相控阵超声检测系统及其关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声相控阵技术通过对超声阵列换能器中各阵元进行相位控制,获得灵活可控的合成波束。它具有能进行动态聚焦、可进行成像检测、可检测复杂形状物体、能提高检测灵敏度、分辨力和信噪比的多项优点,近年来正成为国际无损检测界的研究热点。本文独创性地设计实现了一个16通道相控阵超声检测实验系统,并在此基础上深入研究了超声相控阵的多项关键技术。
    在概述了超声检测尤其是超声成像检测的发展历史和现状后,本文说明了相控阵超声检测的优越性,继而详细阐述了相控阵超声检测系统中各项关键技术的原理及其实现方法。
    本文详细阐述了作者所独立研制的16通道相控阵超声检测实验系统,包括数字化超声发射/接收波束形成、超声信号的低噪声程控放大、多通道高速高精度数据采集、多通道超声信号高速实时处理、基于PCI总线的高速数据传输等全部电路模块的结构及工作原理,并说明了所编写的底层软件系统的框架。
    本文对超声相控阵系统中各通道发射/接收的相干条件进行了详细的误差分析,阐明了本系统采用的时钟和同步方案,以及改进相控阵时钟精度的方法。对于相位延时这一关键技术,本文着重阐述了以波形激励为基础的数字波形相位延时的原理和实现,经实验达到了很高的发射延时分辨率。对于相控接收延时,本文阐述了一种将延时时钟和采样时钟分离的方案,有效地提高了接收延时分辨率。
    对大容量相控采样数据的及时处理是系统的难点之一。本文研究了基于DSP+FPGA的信号处理体系结构,实现了对超声信号的高速实时处理。FPGA实现的数字滤波算法起到了明显的噪声抑制效果,其速度比软件实现大大提高。本文还研究并实现了FPGA的在系统重构,将它的性能优势充分发挥出来。
    最后本文对所研制的相控阵超声检测系统进行了实验验证。实验表明本系统的相位控制取得了良好的效果,实测聚焦接收信号达到理想值的91%以上。
Ultrasonic phased array technique can help to achieve flexible, controllable synthesized ultrasound beam by exciting each element of an ultrasonic array transducer with independent phase delay. Phased array ultrasonic testing can accomplish dynamic focusing, obtain visual image, inspect component of complex geometry. Also it can improve detection sensitivity, resolution and SNR, so it has recently been highly recognized in NDT research domain. In this thesis, a 16-channel experimental phased array ultrasonic testing system is originally designed and developed, upon which several key technologies are thoroughly studied.
    In this thesis, firstly the history and current situation of ultrasonic testing especially the ultrasonic imaging is outlined. After that the merits of phased array ultrasonic testing are discussed, then the principles and realizations of several key technologies of phased array ultrasonic testing system are explicated in details.
    In the following chapters, a 16-channel experimental phased array ultrasonic testing system is thoroughly explained, including digital beam forming, low noise programmable amplification of received ultrasound signal, multi-channel hi-speed hi-precision data acquisition, hi-speed real-time processing of multi-channel ultrasound signal, and hi-speed data transfer based on PCI bus. In addition, the frame of software system is built.
    As concerning to the interference condition between different transmit/receive channels in the system, a detailed error analysis is given, and the clock and synchronization scheme is explicated. The measure adopted to enhance phase clock's precision is explained. Concerning the key technology of phase delay, the principles and its implementation of digital waveform phase delay based on waveform excitation is explained, which has achieved high transmission phase resolution in experimentation. As to phased array receiving, a scheme of separating the delay clock and sampling clock is explicated, which effectively enhance the phased receiving delay resolution.
    
    
    How to process the large amount of sampling data of ultrasonic phase array system is one of the difficulties in the system. On the basis of the architecture of DSP+FPGA, hi-speed real-time ultrasound signal processing is achieved. Digital filter accomplished in FPGA makes obvious effect on noise suppression, the speed performance is highly improved comparing to software program. In addition, the FPGA's static reconfiguration and real-time reconfiguration are studied and accomplished, which fully exert the performance advantages of reconfigurable computing.
    Finally a set of experimentations are done to verify this phased array ultrasonic testing system. The results show that the phase control effect is satisfactory, and the intensity of focused ultrasound beam can reach above 91% of the ideal value.
引文
[1] 应崇福. 超声学. 北京:科学出版社,1990. 1~3, 136~139
    [2] 冯若主编. 超声手册. 南京:南京大学出版社,1999. 前言,48~53,253~257,354~362
    [3] 钟志民,梅德松. 超声相控阵技术的发展与应用. 无损检测,2002,24(2):69~71
    [4] 张光义. 相控阵雷达的技术特点及关键技术. 电子科技导报,1996,7:2~4
    [5] Von Ramm OT, Smith SW. Beam steering with linear arrays. IEEE Transactions on Biomedical Engineering, 1983, 30(8): 438~452.
    [6] Don E. Bray. Historical review of Technology Development in NDE. In: Proceedings of 15th World Conference on NDT[CD]. Rome, Italy: 2000.
    [7] Lafontaine Guy. Potential of ultrasonic phased arrays for faster, better and cheaper inspections. The e-Journal of Nondesdructive Testing, www.ndt.net, 2000, 5(10)
    [8] Abittan Elie. Inspection of thermal barriers of primary pumps with phased array probe and piezocomposite technology. The e-Journal of Nondesdructive Testing, www.ndt.net, 2000, 5(7)
    [9] Stepinski T. Ultrasonic inspection of copper cainisters using phased arrays. The e-Journal of Nondesdructive Testing, www.ndt.net, 1998, 3(3)
    [10] Moles MDC. Pipe WIZARD PA mechanized inspection of girth welds using ultrasonic phased arrays. In: International Conference on Advances in Welding Technology' 99. Texas, Galveston: 1999.
    [11] Guillaume Ithurralde, Didier Simonet, Jean-Pierre Choffy, Laurent Bernard. NDT Approach and multi-sensors tools for the Inspection of aeronautic welds. In: Proceedings of 15th World Conference on NDT[CD]. Rome, Italy: 2000.
    [12] Didier Cassereau, Mathias Fink. The phased array technology - application to time-reversal in acoustics. 2000 IEEE: 461~464
    [13] Lawrence Azar. Experimental characterization of ultrasonic phased arrays for the nondestructive evaluation of concrete structures. Materials Evaluation, 1999, 57(2): 134~135
    [14] A. Erhard, G. Schenk, W. M?hrle, H.-J. Montag. Ultrasonic Phased Array technique for Austenitic Weld Inspection. In: Proceedings of 15th World Conference on NDT[CD]. Rome, Italy: 2000.
    
    
    [15] Langlois Jocelyn. Use of flexible ultrasonic arrays in inspection. The e-Journal of Nondesdructive Testing, www.ndt.net, 1999, 4(3)
    [16] Lasser Marvin. Real time, large area ultrasound imaging systems using two dimensional array technique. The e-Journal of Nondesdructive Testing, www.ndt.net, 1998, 3(3)
    [17] Lamarre Andre. Dynamic focusing of phased arrays for nondesdructive testing characterization and application. The e-Journal of Nondesdructive Testing, www.ndt.net, 1999, 4(9)
    [18] Deutsch WAK. Self-focusing of Rayleigh waves. Review of progress in QNDE. Thompson DO, Chimenti DA, eds. New York: Plenum Press, 1998.
    [19] Deutsch WAK. Defect detection with Rayleigh and Lamb waves generated by a Self-focusing phased array. The e-Journal of Nondesdructive Testing, www.ndt.net, 1998, 3(12)
    [20] J?rgen Arendt Jensen, Ole Holm, Lars Joost Jensen, et al. Experimental ultrasound system for real-time synthetic imaging. In: Proceedings of 1999 IEEE Ultrasonics Symposium, 1999. 1595~1599
    [21] 周琦,刘方军,李志军,等. 超声相控阵成像技术与应用. 兵器材料科学与工程,2002,25(3):34~37
    [22] 李衍,李华. 用超声波相控阵探伤法测评表面开口缺陷. 无损探伤,2001,6:6~11
    [23] 张德俊. 声成像的研究进展及应用前景. 科技导报,1994,9:15~18
    [24] 伍于添. 九十年代的超声诊断技术. 中国超声医学杂志,1994,10(8):1~2
    [25] 伍于添. 超声诊断仪发展特点. 中国超声医学杂志,1995,11(4):257~258
    [26] 伍于添. 目前超声诊断系统的重要技术. 中国超声医学杂志. 2000,16(3):191~193
    [27] 翟亮,孙福成,蒋继伟,等. 超声热疗技术的发展与应用. 中国医疗器械杂志,2002,26(4):281~283
    [28] 孔凡斌,伍烽,王智彪. 肿瘤热疗与高强度聚焦超声治疗肿瘤. 临床超声医学杂志. 2001,3(2):101~103
    [29] 鲍苏苏,王鸿樟. 高强度相控聚焦超声肿瘤热疗仪与高精度相控实现. 中国超声医学杂志,1997,13(5):7~9
    [30] Erwin W. S. Vital Measurements of Aircraft Parts Made by Supersonic Measurement. Steel, 16(10): 131~192
    
    
    [31] Firestone F. A., J. R. Frederick. Refinements in Supersonic Reflectoscopy. Polarized Sound. The Journal of the Acoustical Society of America, 18(1): 200-211
    [32] Ditchburn R J, Burke S K, Scala C M. Acoustic and ultrasonic measurement of metals. NDT & E, 1994, 27(2): 120~125
    [33] Lee H, Wade G. Modern Acoustic Imaging. New York: IEEE Press, 1986. 232~234
    [34] 张俊哲. 超声成像检测技术评述. 无损探伤. 1994,2:1~5
    [35] 余薇,等. 医学超声成像技术方法学进展. 北京生物医学工程. 2001,20(3):225~228
    [36] 庞勇,等. 超声成像方法综述. 华北工学院测试技术学报. 2001,15(4):280~283
    [37] 潘士先. 从X射线CT到超声衍射CT. 应用声学,1987,6(2):23~27
    [38] A. Briggs. Acoustic Microscopy. Clarendon Press, Oxford, 1992
    [39] R.A. Lemons, C. F. Quate. Acoustic microscope-scanning version. Appl. Phys. Lett. 24: 163~165
    [40] 陈戈林,任文革,郭艳林. 声学显微镜及在无损检测中的应用. 航空精密制造技术,1995,31(1):7~10
    [41] 沈建中. 超声成像技术及其在无损检测中的应用. 无损检测,1994,234~238
    [42] 孙宝申,沈建中. 合成孔径聚焦超声成像(一). 应用声学,1993,12(6):11~16
    [43] No?l Dubé, Michael Moles, Malcolm Russell, Ed Ginzel. Mechanized Inspection of Girth Welds using Ultrasonic Phased Arrays. In: Proceedings of 15th World Conference on NDT[CD]. Rome, Italy: 2000.
    [44] André Lamarre , Michael Moles. Ultrasound Phased Array Inspection Technology for the Evaluation of Friction Stir Welds. In: Proceedings of 15th World Conference on NDT[CD]. Rome, Italy: 2000.
    [45] Petru Ciorau, Doug MacGillivray, Trek Hazelton, et al. In-situ examination of ABB l-0 blade roots and rotor steeple of low-pressure steam turbine, using phased array technology. In: Proceedings of 15th World Conference on NDT[CD]. Rome, Italy: 2000.
    [46] S. Mahaut, O. Roy, S. Chatillon. Adaptive Inspection of Component of Complex Geometry with a Flexible Phased Array Probe. In: Proceedings of 15th World Conference on NDT[CD]. Rome, Italy: 2000.
    [47] S. Mahaut, O. Roy, M. Serre. An adaptive system for advanced NDT application using phased arrays. Ultrasonics, 1998, 36: 127~131
    Jér?me Poguet, Petru Ciorau, Gérard Fleury. Special linear phased array probes used for ultrasonic examination of complex turbine components. In: Proceedings of 15th World
    
    [48] Conference on NDT[CD]. Rome, Italy: 2000.
    [49] H. Wüstenberg, A. Erhard, G. Schenk . Scanning Modes at the Application of Ultrasonic Phased Array Inspection Systems. In: Proceedings of 15th World Conference on NDT[CD]. Rome, Italy: 2000.
    [50] 冯若主编. 超声诊断设备原理与设计. 北京:中国医药科技出版社,1993. 40~42,253~265,357~378
    [51] Paul A. Meyer, J.W. Anderson. Ultrasonic Testing Using Phased Arrays. In: Proceedings of 15th World Conference on NDT[CD]. Rome, Italy: 2000.
    [52] L. Azar, Y. Shi, S.-C. Wooh. Beam focusing behavior of linear phased arrays. NDT&E International, 2000, 33: 189~198
    [53] Shi-Chang Wooh, Yijun Shi. Optimum beam steering of linear phased arrays. Wave Motion, 1999, 29: 245~265
    [54] Y. Lin, J. M. Dodson, J. D. Hamilton, et al. Theory and Experiment for the Design of Piezoelectric Element for Phased Arrays. In: Proceedings of 1997 IEEE Ultrasonics Symposium, 1997. 1697~1700
    [55] Sung-Jin Song, Hyeon Jae Shin, You Hyun Jang. Calculations of Radiation Field of Phased Array Transducers Using Boundary Diffraction Wave Model. In: Proceedings of 15th World Conference on NDT[CD]. Rome, Italy: 2000.
    [56] Kenneth B. Ocheltree, Leon A. Frizzell. Sound field calculation for rectangular sources. IEEE Trans. on UFFC, 1989, 36(2): 242~248
    [57] 霍彦明,李国伟,陈亚珠. 超声阵列换能器设计及计算机声场模拟. 声学技术,1999,18(4):168~172
    [58] H.H.J. Huynen, F.H. Dijkstra, T. Bouma, H. Wüstenberg. Advances in Ultrasonic transducer Development. In: Proceedings of 15th World Conference on NDT[CD]. Rome, Italy: 2000.
    [59] B BISIAUX. Ultrasonic Inspection technique using multi-element probes (phased array): application to tube inspection. In: Proceedings of 15th World Conference on NDT[CD]. Rome, Italy: 2000.
    [60] 王威琪,徐智章等. 医学超声工程现状和生物医学超声概况. 声学技术,1994,13(1):27~35
    [61] 王威琪,余建国. 近期的医学超声研究(续). 声学技术,1996,15(3):141~145
    [62] Peter C. Eccardt, Kurt Niederer. Micromachined ultrasound transducers with improved coupling factors from a CMOS compatible process. Ultrasonics, 2000, 38: 737~749
    
    
    [63] ?. Oralkan, X. C. Jin, K Kaviani, et al. Intial Pulse-Echo Imaging Results with One-Dimensional Capacitive Micromachined Ultrasonic Transducer Arrays. In: Proceedings of 2000 IEEE Ultrasonics Symposium, 2000. 959~962
    [64] Peterson D K, Kino GS. Real-time digital image reconstruction: A descriptive of imaging hardware and analysis of quantitative errors. IEEE Trans. on Ultrasonics, 1984, 31: 337
    [65] 高上凯,程克正,宋松. 医学超声诊断设备中的若干新技术. 现代科学仪器,1995,1:11~13
    [66] 张舜臣. 全数字化超声成像系统. 医疗设备信息,1996,3:23~25
    [67] 何正权,邹平. 数字化超声成像设备中的几项关键技术. 中国超声医学杂志,1995,11(3):211~212
    [68] Kim J H, Song T K, Park S B. Pipeline sampled delay focusing in ultrasound imaging systems. Ultrasonic Imaging, 1987, 9:75~91
    [69] Quzai A. H. An overview on time delay estimation in active and passive systems for target localizations. In: Proc. of IEEE, 70(8): 527~533
    [70] 马远良,赵俊渭,张全. 用FIR数字滤波器实现高精度时延的一种新方法. 声学学报,1994,20(2):121~126
    [71] J. 西拉德. 超声检测新技术. 北京:科学出版社,1991. 572~575
    [72] 范百刚. 超声原理与应用. 江苏科学技术出版社,1985. 309~316
    [73] 林茂庸,柯有安. 雷达信号理论. 北京:国防工业出版社,1984.123~126
    [74] Matthew O'Donnell. Coded Excitation System for Improving the Penetration of Real-Time Phased-Array Imaging Systems. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992. 39(3): 341~350
    [75] Pai-Chi Li, et al. A new filter design technique for coded excitation systems. IEEE Trans. on UFFC, 1992, 39:693
    [76] 王威琪. 国外医学—生物医学工程分册,1989,12(2):96
    [77] 费保蔚,庄天戈,卞正中,程敬之. 随机调相连续信号的模糊函数特性及在医学超声成像上的应用前景探讨. 声学技术,1997,16(2):80~82
    [78] 何正权,谭欧. 数字多声束形成技术. 电子科技大学学报,1996,25(Z2):230~234
    [79] 何正权,刘志宏,袁勤. 数字多声束形成技术的研究及意义. 中国超声医学杂志,1997,13(8):14~16
    [80] 邹平. 数字多声束形成技术的研究:[硕士论文]. 成都:电子科技大学,1991
    张春晓,等. 一种用于相控阵B超成像的数字波束合成器的设计. 声学技术. 1994,13
    
    [81] (2):62~67
    [82] 黄宇星,等. 相控阵扇扫诊断仪中提高帧频的新方法. 声学技术. 1994,13(3):97~101
    [83] 杜慧洁,卞正中. 相控阵超声波束时空特性模糊控制方法的研究. 北京生物医学工程. 1997,16(1):18~22
    [84] M. O'Donnell, W. E. Engeler, J. T. Pedicone, et al. Real-Time Phased Array Imaging Using Digital Beam Forming and Autonomous Channel Control. In: Proceedings of 1990 IEEE Ultrasonics Symposium, 1990. 1499~1502
    [85] Mustafa Karaman, Abdullah Atalar, Hayrettin K?ymen. VLSI Circuits for Adaptive Digital Beamforming in Ultrasound Imaging. In: Proceedings of 1993 IEEE Ultrasonics Symposium, 1993. 711~720
    [86] Kai E. Thomenius. Evolution of Ultrasound Beamformers. In: Proceedings of 1996 IEEE Ultrasonics Symposium, 1996. 1615~1620
    [87] 刘宝琴. Altera可编程逻辑器件及其应用. 北京:清华大学出版社,1995. 121~282
    [88] ALTERA Inc. ACEX 1K Programmable Logic Device Datasheet. 2001.
    [89] Analog Devices Inc. ADSP-21065L SHARC User's Manual. 1998.
    [90] 苏涛,吴顺君,廖晓群. 高性能数字信号处理器与与高速实时信号处理. 西安:西安电子科技大学出版社,2000. 46~193
    [91] 李贵山,戚德虎. PCI局部总线开发者指南. 西安:西安电子科技大学出版社,1997. 5~9
    [92] PLX Technology Inc. PCI 9052 Data Book. 2000. 1~16
    [93] KRFTech Ltd. WINDRIVER V4 Developer's Guide. 2000. 1~189
    [94] 黄维通. Visual C++面向对象与可视化程序设计. 北京:清华大学出版社,2000. 1~260
    [95] 黄海鹰,黄华. 可重构计算机. 微处理机,1999,2:39~40
    [96] 贾英江,高欣宝. 可重构计算机简介. 计算机应用研究,1999,5:4~9
    [97] 姜军,胡建栋. 新兴的计算结构:可再配置计算. 电子产品世界,2000,8:28~29
    [98] 常青,孙广富等. 基于XC6200的可重构处理器设计. 信号处理,2001,17(5):454~459
    [99] 佟冻,胡铭曾. 基于FPID的动态可重构的多级互联网络. 哈尔滨工业大学学报,2001,33(1):82~84
    [100] 罗金平,陈书明等. 光互连计算机体系结构现状与发展. 电子技术应用,1998,24(4):4~8
    卢纯,石秉学. 采用遗传算法的一种可重构ANN的电路设计. 半导体学报,2001,
    
    [101] 22(5):664~668
    [102] 汪光森,伍行键等. 基于FPGA的神经网络的硬件实现. 电子技术应用,1999,25(12):23~25
    [103] 赵曙光,杨万海. 基于函数级FPGA原型的硬件内部进化. 计算机学报,2002,25(6):666~669
    [104] 康立山等. 用函数型可编程器件实现演化硬件. 计算机学报,1999,22(7):781~784
    [105] 王庆春. 利用可演化硬件实现学习和ATM单元调度. 武汉化工学院学报,1998,20(1):52~56
    [106] 郑君理,杨为理等. 信号与系统(下). 北京:高等教育出版社,1981. 129~141
    [107] 楼顺天,李博菡. 基于MATLAB的系统分析与设计—信号处理. 西安:西安电子科技大学出版社,1998. 25~88
    [108] 黄文梅等. 信号分析与处理—MATLAB语言及应用. 长沙:国防科技大学出版社,2000. 146~153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700