基于声发射技术的旋转机械碰摩故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动静部件碰摩是旋转机械中常见典型故障,其对旋转机械的安全稳定运行有着很大的危害。因此,对碰摩故障进行及时有效地识别和诊断对于保证旋转机械安全运行有着重要意义。
     为了对旋转机械碰摩接触产生的声发射信号有更好的理解,以实现对碰摩故障的有效识别,有必要对碰摩产生声发射信号的机理进行分析。本文分析了旋转机械动静碰摩的过程,指出动静碰摩接触的实质为多微凸体接触;基于GW接触模型,建立了声发射信号均方根值与碰摩接触力之间关系的理论模型,从该模型能够看出测量声发射信号均方根值的概率分布与接触表面微凸体的概率分布相同;通过进行全周碰摩和局部碰摩实验研究,证明声发射信号能量在转子结构中传播是线性衰减的。
     对于早期的动静碰摩故障,其产生的声发射信号与背景噪声相比往往很弱,因此需要对声发射信号的降噪技术进行研究。根据声发射信号的特点,提出运用自适应阈值方法对连续小波变换的系数进行的消噪,采用逆连续小波变换对消噪后的小波变换系数进行重构,研究发现该方法能够有效的去除声发射信号中的背景噪声,保留信号中的弱冲击成分。
     对转子结构分析的基础上,将碰摩故障的定位归为声发射源的线性定位问题,通过研究指出碰摩故障定位的关键技术是确定声发射波到达传感器的时间和声发射波传播速度的确定。针对突发型声发射信号的特点,提出采用AR模型确定声发射波的到达时间。针对连续型的声发射信号,通过带通滤波提取信号的特征频率,采用互相关技术确定其时间差,并对其传播速度进行识别。
     为了对声发射源信号进行有效的识别,更好的对其进行分类,将盲目反卷积技术用于声发射信号的处理,从检测到的声发射信号中消除信号在传播路径中受到的干扰,以提取真实的声发射源信号。
     在600MW超超临界汽轮发电机组轴系模拟实验台上进行了密封瓦与密封盘碰摩、径向可倾瓦滑动轴承碰摩实验。实验结果表明本文中提出的对碰摩声发射信号的处理方法能够对含强背景噪声的检测信号进行处理,有效的降低噪声。可倾瓦径向滑动轴承故障检测实验表明:声发射信号能够诊断出可倾瓦轴承的瓦块与轴的碰摩,通过合理布置声发射传感器在轴承座上的位置,根据声发射信号到达多个传感器的时间、声发射信号的均方根值以及轴承的结构可以推断出与轴发生碰摩的瓦块位置,为碰摩故障的早期诊断,提供了一种有效手段。
The rubbing and impact between the static and dynamic components is the common typical malfunction of rotating machinery, which is great harmful to the safe and steady running. So identifying and diagnosing the rubbing and impact malfunction have heavy significance on the warranting the safe running of the rotating machinery.
     It is necessary to analyze the mechanism of acoustic emission signals generated from the rubbing and impact, which will make better understand of acoustic emission signal and carry out the effective identifying of rubbing impact malfunction. By analyzing the process of static and dynamic rubbing impact, the principle of static and dynamic rubbing impact is the contact of multi-micro asperity, which is proposed in this paper; based on the GW contact model, the theoretical model of acoustic emission signals which have the relationship between the rubbing impact contact forces is established. By analyzing this model, it indicates that the distribution of measured acoustic emission signals is the same as the distribution of contact micro asperity. From the full circular and local rubbing impact experimental research, it is verified that the propagation of acoustic emission energy in rotor structure is the linear attenuation.
     It is necessary to study the noise reduction techniques for acoustic emission signals because that the acoustic emission signal of early static dynamic rubbing impact malfunction is weak compared with background noise. So based on the characteristic of acoustic emission signals, the self adapting threshold method is employed to reduce the noise of continuous wavelet transformation coefficients and then the coefficients will be rebuilt by using inverse continuous wavelet transformation. The results indicate that this method can eliminate the noise of the signals effectively and keep the weak impulse components.
     By analyzing the structure of the rotor, the rubbing impact locating problem is the case of linear location for acoustic emission source. It indicates that the key techniques of allocating the malfunction position are how to obtain the arriving time and the velocity of the wave. Then the AR model is employed to get the arriving time of acoustic emission wave based on the characteristic of burst acoustic emission signals. For successive acoustic emission signals, the frequency characteristic is obtained by applying the bandpass filtration and the time delay is determined by employing the cross correlation technique to extract signals, also the spreading velocity will be identified.
     The blind deconvolution technique is applied to the treat the acoustic emission signals, which can identify the signals effectively and classify the signals better. This method of analyzing the effect of signals attenuating on the transmission path from detected acoustic emission signals can extract the true acoustic emission source signals possibly.
     The rubbing impact between the sealing pads and sealing disks experiments, the rubbing impact of journal tilting pad bearing experiments are carried out on the 600MW super-critical steam turbine-generator simulated test rig. The results indicate that the concerned method from the research above can treat the detected signals which have strong background noise and reduce the noise. The results of tilting pad bearing malfunction experiments indicate that by arranging the acoustic emission sensors on the housing reasonably, and employing the arriving time of different acoustic emissions sensors and the mean square root of acoustic emission signals, the rubbing impact position of the pads can be identified, which provides the effective way for the early diagnose of rubbing impact malfunction.
引文
1张育林,吴建军.液体火箭发动机健康监控技术.国防科技大学出版社, 1998
    2 J. R. Mathews. Acoustic Emission. New York: Gordon and Breach Science Publishers Inc., 1983
    3袁振明,马羽宽,何泽云.声发射技术及其应用.机械工业出版社, 1985.
    4王祖荫.声发射技术基础.科学技术出版社, 1990
    5 B. Polyzos, A. Trochidis. Dislocation dynamics and acoustic emission during plastic deformation of crystals. Wave Motion. 1995, 21: 343-355
    6 A. Trochidis, B. Polyzos. Dislocation annihilation and acoustic emission during plastic deformation of crystals. Journal of the Mechanics and Physics of Solids. 1994, 42(12): 1933-1944
    7 D. Chang. Microdynamic modeling of acoustic emission in machining. University of Southern California Doctoral Thesis. 2004: 12-16
    8 R. V. Williams. Acoustic Emission. Bristol: Hilger, 1980
    9 R. Michae, W. H. P. Gorman. AE Source Orientation by Plate Wave Analysis. Journal of Acoustic Emission. 1991, 9(4): 283-288
    10 W. H. Prosser, M. A. Hamstad, J. Gary. Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms. Journal of Nondestructive Evaluation. 1998, 18(3): 83-90
    11 R. Nabera, H. Bahaia. A reciprocal band-limited Green's function approach for modelling acoustic emission using the finite element method. Journal of Sound and Vibration. 2006, 292(2006): 802-823
    12 H. Dietzhausen, M. Dong S S. Numerical simulation of acoustic emission in fiber reinforced polymers. Computational Materials Science. 1998, 13(1998): 23~30
    13 R. Hill, S. A. Forsyth. Finite element modelling of ultrasound, with reference to transducers and AE waves. Ultrasonics. 2004, 42(2004): 253-258
    14 A. T. Green, C. S. Lockman. Acoustic Verification of Structural Integrity of Polaris Chambers. Mordern Plastics. 1964, 41(11): 292-297
    15 H. Dunegan. Acoustic Emission: A Promising Technique. Report UCID-4643, Lawkence Radiation Laboratory, Livermore, California, December 9, 1963
    16 D. L. Parry. Nondestructive Flaw Detection by Use of Acoustic Emissions. Report IDO-17230, Phillips Petroleum Co. Idaho Falls, Idaho, May, 1967
    17 TF Drouillard. A History of Acoustic Emission. Journal of Acoustic Emission. 1996, 14(1): 1~34
    18许凤旌,陈积懋.声发射技术在复合材料发展中的应用.机械工程材料. 1997, 21(4): 30~34.
    19 H. Jochen, Kurz, Christian U. Grosse, Hans-Wolf Reinhardt. Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete. Ultrasonics. 43 (2005): 538–546
    20 Marin-franch P, Martin T, Tunnicliffe D L, Das-gupta D K. PTCa/PEKK piezo-composites for acoustic emission detection. Sensors and Actuators A: Physical. 2002, 99(3): 236-243
    21 Michael G. Duancan J W W. Acoustic emission calibration instrumentation. IEEE Transactions on Instrumentation and Measurement. 1989, 38(3): 827-831
    22 W. K. Sakamoto, P. Marin-franch, D. Tunnicliffe D K D. Lead zirconate titanate polyurethane (PZT PU) composite for acoustic emission sensors. 2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. 2001: 21-23
    23 P. Marin-francha, T. Martinb, D.l. Tunnicliffeb D K D. PTCaPEKK piezo-composites for acoustic emission detection. Sensors and Actuators. 2002, 99: 236–243
    24梁家惠.声发射检测中的压电换能器.无损检测. 2002, 24(12): 526-531
    25梁家惠.声发射研究用的非接触式传感器.无损检测. 2003, 25(1): 31-36
    26郝俊才.应用光纤声发射传感器对复合材料进行损伤检测.哈尔滨工业大学硕士学位论文. 2006: 4-5
    27 Libo Yuan, Li-min Zho W J. Detection of acoustic emission in structure using Sagnac-like fiber-loop interferometer. Sensors and Actuators A. 2005, 118 (2005): 6-13
    28 Changsen Sun, Yujin Liang A F A. Serially multiplexed dual-point fiber-optic acoustic emission sensor. Journal of Lightwave Technology. 2004, 22(2): 487-493
    29 A.a. Bent N W H. Piezoelectric fibre composites with interdigitated electrodes. J. Intell. Mater. Syst. Struct. 1997, 8(1997): 903-919
    30 M. Barbezat., A.j. Brunner, P. Flueler, C. Huber X K. Acoustic emission sensorproperties of active fibre composite elements compared with commercial acoustic emission sensors. Sensors and Actuators A. 2004, 114 (2004): 13-20
    31 Ryutaro Oishi. H N. Strain sensors of shape memory alloys using acoustic emissions. Sensors and Actuators A. 2005, 122 (2005): 39-44
    32 H. Reginald Hardy J. Acoustic Emission/Microseismic Activity. A. A: Balkema Publishers, 2003
    33 Ni Q Q, Iwamoto M. Wavelet transform of acoustic emission signals in failure of model composites. Engineering Fracture Mechanics. 2002, 69(6): 717-728
    34 Nivesrangsan P, Steel J A, Reuben R L. Acoustic emission mapping of diesel engines for spatially located time series--Part II: Spatial reconstitution. Mechanical Systems and Signal Processing. 2007, 21(2): 1084-1102
    35李光海,刘时风,耿荣生,沈功田.声发射源特征识别的最新方法. 2002, 24(12): 534-538
    36 Baxter M G, Pullin R, Holford K M, Evans S L. Delta T source location for acoustic emission. Mechanical Systems and Signal Processing. 2007, 21(3): 1512-1520
    37刘松平, MichaelGorman,陈积懋.模态声发射检测技术.无损检测. 2000, 22(1): 38-41
    38 R G M. Plate wave acoustic emission. J. Acoust. Soc. Am. 1991, 90(1): 358~364
    39 Surgeon M,wevers M. Modal analysis of acoustic emission signals from CFRP Laminates. NDT and E International. 1999, 32(6): 311~322
    40 SHCarpenter , mRGorman. A Waveform Investigation of Acoustic EmissionGenerated during the Deformation and Cracking of 7075 Aluminum. In:Progress in Acoustic Emission VII, The Japanese Society for NDI. Japan:. 1994: 105~112
    41 Prosser W. H. Advanced Waveform-Based Acoustic Emission Detection of Matrix Cracking in Composites. Materials Evaluation. 1995, 53(9): 1052~1058.
    42 Gorman M. Plate Waves Produced by Transverse Matrix Cracking. Ultrasonics. 1991, 29(3): 245~251
    43耿荣生.声发射技术发展现状-学会成立20周年回顾.无损检测. 1998, 20(6): 151~154
    44 Baranov V M, Kudryavtsev E M, Sarychev G A. Modelling of the parameters of acoustic emission under sliding friction of solids. Wear. 1997, 202(2): 125-133.
    45 Bharat Bhushan, Fellow, Ieee, Yuanjie Wu A N S T. Sliding contact energy measurement using a calibrated acoustic emission transducer. IEEE TRANSACTIONS ON MAGNETICS. 2003,39(2): 881-887
    46 Juha Miettinen Veli Siekkinen. acoustic emission in monitoring sliding contact behaviour. Wear. 181(1995): 897-900
    47 D. Mba L D H. The transmission of acoustic emission across large-scale turbine rotors. NDT&E International. 2002, 35(2002): 529~539.
    48李淮凌,梁家惠,吴建.大型转动机械碰摩故障分析的声发射检测系统.北京航空航天大学学报. 1998, 24(1): 104-107
    49叶荣学,张艾萍,卞双,李艳秋.利用声发射信号监测汽轮机动静摩擦.现代电力. 1999, 16(2): 16-20
    50张艾萍,叶琳.声发射技术在设备故障诊断中的应用.新技术新工艺. 2000(8): 16-17
    51 L.d. Hall D M. Diagnosis of continuous rotor–stator rubbing in large scale turbine units using acoustic emissions. ultrasonics. 2004, 41: 765-773
    52 Knigge B, Talke F E. Contact force measurement using acoustic emission analysis and system identification methods. Tribology International. 33(2000): 639–646
    53 Jamaludin N, Mba D. Monitoring extremely slow rolling element bearings: part I. NDT & E International. 2002, 35(6): 349-358
    54理华,徐春广,肖定国.小波包原理在滚动轴承声发射检测技术中的应用.轴承. 2002, 7: 24~28
    55谭达明,阎兵,秦萍.利用声发射诊断滑动轴承接触摩擦故障的研究.西南交通大学学报. 2001, 36(3): 272-275
    56李凤英,沈玉娣,熊军.滚动轴承故障的声发射检测技术.无损检测. 2005(11): 583-586
    57 Amal-ghamdi,周贤全.用声发射技术测定轴承缺陷.国外机车车辆工艺. 2006(3): 42-45
    58 Ravi D, Sethuramiah A. Acoustic emission in dynamic compression and its relevance to tribology. Tribology International. 1995, 28(5): 301-306
    59 Roberts T M, Talebzadeh M. Acoustic emission monitoring of fatigue crack propagation. Journal of Constructional Steel Research. 2003, 59: 695–712
    60霍臻,陈翠梅,朱润祥.压力管道声发射泄漏检测.无损检测. 1997, 19(4): 105~107
    61李光海,王勇,刘时风.基于声发射技术的管道泄漏检测系统.自动化仪表. 2002, 23(5): 20~23
    62王潜龙,冯全科,屈展.基于声发射与小波包理论的压力管道泄漏检测.西安交通大学学报. 2003, 35(7): 515-518
    63龚斌,包日东,金志浩,闻邦椿.压力管道泄漏点的新型声发射定位研究.化工机械. 2005, 32(5): 291-293
    64刘国光,程青蟾.声发射技术及其在金属材料领域的应用.上海金属. 2001(11): 35~42
    65 Jayakumar T, Mukhopadhyay C K, Venugopal S, Mannan S L, Raj B. A review of the application of acoustic emission techniques for monitoring forming and grinding processes. Journal of Materials Processing Technology. 2005, 159(1): 48-61
    66 Skare T, Thilderkvist P, Stahl J E. Monitoring of friction processes by the means of acoustic emission measurements--deep drawing of sheet metal. Journal of Materials Processing Technology. 1998, 80-81: 263-272
    67 Houshmand A A, Kannatey-asibu J E, Herrin G D. A dynamic model for tool wear detection using acoustic emission. Mechanical Systems and Signal Processing. 1995, 9(4): 415-428
    68汪江,金锐,陆颂元.大型机组动静碰摩故障振动特征分析与现场处理.汽轮机技术, 2002, 44(1): 45-47
    69夏文静,傅行军.小波变换在转子动静碰摩故障诊断中的应用.汽轮机技术. 2005, 47(3):215-218
    70刘献栋,李其汉.小波变换在转子系统动静件早期碰摩故障诊断中的应用.航空学报. 1999, 20(3): 220-223
    71万方义,华军,许庆余.二维小波变换及其在机械碰摩故障诊断中的应用.机械强度. 2002,24(2):168-171
    72王立平,叶佩青,汪劲松.基于实验的碰摩转子系统故障的双谱特征.振动工程学报. 2002,15(1): 62-67
    73晏砺堂,王德友.航空双转子发动机动静件碰摩振动特征研究.航空动力学报. 1999, 13(2):173~176
    74程军圣,于德介,杨宇. EMD方法在转子局部碰摩故障诊断中的应用,振动、测试与诊断.2004,24(3): 161-164
    75彭志科,何永勇卢青,等.用小波时频分析方法研究发电机碰摩故障特征.中国电机工程学报. 2003, 23(5): 75-79
    76户彩凤.碰摩转子振动特征的研究.东南大学硕士学位论文. 2005: 5-15
    77戈志华,高金吉,王文永.旋转机械动静碰摩机理研究.振动工程学报. 2003, 16(4): 426-429
    78 Hall, L D,Mba, D.Diagnosis of continuous rotor–stator rubbing in large scale turbine units using acoustic emissions. Ultrasonics. 2004, 41(9): 765-773
    79 M. Leahy, D. Mba, P. Cooper. Detecting Shaft-to-Seal Rubbing in Power Generation Turbines With the Acoustic Emission Technology , Journal of Vibration and Acoustics. 2006, 128(12): 798-800
    80邓艾东,高亹,杨建刚.离散分数余弦变换在碰摩声发射信号降噪中的应用.中国电机工程学报. 2008, 28(20): 72-76
    81吴建,梁京惠,李淮童.大型转动机械碰摩故障分析的声发射检测系统.北京航空航天大学学报.1998, 24(1): 104-107
    82何永勇,印欣运,褚福磊.基于小波尺度谱的转子系统碰摩声发射特性.机械工程学报.2007, 43(6): 149-153
    83褚福磊,王庆禹.用声发射技术与小波包分解确定转子系统的碰摩位置.机械工程学报. 2002, 38(3): 139-143
    84印欣运.声发射技术在旋转机械碰摩故障诊断中的应用.清华大学工学硕士学位论文. 2006: 15-20
    85夏文静.基于小波变换的转子系统动静部件碰摩故障诊断技术研究,东南大学硕士学位论文. 2006: 1-5
    86 L D Hall, D. Mba. Diagnosis of continuous rotor–stator rubbing in large scale turbine units using acoustic emissions. Ultrasonics. 2004, 41: 765-773
    87 L D Hall, D. Mba. Acoustic emissions diagnosis of rotor-stator rubs using the KS statistic. Mechanical Systems and Signal Processing. 2004, 18(2004): 849-868
    88 D. Mba. Detection of shaft-seal rubbing in large-scale power generation turbines with acoustic emission; case study. Proc. Inst. Mech. Eng., Part A, 2004, 218(2): 71~82.
    89 Agnieszka Muszynska. Rotordynamics. Marcel Dekker Inc. 2005
    90 Bhushan, B.摩擦学导论.葛世荣译.机械工业出版社, 2007: 56-75
    91 McMillan TC, Talke FE. An investigation of the take-off behavior of proximity recording sliders using acoustic emission and phase demodulated interferometry. Journal of Tribology Transaction of the ASME. 1999, 121(3): 581-586
    92 Diei, E.N., Investigation of the milling process using AE signal analysis. UCBerkeley PhD thesis. 1985: 29-35
    93 B. Knigge,F.E. Talke. Contact force measurement using acoustic emission analysis and system identification methods. Tribol. Int. 2000, 33(7): 639-646
    94 S. Habib, T. Benabdallah. Tribological properties and acoustic emissions of some thermoplastics sliding against SAE52100. Trans. ASME J. Tribol., 2006, 128(7): 96-102
    95孙立瑛,李一博,靳世久.基于小波包和HHT变换的声发射信号分析方法.仪器仪表学报. 2008, 29(8): 1577-1582
    96郝如江,卢文秀,褚福磊.形态滤波在滚动轴承故障声发射信号处理中的应用.清华大学学报(自然科学版). 2008, 48(5): 812-815
    97张颖,陈建萍,陈积懋.模态声发射的噪声剔除技术.航空制造技术. 2002(12): 55~58
    98沈功田,耿荣生,刘时风.声发射信号的参数分析方法.无损检测. 2002, 24(2): 72~77
    99张平,集成化声发射信号处理平台的研究.清华大学博士学位论文. 2002: 5-80
    100耿荣生,刘时风.声发射信号处理和分析技术.无损检测. 2002, 24(1): 23~28
    101 D. L. Donoho. Denoise by soft thresholding. IEEE Tans. On Information Theory. 1995, 41(3): 713~727
    102 D. L. Donoho. Recent Advances in Wavelet Analysis. Academic Press, Inc., 1994: 1-43
    103 Loh CH, et al. Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses.Bulletin of the Seismological Society of America. 2001, 91(5):1339-1357
    104 Vasudevan K, et al. Empirical mode skeletonization of deep crustal seismic. Data Theory and applications. Journal of Geophysical Research-Solid Earth. 2000, 105:7845-7856
    105 Echeverria J. C., et al. Application of empirical mode decomposition to heart rate variability analysis. Medical & Biological Engineering & Computing. 2001, 39:471-479
    106 Kang Huang, Dave Tateh Chang, Thomas Hou. A Bridge Monitoring Method Based on Vibration Characteristics Under a Transient Load. Proceeding of theInternational Symposium of Civil Engineering in the 21 Century, Beijing, China, 2000: 563-565
    107 Yang Jann N., L. Y., System identification of linear structures using Hilbert transform and Empirical Mode Decomposition. Proceedings of the International Modal Analysis Conference, SAN ANTONIO, TX, 2000: 213-219
    108 H. T. Vincent, S. -L. H., Z.Hou, Damage Detection Using Empirical Mode Decomposition Method and a Comparison with Wavelet Analysis. Proc. of the 2nd international workshop on structural health monitoring, STANFORD UNIV, STANFORD, CA, 2000: 891-900
    109 Qiang, G., Xiaojiang, M., Haiyong, Z., The partial wave method for the analysis of non-stationary signals and its use in machine fault diagnosis. Proceedings of the International Symposium on Test and Measurement, SHANGHAI, PEOPLES R CHINA , 2001(2): 1465-1468
    110 M. Baer, U. Kradolfer. An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America. 1987, 77(4): 1437-1445
    111 P. Earle, P. Shearer. Characterization of global seismograms using an automatic picking algorithm. Bulletin of the Seismological Society of America. 1994, 84(2): 366–376
    112 Sleeman, R., and T. van Eck. Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings. Physics of the Earth and Planetary Interiors. 1999, 113(1): 265-275
    113 Leonard, M., and B. L. N. Kennett. Multi-component autoregressive techniques for the analysis of seismograms. Physics of the Earth and Planetary Interiors. 1999, 113(1): 247-263
    114 Leonard, M. Comparison of manual and automatic onset time picking. Bulletin of the Seismological Society of America. 2000, 90(6): 1384-1390
    115 N. Maeda. A method for reading and checking phase times in auto-processing system of seismic wave data. J. Seismol. Soc. Jpn. 1985(38): 365–379.
    116 Saragiotis C H D, Hadjileontiadis L J, Panas S M. PAI-S/K: a robust automatic seismic P-phase arrival identification scheme. IEEE Transactions on Geoscience and Remote Sensing. 2002, 40(6): 1395-1404
    117刘代志,王仁明,李夕海等.基于小波包分解及AR模型的单通道地震波信号初至点检测.地球物理学报. 2005, 48 (5): 1098-1102
    118 Zhang H J, Thurber C, Rowe C. Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings[J]. Bulletin of the Seismological Society of America. 2003, 93(5): 1904-1912
    119 T. Lokajicek, K. Klima. A first arrival identification system of acoustic emission (AE) signals by means of a high-order statistics approach. Measurement Science and Technology. 2006, 17(9): 2461–2466
    120 H. Akaike. Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average process. Annals of the Institute of Statistical Mathematics. 1974, 26 (1): 363–387.
    121 G. Kitagawa, H. Akaike. A procedure for the modeling of non-stationary time series. Annals of the Institute of Statistical Mathematics. 1978, 30 (1): 351-363
    122杨桂通.弹性动力学.铁道出版社, 1987
    123 R.W. Armentrout and D.J. Paquette. Rotordynamic characteristics of flexure-pivot tilting-pad journal bearings. STLE Tribology Trans. 1993, 36(3): 443-451
    124 F. Feng, and F. Chu. Influence of pre-load coefficient of TPJBs on shaft lateral vibration. Tribology International. 2002, 35(1): 65-71
    125 George E. Totten. Handbook of Lubrication and Tribology. London: Taylor & Francis, 2006: 7-39
    126 Hargreaves, D.J. and M. Fillon. Analysis of a tilting pad journal bearing to avoid pad fluttering. Tribology International. 2007, 40(4): p. 607-612.
    127 Yang, S.H., C. Kim, and Y.B. Lee. Experimental study on the characteristics of pad fluttering in a tilting pad journal bearing. Tribology International. 2006, 39(7): 686-694.
    128 Zeidan, F.Y., D.J. Paquette. Application of High Speed and High Performance Fluid Film Bearings in Rotating Machinery. Proceedings of the Twenty Third Turbomachinery Symposium, The Turbomachinery Laboratory, Texas A&M University, College Station, Texas. 1994: 209-235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700