristics distribution. Moreover, the users'number of different growth patterns can be counted using the K-means clustering algorithm, which is based on the vector cosine similarity. The growth patterns of user characteristics are observed by cluster analysis of the actual time series, which are grouped by different sorting methods and initial scales. It is observed that the users with higher growth rate are mainly in explosive growth pattern, and the users with higher initial number tend to be in sustainable growth pattern. Based on the analysis of the explosive growth process of the number of followers, the relationships between the growth of the numbers of retweet and comment are compared, and the reasons for the explosive growth of the users are proposed. Finally, another significant finding is that the distribution of cumulative sum of followers, friends, and statuses follow a strict power-law form, which indicates an allometric growth phenomenon.
     3. We study the nodes centricity characteristics and identify the most influential nodes for spreading dynamics. First, two bidirectional user relationship networks were established base on actual data from Sina Weibo. By analyzing the statistical characteristics of the network topology, we find both of them have a small world and scale free characteristics. Moreover, we describe four network centrality indicators, including node degree, closeness, betweenness and K-Core. Through empirical analysis of four centrality metrics distribution, we find that the node degrees follow a segmented power-law distribution; betweenness difference is most significant; both networks possess significant hierarchy, but not all of the nodes with higher degree have the greater K-Core values; strong correlation exists between the centrality indicators of all nodes, but this correlation is weakened in the node with higher degree value. Finally, the two networks are used to simulate the information spreading process with the SIR information dissemination model based on infectious disease dynamics. The simulation results show that there are different effects on the scope and speed of information dissemination under different initial selected individuals. We find that closeness and K-Core can be more accurate representations of the core of the network location than other indicators, which helps us to identify influential nodes in the information dissemination network.
     4. We present an evolution model based on community structure and mixed connection mechanism in Microblogs networks. Based on the user profile data collected from microblogs, we find that the number of microblog user bidirectional friends approximately corresponds with the lognormal distribution. Furthermore, we builds two microblog user networks based on real bidirectional relationships, both of which have not only small-world and scale-free but also some special properties, such as double power-law degree distribution, disassortative network, hierarchical and rich-club structure. Moreover, by detecting the community structures of the two real networks, we also find their community scales follow an exponential distribution. Based on the empirical analysis, we propose a novel evolution network model with mixed connection rules, including lognormal fitness preferential and random attachment, close neighbor interconnected growth in the same community, and global random associations in different communities. The simulation results show that our model is more consistent with real networks. By adjusting the parameters of model, we can generate simulation networks with different degree distributions and clustering coefficients.
引文
[1]中国互联互联网信息中心(CNNIC).第32次中国互联网络发展状况统计报告[R].2013.http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201307/t20130717_40664.htm
    [2]P. Erdos and A. Renyi. On the evolution of random graphs [J]. Publ. Math. Inst. Hung. Acad. Sci.,1960,5:17-60.
    [3]D. J. Watts and S. H. Strogatz. Collective dynamics of 'small-world' networks [J]. Nature, 1998,393 (6684):440-442.
    [4]A. L. Barabasi and R. Albert. Emergence of scaling in random networks [J]. Science,1999, 286 (5439):509-512.
    [5]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006.
    [6]A. L. Barabasi, R. Albert, and H. Jeong. Mean-field theory for scale-free random networks [J]. Physica A:Statistical Mechanics and its Applications,1999,272(1):173-187.
    [7]S. N. Dorogovtsev, and J. F. F. Mendes. Effect of the accelerating growth of communications networks on their structure [J]. Physical Review E,2001,63(2):025101.
    [8]史定华.网络度分布理论[J].北京:高等教育出版社,2011.
    [9]李季,汪秉宏,蒋品群,周涛,王文旭.节点数加速增长的复杂网络生长模型[J].物理学报,2006,55(8):4051.-4057.
    [10]郭进利.新节点的边对网络无标度性影响[J].物理学报,2008,57(2):756-761.
    [11]P. L. Krapivsky, S. Redner, and F. Leyvraz. Connectivity of growing random networks [J]. Physical Review Letters,2000,85(21):4629.
    [12]S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Structure of growing networks with preferential linking [J]. Physical Review Letters,2000,85(21):4633-4636.
    [13]G. Bianconi and A. L. Barabasi Competition and multiscaling in evolving networks [J]. EPL (Europhysics Letters),2001,54(4):436.
    [14]P. L. Krapivsky and S. Redner. Network growth by copying [J]. Physical Review E,2005, 71(3):036118.
    [15]P. L. Krapivsky and S. Redner. Organization of growing random networks [J]. Physical Review E,2001,63(6):066123.
    [16]R. M. Anderson and R. M. May. Infectious diseases of humans:dynamics and control [M]. Oxford:Oxford University Press,1992.
    [17]R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks[J]. Phys. Rev. Lett.,2001,86(14):3200.
    [18]R. Pastor-Satorras and A. Vespignani. Epidemic dynamics and endemic states in complex networks [J]. Phys. Rev. E,2001,63(6):066117.
    [19]Z. H. Liu and B. B. Hu. Epidemic spreading in community networks [J]. EPL (Europhysics Letters),2005,72(2):315.
    [20]X. Y. Wu and Z. H. Liu. How community structure influences epidemic spread in social networks [J]. Physica A:Statistical Mechanics and its Applications,2008,387(2):623-630.
    [21]R. Pastor-Satorras and A. Vespignani. Immunization of complex networks [J]. Phys. Rev. E, 2002,65(3):036104.
    [22]R. Cohen, S. Havlin, and D. Ben-Avraham. Efficient immunization strategies for computer networks and populations [J]. Phys. Rev. Lett.,2003,91(24):247901.
    [23]D. H. Zanette. Dynamics of rumor propagation on small-world networks [J]. Phys. Rev. E, 2002,65(4):041908.
    [24]Y. Moreno, M. Nekovee, and A. F. Pacheco. Dynamics of rumor spreading in complex networks[J]. Phys. Rev. E,2004,69(6):066130.
    [25]K. Sznajd-Weron and J. Sznajd. Opinion evolution in closed community [J]. International Journal of Modern Physics C,2000,11 (6):1157-1165.
    [26]S. Staniford, V. Paxson, and N. Weaver. How to own the Internet in your spare time [C]. in Proceedings of the 11th USENIX Security Symposium,2002,149-167.
    [27]C. C. Zou, D. Towsley, and W. Gong. Email virus propagation modeling and analysis [J]. Technical Report TR-CSE-0304,University of Massachusetts, Amherst,2003.
    [28]张彦超,刘云,张海峰,程辉,熊菲.基于在线社交网络的信息传播模型[J].物理学报,2011,60(05):050501.
    [29]J. J. Cheng, Y. Liu, B. Shen, and W. G. Yuan. An epidemic model of rumor diffusion in online social networks [J]. The European Physical Journal B,2013,86(1):1-7.
    [30]顾亦然,夏玲玲.在线社交网络中谣言的传播与抑制[J].物理学报,2012,61(23):238701.
    [31]熊熙,胡勇.基于社交网络的观点传播动力学研究[J].物理学报,2012,61(15):150509.
    [32]A. L. Barabasi. The origin of bursts and heavy tails in human dynamics[J]. Nature,2005, 435(7039):207-211.
    [33]M. Politi and E. Scalas. Fitting the empirical distribution of intertrade durations [J]. Physica A: Statistical Mechanics and its Applications,2008,387(8):2025-2034.
    [34]L. Gao, J. L. Guo, C. Fan, and X. J. Liu. Individual and group dynamics in purchasing activity [J]. Physica A:Statistical Mechanics and its Applications,2013,392(2):343-349.
    [35]Z. Dezso, E. Almaas, A. Lukdcs, B. Racz, I. Szakadat, and A. L. Barabasi. Dynamics of information access on the web [J]. Physical Review E,2006,73(6):066132.
    [36]B. Goncalves, J. J. Ramasco. Human dynamics revealed through Web analytics [J]. Physical Review E,2008,78(2):026123.
    [37]樊超,郭进利,纪雅莉,高蕾,张伟.基于图书借阅的人类行为标度律分析[J].图书情报工作,2010,54(15):35-39.
    [38]T. Zhou, H. A. Kiet, B. J. Kim, B. H. Wang, and P. Holme. Role of activity in human dynamics [J]. EPL (Europhysics Letters),2008,82(2):28002.
    [39]W. Hong, X. P. Han, T. Zhou, and B. H. Wang. Heavy-tailed statistics in short-message communication [J]. Chinese Physics Letters,2009,26(2):028902.
    [40]A. Grabowski. Human behavior in online social systems [J]. The European Physical Journal B, 2009,69(4):605-611.
    [41]P. Wang, T. Lei, C. H. Yeung, and B. H. Wang. Heterogenous human dynamics in intra-and inter-day time scales [J]. EPL (Europhysics Letters),2011,94(1):18005.
    [42]K. I. Goh and A. L. Barabasi. Burstiness and memory in complex systems [J]. EPL (Europhysics Letters),2008,81(4):48002.
    [43]A. Vazquez, J. G. Oliveira, Z. Dezso, K. I. Goh, I. Kondor, and A. L. Barabasi. Modeling bursts and heavy tails in human dynamics [J]. Physical Review E,2006,73(3):036127.
    [44]J. G Oliveira and A. Vazquez. Impact of interactions on human dynamics [J]. Physica A: Statistical Mechanics and its Applications,2009,388(2):187-192.
    [45]R. D. Malmgren, D. B. Stouffer, A. E. Motter, and L. A. Amaral. A Poissonian explanation for heavy tails in e-mail communication [J]. Proceedings of the National Academy of Sciences, 2008,105(47):18153-18158.
    [46]X. P. Han, T. Zhou, and B. H. Wang. Modeling human dynamics with adaptive interest [J]. New Journal of Physics,2008,10(7):073010.
    [47]M. S. Shang, G X. Chen, S.X. Dai, T. Zhou, and B. H. Wang. Interest-driven model for human dynamics [J]. Chinese Physics Letters,2010,27(4):048701.
    [48]C. L. Chiang. Statistical methods of analysis [M]. World Scientific,2003.
    [49]A. Clauset, C. R. Shalizi,and M. E. J. Newman. Power-Law Distributions in Empirical Data [J]. SIAM Rev.,2009,51(4):661-703.
    [50]P. N. Tan, M. Steinbach, and V. Kumar.数据挖掘导论[M].范明,范宏建等译.第2版北京:人民邮电出版社,2011.
    [51]孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008,19(1):48-61.
    [52]潘定,沈钧毅.时态数据挖掘的相似性发现技术[J].软件学报,2007,18(2):246-258.
    [53]殷瑞飞.数据挖掘中的聚类方法及其应用[D]. 厦门大学,2008.
    [54]B. Liu. Web数据挖掘[M].俞勇,薛贵荣,韩定译.北京:清华大学出版社,2010.
    [55]A. Matthew.社交网站的数据挖掘与分析[M].北京:机械工业出版社,2012.
    [56]S. Wu, J. M. Hofinan, W. A. Mason, and D. J. Watts. Who says what to whom on twitter [C]. Proceedings of the 20th international conference on World wide web,2011:705-714.
    [57]C. H. Lee. Mining spatio-temporal information on microblogging streams using a density-based online clustering method [J]. Expert Systems with Applications,2012,39(10): 9623-9641.
    [58]张晨逸,孙建伶,丁轶群.基于MB-LDA模型的微博主题挖掘[J].计算机研究与发展,2011,48(10):1795-1802.
    [59]J. Leskovec, K. J. Lang, A. Dasgupta and M. W. Mahoney. Statistical properties of community structure in large social and information networks [C]. Proceedings of the 17th international conference on World Wide Web, Beijing, China.2008:695-704.
    [60]M. Sachan, D. Contractor, T. A. Faruquie, and L. V. Subramaniam. Using content and interactions for discovering communities in social networks [C]. Proceedings of the 21st international conference on World Wide Web, Lyon, France.2012:331-340.
    [61]S. A. Golder and M. W. Macy. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures [J]. Science,2011,333(6051):1878-1881.
    [62]A. Pal and S. Counts. Identifying topical authorities in microblogs [C]. Proceedings of the fourth ACM international conference on Web search and data mining, Hong Kong, China. 2011:45-54.
    [63]J. S. Weng, E. P. Lim, J. Jiang, and Q. He. TwitterRank:finding topic-sensitive influential twitterers [C]. Proceedings of the third ACM international conference on Web search and data mining, New York, USA.2010:261-270.
    [64]M. J. Welch, U. Schonfeld, D. He, and J. Cho. Topical semantics of twitter links [C]. Proceedings of the fourth ACM international conference on Web search and data mining, Hong Kong, China.2011:327-336.
    [65]F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida. Characterizing user navigation and interactions in online social networks [J]. Information Sciences,2012,195:1-24.
    [66]T. Sakaki and M. Okazaki, Y. Matsuo. Earthquake shakes Twitter users:real-time event detection by social sensors [C]. Proceedings of the 19th international conference on World wide web, Raleigh, North Carolina, USA.2010:851-860.
    [67]J. Bollen, H. N. Mao, and X. J. Zeng. Twitter mood predicts the stock market [J]. Journal of Computational Science,2011,2(1):1-8.
    [68]M. Choy, M. Cheong, M. N. Laik, and K. P. Shung. US Presidential Election 2012 Prediction using Census Corrected Twitter Model [J]. arXiv preprint arXiv:1211.0938,2012.
    [69]J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski, and L. Brilliant. Detecting influenza epidemics using search engine query data [J]. Nature,2008,457(7232): 1012-1014.
    [70]H. Achrekar, A. Gandhe, R. Lazarus, S. H. Yu, and B. Liu. Predicting flu trends using twitter data [C]. Computer Communications Workshops (INFOCOM WKSHPS),2011 IEEE Conference on,2011:702-707.
    [71]J. Li and C. Cardie. Early Stage Influenza Detection from Twitter [J]. arXiv preprint arXiv:1309.7340,2013
    [72]S. Wasserman and K. Faust. Social network analysis:Methods and applications [M]. Cambridge university press,1994.
    [73]http://en.wikipedia.org/wiki/Six degrees of separation
    [74]R. I. M. Dunbar. Neocortex size as a constraint on group size in primates [J]. Journal of Human Evolution,1992,22(6):469-493.
    [75]M. S. Granovetter. The Strength of Weak Ties [J]. American Journal of Sociology,197378(6): 1360-1380.
    [76]R. S. Burt. Structural holes:The social structure of competition [M]. Harvard University Press, 2009.
    [77]罗家德.社会网分析讲义[M].社会科学文献出版社,2005.
    [78]胡长爱,朱礼军.复杂网络软件分析与评价[J].数字图书馆论坛,2010(005):33-39.
    [79]王元卓,靳小龙,程学旗.网络大数据:现状与展望[J].计算机学报,2013,36(06):1125-1138.
    [80]D. Lazer, A. S. Pentland, L. Adamic, S. Aral, A. L. Barabasi, D. Brewer, and M. Van Alstyne. Life in the network:the coming age of computational social science[J]. Science,2009, 323(5915):721.
    [81]孟小峰,李勇,祝建华.社会计算:大数据时代的机遇与挑战[J].计算机研究与发展,2013,50(12):2483-2491.
    [82]胡海波.基于复杂网络理论的在线社会网络分析[J].复杂系统与复杂性科学,2008,5(2).
    [83]M. Maia, J. Almeida, and V. Almeida. Identifying user behavior in online social networks [C]. Proceedings of the 1st workshop on Social network systems, Glasgow, Scotland, UK,2008: 1-6.
    [84]F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida. Characterizing user behavior in online social networks [C]. Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference, Chicago, Illinois, USA.2009:49-62.
    [85]Y. Y. Ann, S. Han, H. Kwak, S. Moon, and H. Jeong. Analysis of topological characteristics of huge online social networking services [C]. Proceedings of the 16th international conference on World Wide Web, Banff, Alberta, Canada.2007:835-844.
    [86]A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel and B. Bhattacharjee. Measurement and analysis of online social networks [C]. Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, San Diego, California, USA.2007:29-42.
    [87]A. Java, X. D. Song, T. Finin, and B. Tseng. Why we twitter:understanding microblogging usage and communities [C]. Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis, San Jose, California, USA. New York: ACM Press,2007:56-65.
    [88]B. Krishnamurthy, P. Gill, M. Arlitt. A few chirps about twitter [C]. Proceedings of the first workshop on Online social networks, Seattle, WA, USA.2008:19-24.
    [89]H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news media? [C]. Proceedings of the 19th international conference on World wide web, Raleigh, North Carolina, USA.2010:591-600.
    [90]M. Cha, H. Haddadi, F. Benevenuto, and K. Gummadi. Measuring User Influence in Twitter: The Million Follower Fallacy [C]. Proceedings of the 4th International AAAI Conference on Weblogs and Social Media (ICWSM), Washington, DC, USA.2010:10-17.
    [91]Z. D. Zhao, T. Zhou. Empirical analysis of online human dynamics [J]. Physica A:Statistical Mechanics and its Applications,2012,391(11):3308-3315.
    [92]樊鹏翼,王晖,姜志宏,李沛.微博网络测量研究[J].计算机研究与发展,2012,49(4):691-699.
    [93]Q. Yan, L. R. Wu, and L Zheng. Social network based microblog user behavior analysis[J]. Physica A:Statistical Mechanics and its Applications,2013,392(7):1712-1723.
    [94]Q. Yan, L. L. Yi, and L. R. Wu. Human dynamic model co-driven by interest and social identity in the MicroBlog community [J]. Physica A:Statistical Mechanics and its Applications,2012,391(4):1540-1545.
    [95]Y. P. Xiao, B. Wang, Y. B. Liu, Z. X. Yan, X. Chen, B. Wu, G. X. Xu, and Y. N. Liu. Analyzing, Modeling, and Simulation for Human Dynamics in Social Network [J]. Abstract and Applied Analysis, vol.2012, Article ID 208791,16 pages,2012.
    [96]Z. Yang, J. Y. Guo, K. K. Cai, J. Tang, J. Z. Li, L. Zhang, and Z. Su. Understanding retweeting behaviors in social networks [C]. Proceedings of the 19th ACM international conference on Information and knowledge management, Toronto, Ontario, Canada.2010:1633-1636.
    [97]F. Xiong, Y. Liu, Z. J. Zhang, J. Zhu, and Y. Zhang. An information diffusion model based on retweeting mechanism for online social media [J]. Physics Letters A,2012,376(30-31): 2103-2108.
    [98]M. Mitzenmacher. A brief history of generative models for power law and lognormal distributions [J]. Internet Mathematics,2004,1(2):226-251.
    [99]方正,王杰.自然与社会环境中的幂律现象和双帕累托对数正态分布[J].山东科学,2011,24(3):1-12.
    [100]S. A. Golder, D. M. Wilkinson, and B. A. Huberman. Rhythms of social interaction: Messaging within a massive online network [M].Communities and Technologies 2007: Springer London,2007:41-66.
    [101]B. A. Huberman and L. A. Adamic. Internet:growth dynamics of the world-wide web [J]. Nature,1999,401(6749):131-131.
    [102]S. N. Dorogovtsev and J. F. F. Mendes. Language as an evolving word web [J]. Proceedings of the Royal Society of London. Series B:Biological Sciences,2001,268(1485):2603-2606.
    [103]W. J. Reed and M. Jorgensen. The Double Pareto-Lognormal Distribution A New Parametric Model for Size Distributions [J]. Communications in Statistics-Theory and Methods,2004, 33(8):1733-1753.
    [104]D. D. Han, J. H. Qian, and Y. G. Ma. Emergence of double scaling law in complex systems [J]. EPL (Europhysics Letters),2011,94(2):28006.
    [105]M. Mitzenmacher. Dynamic models for file sizes and double pareto distributions [J]. Internet Mathematics,2004,1(3):305-333.
    [106]M. Seshadri, S. Machiraju, A. Sridharan, J. Bolot, C. Faloutsos, and J. Leskove. Mobile call graphs:beyond power-law and lognormal distributions [C]. Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, Las Vegas, Nevada, USA.2008:596-604.
    [107]B. Ribeiro, W. Gauvin, B. Y. Liu, and D. Towsley. On MySpace account spans and double Pareto-like distribution of friends [C]. INFOCOM IEEE Conference on Computer Communications Workshops,2010,2010:1-6.
    [108]Sala A, Gaito S, Rossi G P, H. T. Zheng, and B. Y. Zhao. Revisiting degree distribution models for social graph analysis [J]. arXiv preprint arXiv:1108.0027,2011.
    [109]B. Meeder, B. Karrer, A. Sayedi, R. Ravi, C. Borgs, and J. Chayes. We know who you followed last summer:inferring social link creation times in twitter [C]. Proceedings of the 20th international conference on World wide web, Hyderabad, India,2011:517-526.
    [110]B. Suh, L. Hong, P. Pirolli, and E. H. Chi. Want to be Retweeted? Large Scale Analytics on Factors Impacting Retweet in Twitter Network [C]. Proceedings of the 2010 IEEE Second International Conference on Social Computing,2010:177-184.
    [111]司夏萌,刘云.虚拟社区中人际交互行为的统计分析研究[J].物理学报,Acta Phys. Sin., 2011,60(7).
    [112]L. C. Freeman. Centrality in social networks conceptual clarification [J]. Social Networks, 1978,1(3):215-239.
    [113]D. Koschiltzki and F. Schreiber. Comparison of Centralities for Biological Networks [C]. Proc German Conf Bioinformatics (GCB'04), Volume P-53 of LNI,2004.
    [114]R. Guimera, S. Mossa, A. Turtschi, and L. A. N. Amaral. The worldwide air transportation network:Anomalous centrality, community structure, and cities' global roles [J]. Proceedings of the National Academy of Sciences,2005,102(22):7794-7799.
    [115]郑啸,陈建平,邵佳丽,别立东.基于复杂网络理论的北京公交网络拓扑性质分析[J].物理学报,2012,61(19):190510-190510.
    [116]S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir. A model of Internet topology using k-shell decomposition [J]. Proceedings of the National Academy of Sciences,2007, 104(27):11150-11154.
    [117]K. Q. Cai, J. Zhang, W. B. Du, and X. B. Cao. Analysis of the Chinese air route network as a complex network[J]. Chin. Phys. B,2012,21(2):28903-028903.
    [118]C. Paolo, L. Vito, and P. Sergio. Centrality measures in spatial networks of urban streets [J]. Physical Review E,2006,73(3):036125.
    [119]王林,张婧婧.复杂网络的中心化[J].复杂系统与复杂性科学,2006,3(1):13-20.
    [120]M. Kitsak, L. Gallos, S. Havlin, F. Liljeros, L. Muchnik, E. Stanley, and H. Makse. Identification of influential spreaders in complex networks [J]. Nature Physics,2010,6(11): 888-893.
    [121]J. Borge-Holthoefer, Y. Moreno. Absence of influential spreaders in rumor dynamics [J]. Physical Review E,2012,85(2):026116.
    [122]D. B. Chen, L. Y. Lu, M. S. Shang, Y. C. Zhang, and T. Zhou. Identifying influential nodes in complex networks [J]. Physica A:Statistical Mechanics and its Applications,2012,391(4): 1777-1787.
    [123]周漩,张凤鸣,李克武,惠晓滨,吴虎胜.利用重要度评价矩阵确定复杂网络关键节点[J].物理学报,2012,61(5):50201-050201.
    [124]P. Holme and J. Saramaki. Temporal networks[J]. Physics Reports,2012,519(3):97-125.
    [125]D. Gruhl, R. Guha, D. L. Nowell, and A. Tomkins. Information Diffusion through Blogspace [C], in Proceedings of the 13th international conference on Word ide Web, New York, USA. 2004,491-501.
    [126]D. S. Wang, Z. Wen, H. H. Tong, C. Y. Lin, C. M. Song, and A. L. Barabasi. Information spreading in context [C]. Proceedings of the 20th international conference on World wide web, Hyderabad, India.2011,735-744.
    [127]M. Y. Cha, A. Mislove, and K. P. Gummadi. A measurement-driven analysis of information propagation in the flickr social network [C], in Proceedings of the 18th international conference on World Wide Web, Madrid, Spain,2009,721-730.
    [128]D. Centola. The spread of behavior in an online social network experiment J]. Science,2010, 329(5996):1194-1197.
    [129]Y. Jaewon, L. Jure. Modeling information diffusion in implicit networks [C], Proceedings of the 2010 IEEE international conference on data mining, ICDM'10, pp 599-608,2010.
    [130]许晓东,肖银涛,朱士瑞.微博社区的谣言传播仿真研究[J].计算机工程,2011,37(10):272-274.
    [131]杨春霞,胡丹婷,胡森.微博病毒传播模型研究[J],计算机工程,2012,38(15):100-103.
    [132]郭海霞.新型社交网络信息传播特点和模型分析[J].情报杂志,2012,32(1):56-59.
    [133]郑蕾,李生红.基于微博网络的信息传播模型[J].通信技术,2012,45(2):39-41.
    [134]易成岐,鲍媛媛,薛一波,姜京池.新浪微博的大规模信息传播规律研究[J].计算机科学与探索,2013,7(6):551-561.
    [135]M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks [J]. Physical Review E,2004,167(45).
    [136]X. Li and G. R. Chen. A local-world evolving network model [J]. Physica A:Statistical Mechanics and its Applications,2003,328(1):274-286.
    [137]M. E. J. Newman and J. Park. Why social networks are different from other types of networks [J]. Physical Review E,2003,68(3):036122.
    [138]R.,Toivonen, J. P. Onnela, J. Saramaki, J. Hyvonen, and K. Kaski. A model for social networks [J]. Physica A:Statistical Mechanics and its Applications,2006,371(2):851-860.
    [139]F. Fu, L. Liu, and L. Wang. Empirical analysis of online social networks in the age of Web 2.0 [J]. Physica A:Statistical Mechanics and its Applications,2008,387(2-3):675-684.
    [140]H. H. Hu and X. F. Wang. Evolution of a large online social network [J]. Physics Letters A, 2009,373(12):1105-1110.
    [141]胡海波,王科,徐玲,汪小帆.基于复杂网络理论的在线社会网络分析[J].复杂系统与复杂性科学,2008,5(2):1-14.
    [142]徐恪,张赛,陈昊,李海涛.在线社会网络的测量与分析[J].计算机学报,2014,37(1):166-188.
    [143]R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online social networks [C]. Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, Philadelphia, PA, USA.2006:611-617.
    [144]吴晔,肖井华,吴智远,杨俊忠,马宝军.手机短信网络的生长过程研究[J].物理学报,2007,56(4):2037-2041.
    [145]张立,刘云.虚拟社区网络的演化过程研究[J].物理学报,2008,57(9):5419-5424.
    [146]熊菲,刘云,司夏萌,丁飞.基于Web 2.0的边与节点同时增长网络模型[J].物理学报,2010,59(10):6889-6895.
    [147]熊熙,曹伟,周欣,胡勇.社交网络形成和演化的特征模型研究[J].四川大学学报:工程科学版,2012,44(004):140-144.
    [148]Z. Bu, Z. Xia, J. Wang, and C. Zhang. A last updating evolution model for online social networks [J]. Physica A:Statistical Mechanics and its Applications,2013,392(9):2240-2247.
    [149]A. L. Traud, P. J. Mucha, and M. A. Porter. Social structure of Facebook networks [J]. Physica A:Statistical Mechanics and its Applications,2012,391(16):4165-4180.
    [150]何静,郭进利,徐雪娟.微博关系网络模型研究[J].计算机工程,2013,39(11):105-108.
    [151]廉捷,周欣,曹伟,刘云.新浪微博数据挖掘方案[J].清华大学学报(自然科学版),2011,51(10):1300-1305.
    [152]J. Jiang, C. Wilson, X. Wang, P. Huang, W. Sha, Y. Dai, and B. Y. Zhao. Understanding latent interactions in online social networks[C]. Proceedings of the 10th ACM SIGCOMM conference on Internet measurement, Melbourne, Australia,2010:369-382.
    [153]M. E. J. Newman. The structure and function of complex networks [J]. SIAM review,2003, 45(2):167-256.
    [154]张宾,杨家海,吴建平.Internet流量模型分析与评述[J].软件学报,2011,22(1):115-131.
    [155]傅雷扬,王汝传,王海艳,任勋益.R/S方法求解网络流量自相似参数的实现与应用[J].南京航空航天大学学报,2007,39(3):358-362.
    [156]W. J. Reed. The Pareto law of incomes--an explanation and an extension [J]. Physica A: Statistical Mechanics and its Applications,2003,319:469-486.
    [157]http://en.wikipedia.org/wiki/Stochastic_differential_equation
    [158]http://en.wikipedia,org/wiki/Goodness_of_fit
    [159]Z. Bi, C. Faloutsos, and F. Korn. The DGX distribution for mining massive, skewed data [C]. Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. ACM,2001:17-26.
    [160]P. Ramirez-Cobo, R. E. Lillo, S. Wilson, and M. P. Wiper. Bayesian inference for double Pareto lognormal queues [J]. The Annals of Applied Statistics,2010,4(3):1533-1557.
    [161]J. Gayon. History of the concept of allometry [J]. American Zoologist,2000,40(5):748-758.
    [162]L. M. Bettencourt, J. Lobo, D. Helbing, C. Kiihnert, and G. B. West. Growth, innovation, scaling, and the pace of life in cities [J]. Proceedings of the National Academy of Sciences, 2007,104(17):7301-7306.
    [163]A. Grabowski and R. Kosinski. Life span in online communities [J]. Physical Review E,2010, 82(6):066108.
    [164]L. F. Wu and J. Zhang. Accelerating growth and size-dependent distribution of human online activities [J]. Physical Review E,2011,84(2):026113.
    [165]L. C. Freeman. A set of measures of centrality based on betweenness [J], Sociometry,1997, 40(1):35-41.
    [166]L. C. Freeman. Centrality in social networks conceptual clarification [J], Social Networks, 1979,1(3):215-239.
    [167]I. Alvarez-Hamelin, L. Dall'asta, A. Barrat, and A. Vespignani. Large scale networks fingerprinting and visualization using the k-core decomposition [M], Advances in Neural Information Processing Systems 18:MIT Press,2006:41-50.
    [168]https://gephi.org
    [169]V. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks [J]. Journal of Statistical Mechanics:Theory and Experiment,2008,2008(10): P10008.
    [170]E. Ravasz, and A. L. Barabasi. Hierarchical organization in complex networks [J]. Physical Review E,2003,67(2):026112.
    [171]J. Leskovec and E. Horvitz. Planetary-scale views on a large instant-messaging network [C]. Proceedings of the 17th international conference on World Wide Web, Beijing, China.2008: 915-924.
    [172]S. Zhou and R. J. Mondragon. The rich-club phenomenon in the Internet topology [J]. Communications Letters, IEEE,2004,8(3):180-182.
    [173]V. Colizza, A. Flammini, M. A. Serrano, and A. Vespignani. Detecting rich-club ordering in complex networks[J]. Nature Physics,2006,2(2):110-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700