微型计算机CPU散热器中轴流风扇噪声计算方法与优化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴流风扇叶轮的基本参数如轮毂比、叶片安装角、叶片弯掠角与弦长,风扇与散热片之间的距离等,对微型计算机CPU散热器的散热效能、噪声大小及声音品质起着至关重要的作用。本文在运用二次正交试验设计的基础上,提出了微型计算机CPU散热器中轴流风扇与散热片的协同设计方法。该方法是将影响散热效能与噪声的7个可能因子进行一次正交试验设计,得到影响散热效能与噪声大小的3个主要因子;再将这3个主要因子进行二次正交试验设计,最终获得优化方案。
     本次研究为了保证仿真精度,采用全流道计算,划分四面体与六面体混合网格,计算网格约150万。在获得高精度仿真结果及试验测试结果的基础上,运用统计方法对仿真与试验数据建立回归方程并进行分析。通过建立与散热效能及噪声的相关关系矩阵,找到与热阻及噪声有明显相关性的评价参数,同时也找到了热阻与噪声之间的关系。
     最后,基于优化结果及相关性分析,得到具有普遍意义的结论。散热片上端面通过流量与热阻呈明显负相关,即流量越大,热阻越小。声压值与最外和最内圆柱面的全压差值有明显的正相关性,与半径方向的单位全压值有明显的正相关性——即沿半径方向的全压差或单位全压值越大,则声压值越大。对于声音品质中的调制,推荐叶片的叶根与叶尖安装角均取较大值,而叶片弯掠角趋向于0°;对于突出比,推荐叶片的叶根安装角取较小值,叶尖安装角取较大值,叶片弯掠角取负值。这些具有普遍意义的结果,对此类产品的设计开发具有指导性意义。
The basic parameters of axial fan impeller, such as boss ratio, blade angle, skewed-swept angle of blade and chord length, and the distance between fan frame and heat sink etc. obviously influence the thermal conductivity, acoustic noise and sound quality. This paper presents Synergistic Design Method for CPU cooler consisting of axial fan and heat sink based on second Orthogonal Experimental Design. In order to obtain optimized solution, to drive first orthogonal experimental design based on 7 potential factors influencing thermal conductivity and acoustic noise, and obtain 3 key factors to drive second orthogonal experimental design.
     In this research, model of full calculating zone is created, generating about 1,500,000 mixed meshes of Tetra and Hexa in order to obtain better precision. Based on the simulation and measurement results, statistics method is used to analyze the data and the marginal means is obtained to create the regression table. At the same time, the correlation matrix of the thermal conductivity and acoustic noise is created and the correlations of the estimation parameters between the thermal conductivity and acoustic noise, including correlation between the thermal conductivity and acoustic noise, are presented.
     Finally, the universal significance results based on the correlation analysis are obtained. There is distinct negative correlation between the thermal conductivity and flowrate through the upper section of heat sink. That means the thermal conductivity will be higher when the flowrate is on larger magnitude.?There is distinct correlation between sound pressure level and difference of total pressure of out columnar section and inner columnar section. There is distinct correlation between sound pressure level and total pressure per unit length. That means the sound pressure level will be higher when the difference of total pressure or the total pressure per unit length is on higher level. For modulation, the recommendations are the blade angle of hub and tip both on larger magnitude, but the skewed-swept angle of blade on 0 degree. For prominence ratio, the recommendations are the blade angle of hub on smaller magnitude, the blade angle of tip on larger magnitude, but the skewed-swept angle of blade on negative magnitude. These universal significance results are useful for similar product research and development.
引文
[1]商景泰主编.通风机实用技术手册.机械工业出版社, 2005
    [2]沈国民,谢军龙.轴流通风机的叶片形状和安装角对噪声影响的试验研究.风机技术, 2000(4)
    [3]欧阳华,李杨,杜朝辉,钟芳源.周向弯曲方向对弯掠叶片气动──声学性能影响的实验.航空动力学报,2006:21(4)
    [4]蔡娜,李地,钟芳源.弯掠动叶叶尖径向间隙对气动──声学性能的影响.航空动力学报,1997: 12(1)
    [5]李林凌,黄其柏,乔宇峰.轴流风机叶片紊流噪声模型及其特性研究.中国机械工程, 2006: 17(10)
    [6]毛东兴.声质量研究与应用进展.声学技术, 2007: 26(1)
    [7]耿丽珍.轿车发动机冷却风扇CFD仿真分析及降噪研究.吉林大学硕士学位论文, 2008
    [8]钟芳源主编译.叶片机械气动声学译文集.机械工业出版社, 1987
    [9] Yasutoshi.Senoo, Yoshio.Kodama. Noise Generated by low pressure axial flow fans. Bulletin of the Japan Society of Mechanical Engineers 39: P1900-1910, 1973
    [10]T.Fukano, Y.kodama, Y.Senoo. Noise Generated by Low Pressure Axial Flow fansⅠ:Modeling of the Turbulent Noise. Journal of Sound and Vibration 1977, 50(1): 63-74
    [11]T.Fukano, Y.kodama, Y.Senoo. Noise Generated by Low Pressure Axial Flow fansⅡ:Effects of number of Blades, Chord length and Camber of Blade. Journal of Sound and Vibration 1977, 50(1): 75-88
    [12]T.Fukano, Y.kodama, Y.Senoo. Noise Generated by Low Pressure Axial Flow fansⅢ:Effects of Rotational Frequency, Blade Thickness and Outer Blade Profile. Journal of Sound and Vibration 1978, 56(2): 261-277
    [13]Murray.Hodgson, Isabella.Li. Experimental study of the noise emission of personal computer cooling fans. Applied Acoustics, 2006, 67: 849-863
    [14]S.F.Wu, S.G.Su. Noise Radiation from Engine Cooling Fans. Journal of Sound and Vibration 1998, 216(1): 107-132
    [15]Thomas.Carolus, Marc.Schneider, Hauke.Reese. Axial flow fan broad-band noise and prediction. Journal of Sound and Vibration 2007, 300: 50-70
    [16]张克危主编.流体机械原理(上册).机械工业出版社, 2001
    [17]王福军编著.计算流体动力学分析─CFD软件原理与应用.清华大学出版社, 2004
    [18]ANSI/AMCA Standard 210-99. Laboratory Methods of Testing Fans for Aerodynamic Performance Rating
    [19]Profili 2.13C. 2003
    [20]Head acoustic GmbH. HEAD Analyzer Artemis 7.0. Head acoustic GmbH, 2005
    [21]智乃刚,萧滨诗编著.风机噪声控制技术.机械工业出版社, 1985
    [22]E.Zwicker H.Fastl. Psychoacoustics Facts and Models. Springer, 1999
    [23]ECMA073-2003. Measurement of Airborne Noise Emitted by Information Technology and Telecommunications Equipment. Annex D, 2003
    [24]Neise.W. Fan Noise-Generation Mechanism and Control methods. Proceedings of the 1988 International Congress on Noise Control Engineering(INTER-NOISE’88), France: 1988.767-776
    [25]马大猷,沈壕著.声学手册.科学出版社, 2004
    [26]I.J.Sharland. Source of Noise in Axial flow fans. Sound and Vibration 1975, 40:87-99
    [27]陈书明,王登峰,陈鑫.小波变换在轿车车内噪声声源识别中的应用研究.噪声与振动控制, 2009(4)
    [28]陶文铨主编.数值传热学(第二版).西安:西安交通大学出版社, 2004
    [29]H.K.Versteeg, W.Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Wiley, New York, 1995
    [30]H.Schlichting. Boundary Layer Theory. 8th ed. McGrawHill, New York, 1979
    [31]S.V.Patanker, D.B.Spalding. A Calculation procedure for heat,mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer, 15: 1787-1806, 1972
    [32]R.I.Issa. Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting. Journal of Computational of Physics, 62: 40-65, 1985
    [33]V.Yakhot, S.A.Orzag. Renormalization group analysis of turbulence:basic theory. J Scient Comput.1: 3-11, 1986
    [34]孙晓峰,周盛著.气动声学.北京:国防工业出版社, 1994
    [35]M.B.Abbott, D.R.Basco. Computational Fluid Dynamics-An Introduction for Engineers. Longman Scientific&Technical, Harlow, England, 1989
    [36]庄楚强,何春雄编著.应用数理统计基础(第三版).华南理工大学出版社, 2007
    [37]张公绪,孙静主编.质量工程师手册.企业管理出版社, 2003
    [38]李云雁,胡传荣编著.试验设计与数据处理(第二版).化学工业出版社, 2008
    [39] Digital Computations Inc.. DoE Pro XL, 2001
    [40] Ansys Inc.. ICEM CFD User’s Guide, Ansys Inc.. 2006
    [41] Fluent Inc.. Fluent User’s Guide, Fluent Inc.. 2006
    [42] Digital Computations Inc.. SPC XL 2000, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700