缸套耐磨涂层及界面特性的无损检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐磨涂层能够显著提高缸套耐磨性、抗蚀性以及延长使用寿命。随着耐磨涂层在缸套上的广泛应用,如何检测与评价涂层性能,预测涂层的寿命成为制约涂层技术进一步应用的关键性问题。传统涂层性能的检测方法主要集中在外观上,而局部力学性能(如硬度、界面结合强度等)测试一般都是破坏性的,影响了现役设备的正常运转和使用。另外,涂层及界面缺陷大多数随机地分布在内壁表面上,目前还没有一种成熟的评价方法和准则使缺陷被完全检测出来。所以如何基于非破坏性的检测方法,评价涂层特性、界面缺陷以及涂层能够承受的临界载荷等综合性能是本文所要研究的重点问题。
     本文以平面涂层和缸套内壁曲面涂层为研究对象,提出基于超声波和声发射技术检测涂层及界面特性、涂层在外加载荷条件下的损伤模式等耐磨涂层的综合性能。首先,利用超声波回波信号,建立了基于频率谱法检测涂层物理性能的两种数学模型;然后利用检测数学模型获得了超声波特征值,针对橡胶涂层和等离子涂层建立了超声特征值与涂层特性及界面粘结质量的关系;最后,研究涂层在径向膨胀模拟载荷作用下的损伤模式,通过对涂层损伤过程中声发射参数及声发射信号的识别,基于小波能量理论,建立了声发射特征参量与涂层不同损伤模式的关系。
     以仿真涂层为研究对象,利用超声波在基体和涂层中传播过程中产生的回波信号,建立了评价涂层特性参量的传递函数法和时间延迟谱法,获得了超声波在涂层介质中的传播速度、涂层密度、衰减系数以及表征涂层界面特性的反射系数等参量。基于橡胶涂层的超声波检测表明,衰减系数随着频率的增大而变大,其原因是超声波在橡胶涂层中传播时,介质的吸收、散射以及声束扩散使能量逐渐变小。对两种不同传感器提取的时域信号进行解析可知,中心频率为1MHz传感器获得的传递函数和时间延迟谱曲线在频率为2.2-2.4MHz之间均产生“锯齿形”的畸变;中心频率为1.5MHz传感器获得的传递函数和时间延迟谱曲线相对比较平滑,无畸变点。
     通过对不同粘接程度的橡胶涂层界面超声波检测结果表明:由完好界面获得的反射系数最小,弱粘结界面的次之,脱粘界面的最大。对于粘结完好界面,声能反射与透射的大小与基体和涂层物理特性相关;而对于弱结合界面和脱粘界面,声能的反射、透射的大小除了与基体和涂层物理特性有关外,还取决于界面的粘结情况。随着等离子喷涂涂层孔隙率的增加反射系数有增大趋势;声波在涂层中传播的速度有减小趋势。因此,反射系数反映了涂层及界面特性,可以作为评价涂层界面的特征参量。基于超声频谱检测涂层特性的研究结果,针对缸套内壁涂层界面设计了一套超声波C扫描检测成像系统,该系统集机械传动装置、计算机控制与超声检测技术于一体,实现了系统的整体性,提高了系统机电控制的自动化程度及检测速度。采用水浸超声C型扫描方法,利用超声波时间延迟谱检测原理,通过对时域信号的分析,计算出反射系数。利用反射系数来绘制表征缸套内壁涂层界面质量的C扫描图像。
     开发出一套模拟缸套耐磨涂层损伤的加载装置。该装置通过与声发射检测设备的集成,模拟涂层在外加载荷条件下的损伤过程,同时提取了声发射参数及声发射信号。镀铬涂层的声发射检测结果表明:声发射参数如计数、能量、撞击等参数随着外加载荷的增大而增大;另外,基于声发射的涂层损伤模式识别技术,运用小波分解理论对声发射信号进行分析,发现涂层正常摩擦与涂层损伤的能量信号有较大区别,涂层正常摩擦的能量信号主要集中在低频,而涂层损伤的能量信号主要集中在中、高频。该模拟系统具有检测装置小、检测迅速、精确度高等优点。
     采用超声C扫描技术,在外加模拟载荷为54MPa,对厚度分别为80μm、130μm及180μm镀铬涂层界面进行扫描,结果表明:随着涂层厚度的增大,缺陷数量随之增大,原因是随涂层厚度增大,涂层的内聚强度和界面的结合强度减小。通过声发射检测涂层缺陷位置与超声C扫描的对比分析可知,两种检测方法都能够对涂层的缺陷进行定位和识别,后者更加精确。
The wear-resistant coating applied to the cylinder liner can improve wear, corrosion resistance and prolong service life. With the wide application of the wear-resistant coating in the cylinder liner, it is a key that how to test and evaluate coating performance, predict coating life, which restricts the further development of the coating technology. The traditional methods for testing coating performance focus on appearance, while testing for the local mechanical properties such as hardness, bonding strength are generally destructive, which has an effect on normal running of the active device. In addition, most of defects exist in the coating and interface at random, there are still not any mature evaluation methods and criteria to test such defects completely. Therefore this paper focuses on evaluating comprehensive performance of coating such as the physical properties, defects and the critical load based on non-destructive testing.
     Taking a planar coating and a cylinder wall coating as the research objects, the method based on ultrasonic technology and acoustic emission technology is proposed for testing comprehensive properties of wear resistant coatings including the properties of the coating and interface, damage mode under applied loading. Fist of all, two mathematical models are established for evaluating the physical properties of coating based on frequency spectrum of ultrasonic echo. Next, based on detection mathematical model ultrasonic eigenvalue can be obtained. The relationship between ultrasonic eigenvalue and the coating properties and interface quality are built for the rubber coating and plasma spraying coating respectively. Finally, the coating damage mode is investigated under the simulative loading exerted by the self-designing radial expansion device. The relationship between the characteristic parameters of acoustic emission and different damage mode of the coating is established through recognizing acoustic emission parameters and signals according to wavelet energy theory.
     Taking simulative coating as the research object, models of the time delay spectrum and transfer function for evaluating character parameters of the coating are established by ultrasonic echo propagating in the coating and the substrate, from which the parameters relative to the coating such as ultrasonic propagation velocity, coating density, attenuation coefficient and reflection coefficient are obtained. Ultrasonic testing results for the rubber coating show that the attenuation coefficient increases with the increase of frequency. During ultrasonic propagating in the rubber coating acoustic beam diffusion, scattering, and media absorption leading to sound pressure diminishes. According to analyze time delay spectrum and transfer function obtained by two different sensors, the sawtooth distortion appears in frequency 2.2-2.4MHz by sensor of center frequency 1 MHz, the smoothing appears by sensor of center frequency 1.5 MHz.
     Ultrasonic testing results for the rubber coating with different bonding interfaces show that as regards to the reflection coefficient for the different bonding interface, the perfect interface is the lowest and weak interface is in the second place, and debonding interface is the highest. This is mainly because that for the perfect interface the reflection and transmission of the ultrasonic energy relate to physical properties of the substrate and the coating. While for the weak or debonding interface the reflection and transmission of the ultrasonic energy depend on not only physical properties of the coating and substrate, but the interfacial bonding. In addition, the reflection coefficient increase and sound velocity decrease with the increase of the porosity of the plasma spraying coating. Thereby, the reflection coefficient can be used to evaluate the coating character and reflect its quality. An ultrasonic C scan imaging system is designed for testing the cylinder wall coating interface based on ultrasonic spectrum evaluating the coating characteristics results which consists of the mechanical gearing, computer control and ultrasonic technology, and improves the automation of electromechanical control and testing speed. According to ultrasonic time delay spectrum theory the reflection coefficient can be obtained using time domain signal collected by ultrasonic immersion C scanning system. The reflection coefficient is employed to plot C scan image, which is able to characterize the bonding quality of the cylinder wall coating.
     A loading device is developed for simulating the damage of cylinder liner wear-resistant coating. The loading device which assembles acoustic emission equipment simulates damage process of the coating under the applied load and collects acoustic emission parameters and signal simultaneously. Acoustic emission testing results shows that for the coating with chromium plating process acoustic emission parameters such as counts, energy, and impact increase with the applied load increasing. In addition, based on acoustic emission recognition technology of the coating damage mode, there exits greater difference between the energy signals of the normal friction and coating damage through wavelet theory that is employed to analyze acoustic emission signal. The energy signal for normal friction mainly concentrates on the low frequency, energy signal of coating damage concentrates on the medium and high frequency. The simulation device is small, and has rapid detection, high accuracy.
     Under the simulative applied load of 54MPa the scanning test by the ultrasonic C scan system for chromium plating coating with thickness of 80μm,130μm and 180μm, respectively were conducted. The results show that the number of defects increases with the coating thickness increasing, it is because that cohesive strength and interface bonding strength for the thin coating is higher than those for thick coating. Comparing between acoustic emission and ultrasonic C scanning, it is concluded that both methods can be employed to locate and identify defects in the coating, the later is more accurate.
引文
[1]吉建平,王龙洲.汽车发动机缸套-活塞环摩擦副磨损及对策.润滑与密封,2002,(2):74-78.
    [2]张厚君,张英才.发动机活塞系中的摩擦学.汽车工艺与材料,1995,12:19-24.
    [3]Kinra V K, Iyer V R. Ultrasonic measurement of the thickness, phase velocity, density or attenuation of a thin viscoelastic plate Part I:the forward problem. Ultrasonics,1995, 33(2):95-105.
    [4]Maev R G, Shao H, Maeva E Y. Thickness measurement of a curved multilayered polymer system by using an ultrasonic pulse-echo method. Materials Characterization,1998,41:97-105.
    [5]Wu P, Tadeusz, Stepinski. Quantitative estimation of ultrasonic attenuation in a solid in the immersion case with correction of diffraction effects Ultrasonics 38,2000:481-485.
    [6]胡传忻,宋幼慧.涂层技术原理及应用.北京:化学工业出版社,2000.
    [7]Antolino G, Jose F G, Juan M V, et al. Coating adherence in galvanized steel assessed by acoustic emission wavelet analysis. Scripta Materialia,2005,52:1069-1074.
    [8]廖义德,李壮云,唐国群.试件预埋法测试涂层剪切结合强度.机械工程材料,2003,27(6):19-24.
    [9]苏修梁,张欣宇.表面涂层与基体间的界面结合强度及其测定.Electroplating & Pollution Control,2004,24(2):6-11.
    [10]朱萍,曹永胜.涂层性能超声无损评价.佳木斯大学学报(自然科学版),2005,23(4):655-658.
    [11]张来斌,杨占才,王朝晖等.发动机活塞一缸套磨损故障的声发射诊断方法研究.石油大学学报(自然科学版),2001,25(5):60-63.
    [12]Rosen B G, Ohisson R, Thomas T R. Nano Metrology of Cylinder bore Wear. Int.J.Mech.Tools Manufact,1998,138:519-527.
    [13][俄罗斯]沈虹译.关于内燃机车柴油机气缸活塞组零件的磨损及其可靠性的提高.国外内燃机车,1999(4):21-37.
    [14]徐久军,王鹏,刘宗利等.缸套活塞环摩擦副的模拟磨损试验研究.大连海事大学学报,1999,25(1):88-91.
    [15]汪立亮,徐淼.内燃机气缸套新材料的开发.小型内燃机,2000,29(4):41-44.
    [16]张英才,鹿云,张厚君等.活塞环的摩擦学问题及其对策.汽车工艺与材料,2000(2):15-20.
    [17]胡传忻.表面处理技术手册.北京:北京工业大学出版社,1997.
    [18]朱维翰译.金属材料表面表面强化技术的新进展.北京:兵器工业出版社,1992.
    [19]Xiaodong W. Effects of plasma-sprayed NiCrAI-ZrO intermediate on the combination ability of coatings. Surface and Coatings Technology,2001:231-237.
    [20]邱复兴.活塞环汽缸套的喷铝及铝合金表面处理.内燃机配件,2003,(1):7-9.
    [21]李秀山,吴华杰,张宝欢.活塞环与气缸套摩擦副采用喷涂陶瓷材料研究.天津大学学报,2001(4):503-507.
    [22]张清.金属磨损和金属耐磨材料手册.北京:冶金工业出版社,1991.
    [23]符永宏,叶云霞.发动机气缸孔表面的激光晰磨技术研究.激光技术,2002,5:379-381.
    [24]何志洪.高磷铸铁汽缸套磨损失效分析.北京建筑工程学院学报,1999(2):35-39.
    [25]杨延军.用Fe-Ni金属粉末热喷涂法修复烘缸.北方造纸,1996,(3):62.
    [26]袁振明,马羽宽,何泽云.声发射技术及其应用.北京:机械工业出版社,1985.
    [27]沈功田.金属压力容器的声发射源特性及识别方法的研究:(博士学位论文).北京:清华大学机械,1998.
    [28]Imsi S. Output characteristics of a thin-film piezoelectric AE sensor for magnetic head-disk interaction. International Journal C,1997,40(1):33-41.
    [29]Lin C K, Berndt C C. Acoustic emission studies on thermal spray materials. Surface and Coatings Technology,1998,102:1-7.
    [30]蒋危平,方京.超声检测学.武汉:武汉测绘科技大学出版社,1991.
    [31]中国机械工程学会无损检测分会.超声波检测.北京:机械工业出版社,2000.
    [32]Brennan M J, Gao Y, Joseph P F. On the relationship between time and frequency domain methods in time delay estimation for leak detection in water distribution pipes. Journal of Sound and Vibration,2007,304:213-223.
    [33]高志奇,田立欣,孟祥东.基于小波变换和模糊模式识别的超声无损检测.内蒙古工业大学学报,2010,29(1):46-51.
    [34]Redouance D, Mohamed K, Amar B. Time frequency and wavelet transform applied to selected problems in ultrasonics NDE. NDE&E International,2002,35:567-572.
    [35]D. Lescribaa, A. Vincent. Ultrasonic characterization of plasma-sprayed coatings. Surface and Coatings Technology,1996,81:297-306.
    [36]Y. Gao, M.J. Brennan, P.F. Joseph, et al. A model of the correlation function of leak noise in buried plastic pipes. Journal of Sound and Vibration,2004,277(1-2):133-148.
    [37]应崇福.超声学.北京:科学技术出版社,1990.
    [38]Che T, Ho B, Zapp H R. Impedance and attenuation profile estimation of multilayered material from reflected ultrasound. IEEE Trans Instrum Meas,1991,40(4):787-794.
    [39]Cox R L, Almond D P, Reiter H. Ultrasonic attenuation in plasma-sprayed coating materials. Ultrasonics,1981, (1):17-22.
    [40]Hirao M, Ogi H, Suzuki N. Ultrasonic attenuation peak during fatigue of polycrystalline copper. Acta Mater,2000,48:517-524
    [41]Ohtani T, Ogi H, Minami Y. Ultrasonic attenuation monitoring of fatigue damage in low carbon steels with electromagnetic acoustic resonance. Journal of Alloys and Compounds,2000, 310(1-2):440-444.
    [42]董志勇,胡金榜.超声波衰减系数法评估材料损伤的研究.化工机械,2007,34(4):139-143.
    [43]Haines N F, Bell J C, Mclntyre P J. The application of broadband ultrasonic spectroscopy to the study of layered media. The Journal of the Acoustical Society of America,1978, 64(6):1645-1651.
    [44]常俊杰.利用超声波传播特性对A12O3涂层进行评价.机械工程材料,2007,31(2):62-64.
    [45]常俊杰,林成新,孙德平.橡胶摩擦材料粘弹性的超声评价.润滑与密封,2007,32(11):55-58.
    [46]Chang J J, Ni Q, Iwamoto M. Physical properties of thin layer material evaluated by ultrasonic propagation. JSMS Composites,2005,34:196-200.
    [47]张锐,万明习.超薄层状复合媒质弱界面深度与声导波.物理学报,2000,49(7):1297-1302.
    [48]Schneider D, Schwarz T, Bradford a S, et al. Controlling the quality of thin films by surface acoustic waves. Ultrasonics,1997,35:345-356.
    [49]Schneider D, Tucker M D. Non-destructive characterization and evaluation of thin films by laser-induced ultrasonic surface waves. Thin Solid Films,1996,290-291:305-311.
    [50]Ollendorf H, Schneider D, Schwarz T, et al. Non-destructive evaluation of TiN films with interface defects by surface acoustic waves. Surface and Coatings Technology,1995, 74-75:246-252.
    [51]Suga Y, Takahashi J, Harjanto. On the Detection of Separation and Adhesion of Sprayed Coatings by Ultrasonic Method. Therm Spraying Soc,1991,128(4):196-204
    [52]Suga Y, Takahashi J. On Ultrasonic Testing for Evaluating the Adhesion of NiCr Alloy Sprayed Coating to Substrate. Q. J. Jpn. Weld. Soc,1992,10(1):132-138.
    [53]Suga Y, Harjanto. On an Estimation of Adhesion Strength of NiCr Alloy Sprayed Coating to a Substrate by Ultrasonic Bottom Echo Testing Method. Therm. Spraying Soc,1992,30(1):1-12.
    [54]Byoung G K, Sekyung L, Kishi T. Time-domain reflection field analysis for ultrasonic evaluation of thin layered media. NDT&E International,1996,29(5):317-322.
    [55]钱明,万明习.应用恢复函数的超薄层弹性材料低频超声定征方法.声学学报,1999,24(1):71-80.
    [56]张锐,万明习,巩欣洲等.低频多模式超声兰姆波超薄弹性层定征方法.计量学报,2000,21(1):59-67.
    [57]张锐,万明习.超薄双层复合结构界面特性超声兰姆波评价方法.航空学报,2000,21(4):313-316.
    [58]Brekhovskikh L M. Waves in Layered Media, second ed.New York:Academic Press,1980.
    [59]林莉,李喜孟,李继承.超声无损表征薄层结构研究进展.无损探伤,2006,30(5):1-4.
    [60]徐志辉,林莉,李喜孟等.基于功率谱分析的表面涂层厚度超声无损测量方法.中国表面工程,2004,69(6):7-9.
    [61]Birks a S, Green R E. Ultrasonic Testing, Non-destructive Testing Handbook, second ed.New York:American Society for Nondestructive Testing Inc,1991.
    [62]Miller R K, Mcintire P. Nondestructive Testing Handbook. Acoustic Emission Testing.1987.
    [63]王祖荫.声发射技术基础.济南:山东科学技术出.版社,1990.
    [64]《国防科技工业无损检测人员资格鉴定与认证培训教材》编审委员会.声发射检测.北京:机械工业出版社,2005.
    [65]Slavko D, Janez K. Acoustic emission signals for tool wear identification. Wear 1999., 225-229:295-303.
    [66]Ma X Q, Cho S, Takemoto M. Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests. Surface and Coatings Technology 2001, 139:55-62.
    [67]Wu F B, Duh J G. Scratch behavior and in situ acoustic emission analysis of PVD chromium nitride coatings on mild steel with electroless nickel interlayers. Surface and Coatings Technology 2002,162:106-112.
    [68]Stephens R W B, Pollock a A. Wavefoms and frequency spectra of acoustic emission. J Acoust See Am,1971,50:904-910.
    [69]李晓梅,朱援祥,孙秦明.基于小波包分析的声发射源定位方法.武汉理工大学学报,2003,25(2):91-94.
    [70]耿荣生,沈功田,刘时风.基于波形分析的声发射信号处理技术.无损检测,2002,24(6):257-226.
    [71]杨杰.声发射信号处理与分析技术的研究:(硕士学位).长春:吉林大学,2002.
    [72]纪洪广,张天森,张志勇等.无损检测中常用声发射参数的分析与评价.无损检测,2001,23(3):289-291.
    [73]沈功田,耿荣生,刘时风.声发射信号的参数分析方法.无损检测,2002,24(2):72-77.
    [74]高品贤.测试信号分析处理方法与程序.成都:西南交通大学出版社,1999.
    [75]Gorman M R. Plate wave acoustic emission. JASA,1991,90(1):358-364.
    [76]Gorman M R. AE source orientation by plate wave analysis. Journal of Acoustic Emission,2000, 10(4):53-58.
    [77]刘松平,Gorman M,陈积懋.模态声发射检测技术.无损检测,2000,22(1):38-41.
    [78]耿荣生.利用模拟声发射源评价飞机雷达罩胶接质量.声学学报,1999,24(4):368-372.
    [79]耿荣生.某型飞机雷达罩胶结质量的无损评价.航空维修,1997,(4):43-44.
    [80]Ziola S M, Gorman M R. Source location in thin plates using cross-correlation. S. J Acoust, 1991,90(5):2551-2556.
    [81]Bently P G, Beesley M J. Acoustic Emission Measurements on PWR Weld Material with Inserted Defects using Advanced Instrument. Acoustic Emission,1988,7(2):59-79.
    [82]Hyunje J, Jang Y S. Wavelet Analysis of Plate Wave Propagation in Composite Laminaes. Composite structure,2000,49(4):443-450.
    [83]Jeong H, Jang Y S. Fracture Source Location inThin Plates Using the Wavelet Transform of Disperse Waves. EEETransactions onTransonics, Ferroelectrics, and Fre-quency Control,2000, 47(3):612-619.
    [84]刘国光,程青蟾.声发射辅以模糊神经网络的质量检测.应用声学,2004,23(4):16-20.
    [85]陈玉华,刘时风.声发射信号的谱分析和相关分析.无损检测,2002,15(9):37-40.
    [86]Roberts T M, Talebzadeh M. Acoustic emission monitoring of fatigue crack propagation. Journal of Constructional Steel Research,2003,59(6):695-712.
    [87]Scruby C B, Collingwood J C, Wadley H N G. A new technique for the measurement of acoustic emission transient and their relationship to crack propagation. J Phys D,1978,11:2359.
    [88]李光海.声发射源识别技术的研究:(博士学位论文).华南理工大学,2002.
    [89]李光海,刘时风.基于小波分析的声发射源定位技术.机械工程学报,2004,40(7):136-140.
    [90]Jeong H. Analysis of plate wave propagation in anisortopic laminates using a wavelet transform NDT&E International,2001,34:185-190.
    [91]张平,施克仁.小波变换在声发射检测中的应用.无损检测,2002,24(10):436-441.
    [92]Dunegan H L. Acoustic emission:A promising technique. Lawrence Radiation Laboratory, 1963,UCID-4643:86-91.
    [93]霍臻,陈翠梅,朱润祥.压力管道声发射泄漏检测.无损检测,1997,19(4):105-107.
    [94]中国无损检测学会声发射专业委员会.全国第八届声发射会议(论文集),1999.
    [95]Zhang H, Li D Y. Determination of interfacial bonding strength using a cantilever bending method with in situ monitoring acoustic emission. Surface and Coatings Technology 2002,155 190-194.
    [96]Miguel J M, Guilemany J M, Mellor B G, et al. Acoustic emission study on WC-Co thermal sprayed coatings. Materials Science and Engineering A 2003,352:55-63.
    [97]Bojko Vs, Krivenko L.F, Marinin V G, et al. Acoustic emission on microdestruction of diamond-like carbon coatings prepared by vacuum-arc deposition. Diamond and Related Materials,1995,4:791-793.
    [98]Blum T, Suzuki I, Inasaki I. AE monitoring systems for the detection of single-point and multipoint cutting tool failures. Journal of Acoustic Emission,1988,7(4):179-184.
    [99]Ma X Q, Takemoto M. Quantitative acoustic emission analysis of plasma sprayed thermal barrier coatings subjected to thermal shock tests. Materials Science and Engineering A,2001, 308:101-110.
    [100]王俊英,杨启志,倪新华.用声发射技术结合显微硬度法研究镍基合金复合涂层韧性.《新技术新工艺》材料与表面处理,2002,(6):45-46.
    [101]杨丽,周益春.热障涂层基于小波变换的声发射源定位方法.湘潭大学自然科学学报,2009,31(1):38-43.
    [102]Wojcik G L, Vaughan D K, Murray V, et al. Time-domain modeling of composite arrays for underwater imaging. IEEE Ultrasonics Symposium Proceedings,1994,2:1027-1032.
    [103]Wojcik G L, Vaughan D K, Abboud N N, et al. Electromechanical modeling using Explicittime-domain finite elements. Proc. IEEE Ultrason. Symp,1993,2:1107-1112.
    [104]Http://Www.Pacndt.Com.Cn/Ad 1210.Htm.
    [105]Shinobu S. Measurements of elastics of plasma-sprayed coatings using bulk ultrasonic pulses. Japanese Journal of Applied Physics,2004,43:3109-103114.
    [106]罗斯J L著,何存富,吴斌等译.固体中的超声波.北京:科学出版社,2004.
    [107]申昭熙,阎宇振,王子昆.含弱界面的复合材料层合板对水平剪切波的散射.2004,38(1):81-84.
    [108]张世雄.基于超声特征扫面的轧辊在线检测系统:(硕士学位论文).太原:中北大学,2008.
    [109]陈桂明,张明照,戚红雨.应用MATLAB语言处理数字信号与数字图像.北京:科学出版社,2001.
    [110]李传军.C语言与MATLAB接口:编程与实例北京:北京邮电大学出版社,2004.
    [111]胡昌华,张军波,夏军等.基于MATLAB的系统分析与设计-小波分析.西安:西安电子科技大学出版社,1999.
    [112]刘正军.Matlab科学计算与可视化仿真.北京:电子工业出版社,2009.
    [113]孔庆安,罗盛祥.材料力学.大连:大连海运学院出版社,1994.
    [114]成大先.机械设计手册第4版.第2卷.北京:化学工业出版社,2003.
    [115]Gang Q. wavelet-based AE characterization of compositem materials. NDT&E International, 2000,33:133-144.
    [116]Http://Www.Pacndt.Com.Cn/Pci.Htm.
    [117]奚兵.镀铬层的性能及影响因素.腐蚀与防护,2000,21(11):502-504.
    [118]崔景泰.小波分析导论.西安:西安交通大学出版社,1995.
    [119]秦前清,杨宗凯.实用小波分析.第一版.西安:西安电子科技大学出版,1995.
    [120]刘镇清,黄瑞菊.小波变换及其应用.无损检测,2001,(4):174-177.
    [121]Mallat S. Multiresolution approximations and wavelet orthonormal bases of L2(R). International Journal C,1989,315(21):69-87.
    [122]Perrier V, Basdevant C. Periodic wavelet analysis, a tool for inhomogeneous field investigation. Theory and Algorithms. Rech Aerospat,1989,3:53-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700