低强度超声结合血卟啉杀伤和诱导艾氏腹水瘤细胞凋亡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
据WHO预测,恶性肿瘤将成为21世纪危害人类健康的头号杀手,但就目前肿瘤的治疗而言,特别是中晚期肿瘤,任何一种常规治疗(手术切除、化学疗法、放射疗法等)均不能单独成为一种根治肿瘤的手段,综合治疗已逐渐成为治疗肿瘤的主要方法。1989年,日本学者在光动力学疗法的基础上提出了一种新的抗肿瘤理论,即声动力学疗法(Sonodynamic Therapy,SDT)。该理论主要是利用超声能穿透深层组织并聚焦于特定的部位,激活富集在组织和细胞内的光敏剂产生协同效应这一特点,达到抗癌效果,从而弥补了光动力学疗法等的局限性。因此,SDT是具有重要理论研究意义和临床应用价值的抗肿瘤新思路,在肿瘤治疗的方法探索方面倍受关注。
     SDT提出以来已得到迅速的发展,目前国内外学者主要以离体培养的人肿瘤细胞和动物移植肿瘤为研究对象,就不同的超声参数结合不同的光敏剂对肿瘤细胞和肿瘤的杀伤效应及机制做了探讨,并提出了各种理论。迄今为止,SDT仍处于实验阶段,距临床实践尚有一定的距离。为了更多积累声动力学疗法在理论研究方面的资料,从而进一步推动该疗法的发展,使其早日应用于临床实践,本论文在综合国内外研究进展的基础上,结合本实验室前期研究结果,依托国家自然科学基金项目“超声激活血卟啉诱导肿瘤细胞凋亡的分子学机制的研究”的支持,采用频率为1.43MHz、能量为1W/cm~2的低强度聚焦超声结合3.5ug/ml血卟啉浓度等实验参数,通过显微和超微结构等层次对超声结合血卟啉杀伤腹水型艾氏腹水瘤细胞(EAT)的动态变化过程进行了观察分析,同时利用AV-PI荧光双染、TUNEL法及免疫细胞组织化学等方法对超声结合血卟啉诱导EAT细胞凋亡以及与凋亡相关蛋白的变化进行了研究,最后通过加入自由基清除剂对超声结合血卟啉作用效应的影响和检测细胞中MDA的含量探讨了SDT的作用机理。得出的结论如下:
     1、通过不同的时间段取材进行形态学观察分析,发现血卟啉可明显增强低强度超声对EAT细胞的杀伤程度,并且可对EAT细胞造成继发性损伤,其作用的敏感位点主要是细胞的膜性结构,其中线粒体是最易受损的膜性细胞器。
     2、用形态学、AV-PI荧光双染和TUNEL法的研究均证实1.43MHz、1W/cm~2的聚焦超声可通过诱导EAT细胞凋亡而致其死亡。表明超声结合血卟啉在损伤细胞而使其死亡的同时还存在诱导肿瘤细胞凋亡致其死亡的作用模式。
According to the predication of WHO, malignant tumor will be the first killer to human health in the 21th Century. As far as the actual condition is concerned, any single conventional cancer treatment available (resection, chemotherapy or radiotherapy et al) can hardly be a radical therapy to the patient with malignant tumor, especially those with middle or late stage ones on admission, combined therapy has been the main therapeutic means gradually. On the foundation of photodynamic therapy(PDT), Shin-ichiro V memura, a Japanese scholar, has brought forward a new antitumor theory-sonodynamic therapy(SDT). The antitumor effect of SDT is based on the synergistic effects induced by photosensitizer which can remain preferentially in tumor tissues much longer than in normal tissues when activated with ultrasound. Many scholars have paid close attention to SDT for its theoretical significance and clinical value.A rapid development has been got on the studing of SDT since its putting forward. At present, the studies on the SDT have focused mainly on the mechanisms of killing effects on the human cancer cells in vitro and animal tumors in vivo by using different ultrasound parameters and different photosentizer. So far the studying has been still in the stage of lab and has a far way for clinic. Based on the early studying results of our laboratory, studies of home and abroad, and assuming a part of work of "The Mechanism of Tumor Cell Apotosis Induced by Ultrasound Activated Hematoporphyrin"supported by National Nature Science Foundation, I adopted the frequency of ultrasound wave 1.43MHz, the low-intensity 1W/cm2 with duration of exposure of 120s in this paper to observe the antitumor effects on Ehrlich ascites tumor (EAT) in vitro and the potential mechanisms of action inducing this cytotoxicity, in order to promote the development of SDT and put it into clinical pratice early. The main conclusions are as follow:1. Morphology observed through sample preparation for different time that hematoporphyrin can significant enhance the damage degree of EAT induced by low-intensity ultrasound and lingering damages, the sensitive killing sites of SDT are membrane system and mitochondrion is the most site to be destroyed.
引文
[1] Perera FP,Molecular Epidemiology: On the Path to Prevention? J Natl Cancer Inst.,2000,92:602-612.
    [2] Ponder BA,Cancer genetics. Nature 2001 ;411(6835):336-341.
    [3] Peto J,Cancer epidemiology in the last century and the next decade, Nature, 2001,411(6835):390-395.
    [4] Knudson AG,Cancer genetics,Am J Med Genet.,,2002,11 l(1):96-102.
    [5] SK Powers,SS Cush,DL Walstad,et al,Stereotactic intratumoral photodynamic therapy for recurrent malignant brain tumors,Neurosurgery,1991,29(5):688-695.
    [6] JS Hill,SB Kahl,AH Kaye,et al,Selective Tumor Uptake of a Boronated Porphyrin in an Animal Model of Cerebral Glioma,PNAS., 1992,89:1785 -1789.
    [7] Y Ji,D Walstad,JT Brown,et al,Improved survival from intracavitary photodynamic therapy of rat glioma,Photochem Photobiol.,1992,56(3):385-390.
    [8] L Lilge,BC Wilson,Photodynamic therapy of intracranial tissues: a preclinical comparative study of four different photosensitizers, J Clin Laser Med Surg., 1998,16(2):81-91.
    [9] TT Goodell,PJ Muller,Photodynamic therapy: a novel treatment for primary brain malignancy,J Neurosci Nurs,2001,33(6):296-300.
    [10] Pass HI,Photodynamic therapy in oncology: mechanisms and clinical use,J Natl Cancer Inst.,1993,85:443-456.
    [11] VF Dima,V Vasiliu,SV Dima,Photodynamic therapy: an update,Roum Arch Microbiol Immunol.,1998,57(3-4):207-230.
    [12] S Umemura,N Yumita,R Nishigaki,et al,Sonochemical activation of hematoporphyrin: A potential modality for cancer treatment,IEEE, Ultrasonics Symosium, 1989,9:955-960.
    [13] Dougherty TJ,Kaufman JE,Goldfarb A,et al,Photoradiation therapy for the treatment of malignant tumors,Cancer Res.,1978,38(8): 2628 -2635.
    [14] N Yumita,R Nishigaki,K Umemura,et al,Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound, Jpn.J.Cancer Res., 1989,80(3):219-222.
    [15] N Yumita,R Nishigaki,K Umemura,et al,Synergistic effect of ultrasound and hematoporphyrin on sarcoma 180,Jpn. J. Cancer Res., 1990,81(3):304-308.
    [16] 刘全宏,孙世惠,肖娅萍,等,超声激活血卟啉对S180细胞杀伤作用及形态学研究,中国科学C辑,2002,32(5):454-462.
    [17] S Umemura, N Yumita, R Nishigaki, et al, Mechanism of cell damage by ultrasound in combination with hematoporphyrin. Jpn. J. Cancer Res., 1990, 81(9):962-966.
    [18] S Umemura, N Yumita, R Nishigaki, Enhancement of ultrasonically induced cell damage by a gallium-porphyrin complex, ATX-70, Jpn. J. Cancer Res., 1993, 84(5): 582-588.
    [19] Umemura S, Kawabata K, Sasaki K, et al, Recent advances in sonodynamic approach to cancer therapy, Ultrasonics Sonochemistry, 1996, 3(3): 187-191.
    [20] D Kessel, R Jeffers, JB Fowlkes, et al, Porphyrin-induced enhancement of ultrasound cytotoxicity, Int J Radiat Biol., 1994,66(2):221-228.
    [21] D Kessel, J Lo, R Jeffers, et al, Modes of photodynamic vs. sonodynamic cytotoxicity, J Photochem Photobiol B., 1995, 28(3):219-221.
    [22] LB Feril Jr, Y Tsuda, T Kondo, et al, Ultrasound-induced killing of monocytic U937 cells enhanced by 2,2'-azobis(2-amidinopropane) dihydrochloride, Cancer Sci., 2004, 95 (2): 181-185.
    [23] Yumita N, Sakata I, Nakajima S, et al, Ultrasonically induced cell damage and active oxygen generation by 4-formyloximeetylidene-3-hydroxyl-2-vinyl-deuterio-porphynyl(Ⅸ)-6-7-diaspartic acid: on the mechanism of sonodynamic activation, Biochimica et Biophysica Acta (BBA)/General Subjects, 2003, 1620(1-3): 179-184.
    [24] N Yumita, R Nishigaki, I Sakata, et al, Sonodynamically induced antitumor effect of 4-formyloximethylidene-3-hydroxy-2-vinyl-deuterio-porphynyl(Ⅸ)-6,7-dia spartic acid (ATX-S 10), Jpn. J. Cancer Res., 2000, 91 (2):255-260.
    [25] N Yumita, K Sasaki, S Umemura, et al, Sonodynamically induced antitumor effect of a gallium-porphyrin complex, ATX-70, Jpn. J. Cancer Res., 1996, 87(3):310-316.
    [26] N Miyoshi, V Misik, P Riesz, Sonodynamic toxicity of gallium-porphyrin analogue ATX-70 in human leukemia cells, Radiat Res., 1997,148(1):43-47.
    [27] Yumita N, Sasaki K, Umemura S, et al, Sonodynamically induced antitumor effect of gallium-porphyrin complex by focused ultrasound on experimental kidney tumor, Cancer Letters., 1997, 112(1):79-86.
    [28] K Sasaki, N Yumita, R Nishigaki, et al, Antitumor effect sonodynamically induced by focused ultrasound in combination with Ga-porphyrin complex, Jpn. J. Cancer Res., 1998, 89(4): 452-456.
    [29] N Miyoshi, JZ Sostaric, P Riesz, Correlation between sonochemistry of surfactant solutions and human leukemia cell killing by ultrasound and porphyrins, Free Radic Biol Med., 200334(6):710-719.
    [30] Tachibana K, Kimura N, Okumura M, et al, Enhancement of cell killing of HL-60 cells by ultrasound in the presence of the photosensitizing drug Photofrin Ⅱ, Cancer Letters., 1993, 72(3): 195-199.
    [31] N Yumita, R Nishigaki, S Umemura, Sonodynamically induced antitumor effect of Photofrin Ⅱ on colon 26 carcinoma, J Cancer Res Clin Oncol., 2000, 126(10): 601-606.
    [32] N Yumita, S Umemura, Sonodynamic therapy with photofrin Ⅱ on AH130 solid tumor. Pharmacokinetics, tissue distribution and sonodynamic antitumoral efficacy of photofrin Ⅱ, Cancer Chemother Pharmacol., 2003,51(2): 174-178.
    [33] N Yumita, S Umemura, R Nishigaki, Ultrasonically induced cell damage enhanced by photofrin Ⅱ: mechanism of sonodynamic activation, In Vivo, 2000, 14(3):425-429.
    [34] K Umemura, N Yumita, R Nishigaki, et al, Sonodynamically induced antitumor effect of pheophorbide a, Cancer Letters., 1996, 102(1-2): 151-157.
    [35] 许以伴,陈爱军,刘鼎新,等,~3H-血卟啉衍生物在栽瘤小鼠体内的分布,白求恩医科大学学报,1985,11(2):126-128.
    [36] 李环,血卟啉及其衍生物(HPD)对癌症的诊治,药学通报,1984,19(1):45-48.
    [37] Peng Q, Moan J, Nesland JM, et al, Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features afterphotodynamic therapy, Ultrastruct Pathol., 1996, 20(2): 109-129.
    [38] Hagan WJ, Barber DC, Whitter DG, et al, Picket-fence piephrins as potentional phototherapeutic agents, Cancer Res., 1988, 48(5): 1148-1152.
    [39] 向洋,《激光生物学》,湖南科学技术出版社,1995年9月.
    [40] J Moan, K Berg, Photochemotherapy of cancer: experimental research, Photochem Photobiol., 1992, 55 (6): 931-948.
    [41] N Yumita, K Kawabata, K Sasaki, et al, Sonodynamic effect of erythrosin B on sarcoma 180 cells in vitro, Ultrason Sonochem., 2002,9(5):259-269.
    [42] S Umemura,N Yumita,K Umemura,et al,Sonodynamically induced effect of rose bengal on isolated sarcoma 180 cells,Cancer Chemother Pharmacol.,1999,43(5):389-393.
    [43] Tachibana K,Uchida T,Ogawa K,et al,Induction of cell-membrane porosity by ultrasound,The Lancet,1999353(9162):1409.
    [44] RJ Jeffers,RQ Feng,JB Fowlkes,et al,Dimethylformamide as an enhancer of cavitation-induced cell lysis in vitro,J Acoust Soc Am., 1995,97(l):669-676.
    [45] Sakusabe N,Okada K,Sato K,et al,Enhanced sonodynamic antitumor effect of ultrosound in the presence of nonsteroidal anflammatory drugs,JPN J Cancer Res.,1999,90:l 146-1151.
    [46] AH Saad,GM Hahn,Ultrasound enhanced drug toxicity on Chinese hamster ovary cells in vitro,Cancer Research,1989,49:5931-5934.
    [47] N Yumita,M Kaneuchi,Y Okano,et al,Sonodynamically induced cell damage with 4'-O-tetrahydropyranyladriamycin, THP,Anticancer Res., 1999,19(1 A).
    [48] Yu Tinghe,Wang Zhibiao,Jiang Sen,Potentiation of cytotoxicity of adriamycin on human ovarian carcinoma cell line 3AO by low-level ultrasound,Ultrasonics Sonochemistry,2001,39(4):307-309.
    [49] S Umemura,N Yumita,Y Okano,et al,Sonodynamically-induced in vitro cell damage enhanced by adriamycin,Cancer Letters, 1997,121(2):195-201.
    [50] T Yu,X Huang,K Hu,et al,Mechanisms of reversal of adriamycin resistance in human ovarian carcinoma cell line by ultrasound,Int J Gynecol Cancer,2004,14(1):76-81.
    [51] Yu Tinghe,Bai Jin,Hu Kai,et al,Biological effects of ultrasound exposure on adriamycin-resistant and cisplatin-resistant human ovarian carcinoma cell lines in vitro,Ultrasonics Sonochemistry, 2004,11(2):89-94.
    [52] Yu Tinghe,Huang Xiaoling,Hu Kai,et al,Treatment of transplanted adriamycin- resistant ovarian cancers in mice by combination of adriamycin and ultrasound exposure,Ultrasonics Sonochemistry, 2004,11(5):287-291.
    [53] Yu Tinghe,Bai Jin,Hu Kai,et al,The effect of free radical scavenger and antioxidant on the increase in intracellular adriamycin accumulation induced by ultrasound,Ultrasonics Sonochemistry, 2003,10(1):33-35.
    [54] Yu Tinghe, Hu Kai, Bai Jin, et al, Reversal of adriamycin resistance in ovarian carcinoma cell line by combination of verapamil and low-level ultrasound, Ultrasonics Sonochemistry, 2003, 10(1):37-40.
    [55] 于廷和,蔡汉钟,伍烽,等,低频超声增强阿霉素对卵巢癌细胞毒作用研究,中华物理医学与康复杂志,2001,23(1):26-28.
    [56] Tachibana K, Uchida T, Tamura K, et al, Enhanced cytotoxic effect of Ara-C by low intensity ultrasound to HL-60 cells, Cancer Letters, 2000, 149(1-2): 189-194.
    [57] N Yumita, S Umemura, M Kaneuchi, et al, Sonodynamically-induced cell damage with fluorinated anthracycline derivative, FAD104, Cancer Letters, 1998, 125(1-2): 209-214.
    [58] Tata DB, Biglow J, Junru Wu, et al, Ultrasound-enhanced hydroxyl radical production from two clinically employed anti-cancer drugs, adriamycin and mitomycin C, Ultrasonics Sonochemistry, 1996, 3(1):39-45.
    [59] MV Pilepich, KG Jones, BN Emami, et al, Interaction of bleomycin and hyperthermia—results of a clinical pilot study, Int J Radiat Oncol Biol Phys., 1989, 16(1): 211-213.
    [60] P Sur, P Ghosh, SP Bag, et al, On the inhibitory activities of a new boron compound and ultrasound against the mouse ascites tumour, Chemotherapy, 1999, 45(5): 360-369.
    [61] MM Mohamed, MA Mohamed, NM Fikry, Enhancement of antitumor effects of 5-fluorouracil combined with ultrasound on Ehrlich ascites tumor in vivo, Ultrasound Med Biol., 2003,29(11): 1635-1643.
    [62] BELL E, The action of ultrasound on the mouse liver, J Cell Physiol., 1957, 50(1): 83-103.
    [63] 冯若,吴至诚,抗癌热疗法的新进展,自然杂志,1985,8:666-671.
    [64] 冯若,赵逸云,陈兆华,等,声化学主动力——声空化及其检测技术,声学技术,1994,13(2):56-61.
    [65] N Yumita, R Nishigaki, K Umemura, et al, Sonochemical activation of hematoporphyrin: an ESR study, Radiat Res., 1994, 138(2): 171-176.
    [66] N Miyoshi, T Igarashi, P Riesz, Evidence against singlet oxygen formation by sonolysis of aqueous oxygen-saturated solutions of Hematoporphyrin and rose bengal. The mechanism of sonodynamic therapy, Ultrason Sonochem., 2000, 7(3): 121-124.
    [67] 马玉英,张伊丽,张军平,等,超声激活血卟啉抗癌作用的实验研究,声学技术,1993,12(2):31-35.
    [68] 司静懿,将铁男,赵维敏,等,血卟啉衍生物对癌细胞作用的超微结构研究,中国医学科学院学报,1985,7(4):224-227.
    [69] Tachibana K, Sugata K, Meng J, et al, Liver tissue damage by ultrasound in combination with the photosensitizing drug, Photofrin Ⅱ, Cancer Lett., 1994, 78(1-3): 177-181.
    [70] 刘全宏,王仲会,任耀辉,等,超声激活血卟啉杀伤S180癌细胞研究初报,科学通报,1994,10(39):936-939.
    [71] 刘全宏,孙世惠,肖娅萍,等,低强度超声激活血卟啉对S180细胞的杀伤作用,西北大学学报(自然科学版),2002,32(2):211-213.
    [72] 张坤,齐浩,刘全宏,等,MTT检测超声激活血卟啉对SW480细胞的杀伤作用,陕西师范大学学报(自然科学版),2003,31(1):94—98.
    [73] 刘全宏,张坤,张凤月,等,超声激活血卟啉对SW-480癌细胞的杀伤作用,西北大学学报(自然科学版),2003,33(1):94—98.
    [74] 李萌,刘全宏,齐浩,等,超声激活血卟啉杀伤癌细胞的扫描电镜观察,西北大学学报(自然科学版),2003,33(2):223-225.
    [75] 石新军,朱旭宁,尚志远,复频聚焦超声激活血卟啉杀伤肿瘤细胞K_(562)的实验研究,声学技术,2004,23(2):84-87.
    [76] 尚志远,张军平,朱旭宁,等,复频聚焦超声激活血卟啉杀伤离体肿瘤细胞的实验研究,中国生物医学工程学报,2004,23(5):433-437.
    [77] GH Harrison, EK Balcer-Kubiczek, HA Eddy, Potentiation of chemotherapy by low-level ultrasound,International journal of radiation biology, 1991, 59(6): 1453-1466.
    [78] Yu Tinghe, Wang Zhibiao, Mason TJ, A review of research into the uses of low level ultrasound in cancer therapy, Ultrasonics Sonochemistry, 2004, 11 (2): 95-103.
    [79] D Kessel, Y Luo, Y Deng, et al, The role of subcellular localization in initiation of apoptosis by photodynamic therapy, Photochem Photobiol., 1997, 65(3): 422-426.
    [80] DS Perlin, RS Murant, SL Gibson, et al, Effects of photosensitization by hematoporphyrin derivative on mitochondrial adenosine triphosphatasemediated proton transport and membrane integrity of R3230AC mammary adenocarcinoma, Cancer Res., 1985, 45(2): 653-658.
    [81] RS Murant, SL Gibson, R Hilf, Photosensitizing effects of Photofrin Ⅱ on the siteselected mitochondrial enzymes adenylate kinase and monoamine oxidase, Cancer Res., 1987, 47(16): 4323-4328.
    [82] SM Sharkey, BC Wilson, R Moorehead, et al, Mitochondrial alterations in photodynamic therapy-resistant cells, Cancer Res., 1993, 53(20): 4994-4999.
    [83] 傅乃武,叶树武,张立声,血卟啉衍生物对肝细胞线粒体膜的脂质过氧化作用和几种线粒体酶活性影响的研究,癌症,1987,6(3):87-90.
    [84] 周同庆,焦选茂,魏影允,等,质子漏是血卟啉光敏化反应导致线粒体损伤的机制,自然科学进展,1994,4(3):313-318.
    [85] DJ Granville, DO Ruehlmann, JC Choy, et al, Bcl-2 increases emptying of endoplasmic reticulum Ca~(2+) stores during photodynamic therapy-induced apoptosis, Cell Calcium., 2001, 30(5): 343-350.
    [86] JW Lagerberg, KP Uberriegler, B Krammer, et al, Plasma membrane properties involved in the photodynamic efficacy of merocyanine 540 and tetrasulfonated aluminum phthalocyanine, Photochem Photobiol., 2000, 71 (3): 341-346.
    [87] N Yumita, S Umemura, N Magario, et al, Membrane lipid peroxidation as a mechanism of sonodynamically induced erythrocyte lysis, Int J Radiat Biol., 1996, 69(3): 397-404.
    [88] PK Hristov, LA Petrov, EM Russanov, Lipid peroxidation induced by ultrasonication in Ehrlich ascitic tumor cells, Cancer Letters, 1997, 121 (1): 7-10.
    [89] K Ogawa, K Tachibana, T Uchida, et al, High-resolution scanning electron microscopic evaluation of cell-membrane porosity by ultrasound,Med Electron Microsc., 2001, 34(4): 249-253.
    [90] Tamara V, Akhlynina, David A, et al, Nuclear Targeting of Chlorin e6 Enhances Its Photosensitizing Activity, J. Biol. Chem., 1997, 272(33): 20328-20331.
    [91] E Ben-Hur, T Fujihara, F Suzuki, et al, Genetic toxicology of the photosensitization of Chinese hamster cells by phthalocyanines, Photochem Photobiol., 1987, 45(2): 227—230.
    [92] LIU Quanhong, SUN Shihui, XIAO Yaping, et al, Study of cell killing and morphology on S180 by ultrasound activating hematoporphyrin derivatives, Science in China, Ser. C, 2003, 46(3): 253-262.
    [93] A Villanueva, M Canete, S Nonell, et al, Photodamaging effects of tetraphenylporphycene in a human carcinoma cell line, Anticancer Drug, 1996, 11(2): 89-99.
    [94] MW Miller, DL Miller, AA Brayman, A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective, Ultrasound in Medicine and Biology, 1996, 22(9): 1131-1154.
    [95] Lippitt B, McCord JM, Fridovich I, The sonochemical reduction of eytochrome c and its inhibition by superoxide dismutase, The Journal of biological chemistry, 1972, 247: 4688-4690.
    [96] Makino K, Mossoba MM, Riesz P, Chemical effects of ultrasound on aqueoussolutions—formation of hydroxyl radicals and hydrogen-atoms, The Journal of physical chemistry, 1983, 87:1369-1377.
    [97] Worthington AE, Thompson J, Rauth AM, et al, Mechanism of ultrasound enhanced porphyrin cytotoxicity. Part Ⅰ: A search for free radical effects, Ultrasound in Medicine and Biology, 1997, 23(7): 1095-1105.
    [98] K Sasaki, K Kawabata, N Yumita, et al, Sonodynamic treatment of murine tumor through second-harmonic superimposition, Ultrasound Med Biol., 2004, 30(9): 1233-1238.
    [99] Y He, D Xing, G Yan, et al, FCLA chemiluminescence from sonodynamic action in vitro and in vivo, Cancer Letters, 2002, 182(2): 141-145.
    [100] D Kessel, R Jeffers, JB Fowlkes, et al, Effects of sonodynamic and photodynamic treatment on cellular thiol levels, J Photochem Photobiol B., 1996, 32(1-2): 103-106.
    [101] V Misik, P Riesz, Peroxyl radical formation in aqueous solutions of N, N-dimethylformamide, N-methylformamide, and dimethylsulfoxide by ultrasound: implications for sonosensitized cell killingFree Radic Biol Med., 1996, 20(1): 129-138.
    [102] V Misik, P Riesz, Recent applications of EPR and spin trapping to sonochemical studies of organic liquids and aqueous solutions, Ultrasonics Sonochemistry, 1996, 3(3): 173-186.
    [103] 刘全宏,王攀,李萌,等,声化学激活血卟啉诱导艾氏腹水肿瘤细胞凋亡,动物学报,2003,49(5):620-628.
    [104] D Hockenbery, G Nunez, C Milliman, et al, Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death, Nature, 1990, 348(6299): 334-336.
    [105] DL Cazals-Hatem,DC Louie,S Tanaka,et al,Molecular cloning and DNA sequence analysis of cDNA encoding chicken homologue of the Bcl-2 oncoprotein,Biochim Biophys Acta.,1992,1132(l):109-l 13.
    [106] LH Boise,M Gonzalez-Garcia,CE Postema,et al,bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death,Cell,1993,74(4):597-608.
    [107] ZN Oltvai,CL Milliman,SJ Korsmeyer,Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death,Cell,1993, 74(4):609-619.
    [108] T Miyashita, JC Reed,Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line,Blood, 1993,81:151-157.
    [109] E Yonish-Rouach,D Resnitzky,J Lotem,et al,Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6,Nature,1991, 352(6333):345-347.
    [110] L Lagneaux,EC de Meulenaer,A Delforge,Ultrasonic low-energy treatment: a novel approach to induce apoptosis in human leukemic cells,Exp Hematol.,2002, 30(11):1293-1301.
    [111] 胡野,凌志强,单小云,细胞凋亡的分子医学,2002.
    [112] CL Kerr,DW Gregory,M Shammari,et al,Differing effects of ultrasound- irradiation on suspension and monolayer cultured HeLa cells, investigated by scanning electron microscopy,Ultrasound Med Biol.,1989,15(4):397-401.
    [113] G Packham,JL Cleveland,c-Myc and apoptosis,Biochim Biophys Acta., 1995, 1242(1):11-28.
    [114] Xiao-He Yang,Todd L,Sladek,et al,Reconstitution of Caspase 3 Sensitizes MCF- 7 Breast Cancer Cells to Doxorubicin- and Etoposide-induced Apoptosis,Cancer Res.,2001,61:348-354.
    [115] AM Ibrado,Y Huang,G Fang,et al,Overexpression of Bcl-2 or Bcl-xL inhibits Ara-C-induced CPP32/Yama protease activity and apoptosis of human acute myelogenous leukemia HL-60 cells,Cancer Res., 1996,56:4743-4748.
    [116] X Liu,CN Kim,J Yang,et al,Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c,cell, 1996,86(1): 147-157.
    [117] S Nagata,P Golstein,The Fas death factor,Science., 1995,267(5203): 1449-1456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700