板/壳—腔结构声振耦合分析及减振降噪优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构噪声的研究与控制是学术界,工程界普遍关心的问题,结构与声腔耦合后的声振耦合特性及其声辐射特性的研究尤其受到重视。本文首先通过结构动力学方程建立弹性板-壳-声腔结构的耦合模型,并应用此模型分析一端固定一端封闭的弹性板-圆柱壳封闭结构的声振耦合特性,验证了模型的正确性。通过板-腔模型进一步利用模态叠加法分析板-腔结构的双边耦合特性;而后又针对多通域情况,利用Trefftz有限元方法以及无网格方法进行分析;减振降噪方面,根据分析目标的不同,本文分别采用了有源力控制以及阻尼减振降噪两种方法,并给出了适合工程上复杂结构的阻尼层近似拓扑优化方法。
     本文的工作主要包括以下几部分:
     第一章:综述了声振耦合以及噪声控制技术的分析方法以及研究现状,论述了目前应用于声学领域的主要研究方法,包括解析方法,数值方法,统计能量方法等。同时介绍了目前应用于噪声控制领域的方式有源噪声控制方法与无源噪声控制方法。并概述了目前声振耦合领域以及减振降噪方面的研究现状,最后给出了本论文的主要研究内容。
     第二章:根据板壳原理,在弹性板与弹性壳之间施加假想的弹簧系统模拟不同的边界条件,同时考虑弹性板的面内振动,推导弹性板-壳-声腔的封闭系统的耦合方程,通过求解耦合方程探讨弹性板-圆柱壳-声腔结构的耦合特性。该模型同时考虑了弹性板与圆柱壳之间以及弹性板-圆柱壳与内声场之间的耦合,算例表明,弹性板-声腔结构的耦合具有明显的板控模态以及声控模态。
     第三章:利用模态叠加方法,探讨双边耦合问题。分别研究了弹性板-声腔-弹性板双边耦合情况,以及声腔-弹性板-声腔双边耦合情况,得到耦合结构的声传递公式,在实际工程中经常会遇到双层板,或者带有隔板的腔体结构,这其实就是双边耦合问题,通过模态分析的方法得到声振耦合后声压的传递特性,为进行此类结构的声振耦合分析以及减振降噪提供理论依据。
     第四章:分别利用Trefftz有限元方法和无网格方法分析多通域封闭声场的声响应情况,给出Trefftz单元位移插值,以及等效节点载荷,并给出带有孔洞的多通域Trefftz完整解系,求解内部带有孔洞的多通域封闭声腔的声响应。对于不规则的多通域,由于较难得到Trefftz完整解系,本章基于核重构的最小二乘法给出亥姆霍兹方程的最小二乘配点格式,分别计算一维以及二维多通域封闭声腔的声响应,将典型算例与解析解比较验证其准确性以及稳定性。
     第五章:根据点源组合原则推导出弹性板以及圆柱壳振动所产生的声辐射在外场点的声压级公式,分析当外力单独作用于弹性板或者圆柱壳时外场点的声压级。研究表明,对外场点声压级起决定作用的是受到外载荷作用的弹性结构振动。分析外场点声压级计算公式,利用外载荷的模态力,可以方便的得到有源力控制的幅值。应用有源力控制的方式进行减振降噪简便易行。
     第六章:应用拉氏变换对阻尼弹性板以及封闭声腔的有限元耦合模型进行求解,分析耦合结构的声振灵敏度。通过对结构以及声腔分别进行有限元描述,得到结构-声腔耦合结构的耦合方程。通过抑制影响声腔内指定点声压较大的板上特定节点位移的方法降低指定点声压。经matlab编程利用约束阻尼层板动力学性能的变密度优化方法对阻尼材料敷设位置予以优化,同时引入Sigmund提出的过滤公式有效的抑制了棋盘格现象,得到了约束阻尼层的最优拓扑构形。经验证敷贴约束阻尼层后约束点位置的声压明显减低,与均匀敷贴阻尼相比大大提高了阻尼材料的利用率。
     第七章:基于能量思想建立阻尼层的快速拓扑优化方法,也就是在耗能最多的位置粘贴阻尼材料,只需要计算一次特征值问题就可以得到近似的阻尼层最优分布。利用商业有限元软件得到工程结构的有限元模型,编写matlab程序,读出结构节点信息以及刚度和质量矩阵。根据声传递向量找到影响场点声压的主要模态,对其进行控制可以有效的起到减振降噪的作用,同时利用过滤公式有效的抑制了棋盘格现象。本章方法简便易用工程应用,并适用于复杂曲板或者板-壳的组合结构。
     第八章:对本文的工作予以总结,并对需要解决的问题进行探讨与展望。
Structure-borne noise control is a common academic and engineering concern. Structure-acoustic coupling characteristics and the sound radiation characteristics are given particular attention. Above all, analytical model was established through structural dynamic equation of elastic plate-shell-cavity coupling structure, and then structure-acoustic coupling characteristics were analyzed. Based on this model, bilateral -coupling between plate and cavity was further studied. Considering multi-domain, Trefftz finite method and meshless method were utilized. About vibration and noise reduction, active force controlling method and damping control method were given. Especially to complex structure, an approximation method of topological optimization was given, which was simple and suitable for engineering applications.
     Better understand the structure-acoustic coupling theory,and realize optimal designing during the period of product design. This work includes the following sections:
     Chapter I: Summary of the research on structural-acoustic coupling and noise control technology, discusses the current main research methods applied to this field, which include analytical methods, numerical methods, statistical energy methods, and so on. The current method used in the field of noise control --Active noise control method and passive noise control methods were introduced. An overview of the current field of acoustic coupling, vibration and noise reduction status were also illustrated. Finally, main contents of this paper were given.
     Chapter II: According to the plate and shell theory, analytical method was used to derivate the coupling equation of the plate-shell-cavity structure. Spring system was exerted to simulate different hypothetical boundary conditions. Took into account the in-plane vibration and considered both the coupling between plate and shell and the coupling between structure and acoustics, a model was established. Examples show that the elastic plate- cavity coupling structure has clear structure-control modes and cavity-control modes.
     Chapter III: Using the mode superposition method to discuss bilateral coupling between plate and cavity. The structure-acoustic coupling of plate-cavity-plate and cavity-plate-cavity was discussed. Acoustic transfer characteristics were obtained through modal analysis. In the real engineering project the two-layer board, or the chamber board structure which is in fact bilateral coupling system are usual. Bilateral coupling analysis provides a theoretical basis for vibration and noise reduction of this type of structure.
     Chapter IV: About multi-domain problems, the key is to solve Helmholtz equation. Trefftz quadrilateral element of eight nodes formula is derived. Trefftz complete solution to Helmholtz equation within a multi-domain was derived. However considering more complex multi-domain, meshless method was more beneficial. In this paper, approximated functions were constructed based on the principle of reproducing kernel particle method and least-square collocation method. A least-square collocation formulation based on kernel reproducing particle method was established for solving multi-domain acoustic response. To verify the proposed method, several numerical examples of one and two-dimensional problems were analyzed. Examples show the results have good accuracy and convergence.
     Chapter V: According to the principle of point sources combination, sound radiation generated by the cylindrical shell and plate are derived. Sound pressure level (SPL) was analysised. Results show the elastic structure force impact on directly is the role to SPL. Based on the SPL formulation, modal force can be calculated, and then amplitude of the active force can be got easily. Application of active force control approach to vibration and noise reduction is feasible.
     Chapter VI: Laplace transform was utilized to solve the coupled equation of plate and acoustic cavity and analysis sensitivity of the vibro-acoustic system. Research on vibro-acoustic coupling system includes not only computation of the coupling frequencies, coupling modes and also sensitivities of the coupling system to design variables. Reducing displacement amplitude of the specified nodes on the plate is on the target of depressing sound pressure of the measured point. The sensitivity of the displacement amplitude with respect to size and shape design parameters for the coupled system is derived. The distribution of the damping material on the plate was then optimized by penalized density topology optimization theory. Filter method raised by Sigmund was developed to suppress the numerical instabilities such as checkerboards. Numerical example is given to show the validity and efficiency of the sensitivity analysis and design optimization method.
     Chapter VII: Commercial finite element software was used to obtain the finite element model of complex engineering structures. Nodes information, stiffness and mass matrix were read out by matlab program. Acoustic transfer vector was utilized to find the main modes which affect the sound pressure most. Fast damping layer topology optimization method was established on the base of energy-consuming. Only one eigenvalue calculating can approximate the optimal distribution of the damping layer. At the same time filter formula used effectively inhibit the checkerboard phenomenon. The approximation topology optimization method is simple and suitable for complex engineering applications.
     Chapter VIII: summarized the whole work and addressed some problems and prospects.
引文
[1]何祚镛,赵玉芳,声学理论基础[M],北京:国防工业出版社,1981.
    [2]何祚镛,结构振动与声辐射[M],哈尔滨:哈尔滨工程大学出版社,2001.
    [3]陈克安,有源噪声控制[M],北京:国防工业出版社,2003.
    [4] B.Laulagnet,J.L.Guyader. Modal analysis of a shell acoustic radiation in light and heavy fluids[J]. Journal of Sound and Vibration,1989,131(3):397-415.
    [5] M.C.Junger,D.Feit. Sound. Structure and their Interaction [M]. Cambridge, MA:M.I.T.press,1986,151-176.
    [6]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [7]何琳,朱海潮,邱小军,杜功焕.声学理论与工程应用[M].北京:科学出版社,2006.
    [8] A.J.Pretlove. Free vibrations of a rectangular panel backed by a closed rectangular cavity [J]. Journal of Sound and Vibration, 1965, 2(1):197~209.
    [9] E.H.Dowell, H.M.Voss. The effect of cavity on panel vibration [J]. Journal of American Institute of Aeronautics and Astronautics, 1963, 1(2): 476~487.
    [10] Y. Kubota, H.D.Dionne, E.H.Dowell. Asymptotic modal analysis and statistical energy analysis of an acoustic cavity [J]. Journal of the Acoustical Society of America, 1988, 110:371~376.
    [11] Y. Kubota, E.H.Dowell. Asymptotic modal analysis for sound fields of a reverberant chamber [J]. Journal of the Acoustical Society of America, 1992, 30:1191~1198.
    [12] E.Anyunzoghe, L.Cheng. A combined integral-modal approach with pressure distribution assessment and the use of overlapped cavities [J]. Applied Acoustics, 2002, 63:1233~1255.
    [13] Y.Y.Kim, J.H.Kand. Free vibration analysis of membranes using waveguide-type base funcitons [J]. Journal of the Acoustical Society of Americal, 1996, 99:2938~2946.
    [14] Y.Y.Kim, D.K.Kim. Applications of waveguide-type base functions for the eigenproblems of two-dimensional cavities [J]. Journal of the Acoustical Society of Americal, 1999, 106:1704~1711.
    [15] R.H.Lyon, G.Maidank. Power flow between linearly coupled oscillators [J]. Journal of the Acoustical Society of America, 1962, 34(6):1265-1269.
    [16] S.H.Sung, D.J. Nefske. Component modes synthesis of a vehicle structure-acoustic system mode [J]. Journal of American Institute of Aeronautics and Astronautics, 1986, 24(6):1021-1026.
    [17] E.H.Dowell,G.F.Gorman,D.A.Smith. Acoustic elasticity:general theory,acoustic natural modesand force response to sinusoidal excitation including comparisons with experiment [J]. Journal of Sound and Vibration, 1977,52(4):519-542.
    [18] G. Maidanik. Response of ribbed panel’s reverberant acoustic field [J]. Journal of the Acoustical Society of America, 1962, 54(6):809-826.
    [19] B.F.Willis,C.B.Burroughs. Vibration power transmission coefficients for the coupling of circular cylindrical shells to flat plates [J]. Journal of the Acoustical Society of America,2000,107:2883-2898.
    [20]姚徳源,王其政.统计能量分析原理及其应用[M].北京:北京理工大学出版社,1995,1~120.
    [21]廖庆斌,李舜酩.统计能量分析的响应统计估计及其研究进展[J].力学进展,2007,37(3):337~345.
    [22] R.R.Smith, J.T.Hunt, D.Barach. Finite element analysis of acoustically radiationg structures with application ot sonar transducers [J]. Journal of the Acoustical Society of America,1974,55:1277-1288.
    [23] A.Craggs. The use of simple three-dimensional acoustic finite element for determining the natural modes and frequencies of complex shaped enclosure [J]. Journal of Sound and Vibration, 1972,23:331~339.
    [24] G.C.Everstine. Finite element formulations of structure acoustics problems [J]. Computers & Structures, 1997, 65(3):307-321.
    [25] S.W. Wu, S.H.Lian, L.H.Hsu. A finite element model for acoustic radiation [J]. Journal of Sound and Vibration, 1998, 68(3):823-826.
    [26] R.J.Astley. Wave envelops and infinite element scheme for acoustical radiation [J]. Numerical Methods in Engineering, 1983.(3):507~526
    [27] R.J.Astley, G.J.Macaulay, J.P.Coyette. Mapped wave envelop elements for acoustic radiation and scattering [J]. Journal of Sound and Vibration. 1994,(170):97~118
    [28] R.J.Astley, G.J.Macaulay, J.P.Coyette. Three-dimensional wave-envelope elements of variable order for acoustic radiation and scattering. Part I. Formulation in the frequency domain [J]. Journal of Acoustical Society of America. 1998, 103(1):49~63.
    [29]严更,丁方明,边界单元法基础[M],重庆:重庆大学出版社. 1986.1-99.
    [30] L.H.Chen, D.G.Schwekert. Sound radiation from an arbitrary body [J]. Journal of Acoustical Society of America. 1963,35:1626-1632.
    [31] R.P.Daddazio, M.M.Etouney. Boundary element method in probabilistic acoustic radiation problems [J]. Transactions of the ASME: Journal of vibration and Acoustic,1990,112:556~560
    [32] F.Ursell. On the exterior problems of acoustics[C]. Proc. Cambridge Philos. Soc., 1973,74:117-125.
    [33]赵键,汪鸿振,朱物华.边界元法计算已知振速封闭面的声辐射[J].声学学报,1994,19(1):22~31.
    [34] S.Suzuki. Boundary element analysis of cavity noise problems with complicated boundary condition [J]. Journal of Sound and Vibration, 1989,130(1):79~91
    [35]黎胜,赵德有.流体加载下加筋板结构的声辐射特性[J].应用声学,2000,19(6):28~32.
    [36] R.D.Ciskowski, C. A. Brebbia. Boundary Element Methods in Acoustics [M]. CMP, 1991, 79~91.
    [37] K.G.Bryee, J.S.Bolton, T.R.Satha, V.Nickolas. Radiation efficiency calculatons for verification of boundary element acoustic codes [J]. Noise Control Engineering Journal, 1996,44(5):215~223
    [38] Trefftz E.Ein Gegenstück zum Ritz’schen Verfahren. Proceedings of the Second International Congress on Applied Mechanics. Zurich, Switzerland,1926.131~137.
    [39] J.Jirousek, N.Leon. A powerful finite element for plate bending [J]. Computer Methods in Applied Mechanics and Engineering, 1977, 12(1):77~96.
    [40]秦庆华. Hybrid-Trefftz有限元的研究进展[J].力学进展,1998,28(1):71~82.
    [41] I.Herrera. General variational principles applicable to the hybrid element method [C]. In: Proceedings of the National Academy of Sciences of the U.S.A, 1977.2595~2597.
    [42] Qing-Hua Qin. Trefftz Finite Element Method and Its Applications [J]. Transactions of the ASME, Vol. 58, SEPTEMBER 2005:316~337
    [43] K.Y.Sze, Y.K.Cheung. A hybrid-Trefftz finite element model for Helmholtz problem [J]. Communications in Numerical Methods in Engineering, 2008; 24:2047–2060.
    [44]范成高,陈南,张肃.基于改进Trefftz解析法的封闭空腔噪声有源控制[J].动力学与控制学报,2006,4(4):380~384.
    [45] W.Desmet. A wave based prediction technique for coupled vibro-acoustic analysis [D]. Leuven: Katholieke University Leuven, Department of Mechanical Engineering, 1998.
    [46] B. Pluymers et al. Application of an efficient wave based prediction technique for the analysis of vibro-acoustic radiation problems [J]. Journal of Computational and Applied Mathematics, 2004, 168: 353~364.
    [47] W.Desmet, B.Van Hal, P.Sas, et al. A computationally efficient prediction technique for the steady-state dynamic analysis of coupled vibro-acoustic systems [J]. Advances in Engineering Software, 2002, 33:527-540.
    [48] R.A.Gingold, J.J.Moraghan. Smoothed particle hydrodynamics: theory and applications to non-spherical stars [J]. Mon Not Roy Astrou Soc, 1977, 181:375-389.
    [49] I. Herrera, R.E.Ewing, M.A.Celia, et al. Eulerian-Lagrangian localized adjoint method: The theoretical framework [J]. Numerical Methods for Partial Differential Equations, 1993, 9(4):431~457.
    [50] W.K.Liu, S.Jun, Y.F.Zhang. Reproducing kernel particle methods [J]. International Journal of Numerical Methods Fluids, 1995, 20:1081-1106.
    [51] Wing Kam Liu, Weimin Han, et al. Reproducing Kernel Element Method Part I: Theoretical Formulation [J]. Computer Methods in Applied Mechanics and Engineering. 2004,193:933-951.
    [52] T.Belytschko, YY.Lu, L.Gu. Element free Galerkin methods [J]. International Journal of Numerical Methods in Engineering, 1994, 37:229~256.
    [53] C.A.Duarte, J.T.Oden. Hp Clouds: A H-p meshless method [J]. Numerical Methods for Partical Differential Equations, 1996, 12:673~705.
    [54] J. M. Melenk, I. Babuska. The partition of unity finite element methods: basic theory and application [J]. Compute Method in Applied Mechanics and Engineering. 1996,139:263-288.
    [55] S.N.Atluri., T.Zhu. A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics [J]. Compute Method in Applied Mechanics and Engineering. 1998, 22:117~127.
    [56] E.Onate, S.Idelsohn, O.C.Zienkiewicz, et al. A finite point method in computational mechanics: applications to convective transport and fluid flow [J]. International Journal of Numerical Methods in Engineering. 1996, 39:3839~3866.
    [57] W.K.Liu et al. Advances in Multiple Scale Kernel Particle Methods [J]. Computational Mechanics. 1996, 18(2).
    [58] N.R.Aluru. A point collocation method based on reproducing kernek approximations [J]. International Journal for Numerical Methods in Engineering. 2000,47:1083-1121.
    [59] S.M.Kim., M.J.Brennan. A compact matrix formulation using the impedance and mobility approach for the analysis of structural acoustic systems [J]. Journal of Sound and Vibration, 1999, 223(1):97~113.
    [60]靳国永,杨铁军,刘志刚,李玩幽.弹性板结构封闭声腔的结构-声耦合特性分析[J].声学学报,2007,32(2):178~188.
    [61] C.R.Fuller, F.J.Fahy. Characteristics of wave propagation and energy distribution in cylindrical elastic shells filled with fluid [J]. Journal of Sound and Vibration, 1982, 81:501~518.
    [62] C.R.Fuller. Analytical model for investigation of interior noise characteristics in aircraft with multiple propellers including synchrophasing [J]. Journal of Sound and Vibration, 1986, 109:141~156.
    [63] L.D.Pope, D.C.Rennison, C.M.Wills et al. Development and validation of preliminary analyticalmodels for aircraft interior noise prediction [J]. Journal of Sound and Vibration, 1982, 82:541~575.
    [64] Jie Pan, C.H.Hansen, D.A.Bies. Active control of noise transmission through a panel into a cavity: I. Analytical study [J]. Acoustical Society of America, 1990, 87(5):2098~2108.
    [65] Jie Pan, C.H.Hansen, D.A.Bies. Active control of noise transmission through a panel into a cavity: II. Experimental study [J]. Acoustical Society of America.
    [66]毛崎波,姜哲.对声辐射模态的讨论[J].振动工程学报,2000,13(4):633~637.
    [67]姜哲.声辐射问题中的模态分析:Ⅰ理论[J].声学学报,2004,29(4):373~378.
    [68]姜哲.声辐射问题中的模态分析:Ⅱ实例[J].声学学报,2004,29(6):507~515.
    [69]姜哲.声辐射问题中的模态分析:Ⅲ声场重构[J].声学学报,2005,30(3):242~248.
    [70]李双,陈克安.结构振动模态和声辐射模态之间的对应关系及其应用[J].声学学报,2007,32(2):171~177.
    [71]姚昊萍,张建润,陈南,孙庆鸿.弹性长方体结构封闭声腔声辐射建模与分析[J].东南大学学报,2005,35(6):889-893.
    [72]姚昊萍,张建润,陈南,孙庆鸿.考虑边界条件的弹性长方体封闭结构腔辐射声场分析[J].机械工程学报,2007,43(4):163-172.
    [73]杜敬涛.任意边界条件下结构振动、封闭声场及其耦合系统建模方法研究[博士学位论文].哈尔滨:哈尔滨工程大学,2008.
    [74] W.L.Li, X.F.Zhang, J.T.Du, Z.G.Liu. An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports [J]. Journal of Sound and Vibration, 2009, 321:254~269.
    [75]高煜.基于波叠加方法的声辐射与声学灵敏度算法的若干关键问题研究[博士学位论文].合肥:合肥工业大学,2009.
    [76]靳国永.结构声辐射与声传输有源控制理论与控制技术研究[博士学位论文].哈尔滨:哈尔滨工程大学,2007.
    [77]陶红丹,胜美萍,肖和业.声激励下双层耦合结构声与振动特性研究[J].振动工程学报,2010,23(1):100~105.
    [78] Z.Wang, Z.G.Zhao, Z.X.Liu, Q.B.Huang. A method for multi-frequency calculation of boundary integral equation in acoustics based on series expansion [J]. Applied Acoustics, 2009, 70(3):459~468.
    [79] G.Ute, F.Matthias, G.Lothar. A multipole Galerkin boundary element method for acoustic [J]. Engineering Analysis with Boundary Elements, 2004, 28(2):155~162.
    [80] A.Warszawski, J.D.Soares, W.J.Mansur. A FEM-BEM coupling procedure to model thepropagation of interacting acoustic-acoustic/acoustic-elastic waves through axisymmertric media [J]. Computer Methods in Applied Mechanics and Engineering,2008(197):3828-3835.
    [81] Z.Tong, Y.Zhang, Z.Zhang, et al. Dynamic behavior and sound transmission analysis of a fluid-structure coupled system using the direct-BEM/FEM [J]. Journal of Sound and Vibration, 2007, 299(3):645-655.
    [82] W.Zhang, A.Wang, N.Vlahopoulos. High-frequency vibration analysis of thin elastic plates under heavy fluid loading by an energy finite element formulation [J]. Journal of Sound and Vibration, 2003, 263(1):21~46.
    [83] B.R. Mace. Statistical energy analysis: coupling loss factors, indirect coupling and system modes [J]. Journal of Sound and Vibration, 2005, 279(1-2):141~170.
    [84] D.J.Gorman. Free in-plane vibration analysis of rectangular plates with elastic support normal to the boundaries [J]. Journal of Sound and Vibration, 2005, 285:941~966.
    [85] D.Li, J.S.Vipperman. Mathematical model for characterizing noise transmission into finite cylindrical structures [J], Journal of the Acoustical Society of America, 2005, 117(2):679~689.
    [86] M.P.诺顿.工程噪声和振动分析基础[M].北京:航空工业出版社,1993,113-151.
    [87] D.Guickong. On the invention of active noise control by Paul Lueg [J]. Journal of the Acoustical Society of America, 1990, 87:2251~2254.
    [88] P.A.Nelson, S. J.Elliott. Active Control of Sound [M]. Academic Press, London, 1992.
    [89] J.C.Deffayet. Active control of low-frequency harmonic sound radiated by a finite panel [J]. Journal of the Acoustic Society of America, 1988, 84(6):2192~2199.
    [90] J.P.Carneal, C.R.Fuller. An analytical and experimental investigation of active structural acoustic control of noise transmission through double panel system [J]. Journal of Sound and Vibration, 2004,272:749~771.
    [91] B.T.Wand, C.R.Fuller, E.K.Dimitriadis. Active control of noise transmission through rectangular plates using multiple piezoelectric or point force actuators [J]. Journal of the Acoustical Society of America, 1991,90(5):2820~2831.
    [92] C.R.Fuller,C.H.Hansen, S.D.Snyder. Active control of sound radiation from a vibration rectangular panel by sound sources and vibration inputs: an experimental comparison [J]. Journal of Sound and Vibration, 1991, 145(2):195~215.
    [93] Colin Hansen.噪声和振动的主动控制(仪垂杰译).[M].北京:科学出版社,2002.
    [94] Z.D.Ma, I.Hagiwara. Improved Mode-superposition Technique for Modal Frequency Response Analysis of Coupled Acoustic-Structural Systems [J]. AIAA Journal, 1991, 29(10): 1720-1726.
    [95] Z.D.Ma, I.Hagiwara. Sensitivity analysis methods for coupled acoustic-structural system, part I:modal sensitivity [J]. American Institute of Aeronautics and Astronautics Journal, 1991, 29(11): 1787-1795.
    [96] I. Haiwara, W. Kozukue, Z.D.Ma. The development of eigen-mode sensitivity analysis methods for coupled acoustic-structural systems and their application to reduction of vehicle interior noise [J]. Finite Element in Analysis and Design, 1993, 14(6):235-248.
    [97] B.Laulagnet,J.L.Guyader. Sound radiation from a finite cylindrical shell covered with a compliant layer [J]. Journal of the Vibration and Acoustics,1991,113:267-272.
    [98] S.Wang, K.K.Choi. Acoustical optimization of vehicle passenger space [J]. SAE Paper No. 941071, 1994.
    [99] J.H.Kane, S.Mao., et al. A boundary element formulation for acoustic shape sensitivity analysis [J]. Journal of the Acoustical Society of America, 1991, 90(1):561~573.
    [100] D.C.Smith, R.J.Bernhard. Computation of acoustic shape design sensitivity using a boundary element method [J]. Journal of Vibration and Acoustics, 1992, 114(1):127~132.
    [101] Sheng Li, Deyou Zhao. Numerical simulation of active control of structural vibration and acoustic radiation of fluid-loaded laminated plate [J]. Journal of Sound and Vibration 2004, 272:109~124.
    [102]李传兵,李克强,车内噪声控制中的结构-声场耦合模态分析方法[J],振动工程学报,2002,15(3):343-346.
    [103]郝夏影,陈克安,陆晶.平板型有源吸声结构物理机制研究[J].振动工程学报,2010,23(3):339~347.
    [104]陈克安,尹雪飞.基于近场声压传感的结构声辐射有源控制[J].声学学报,2005,30(1):63~68.
    [105]吴锦武,姜哲.基于声辐射模态有源控制的误差传感器设计方法[J].机械工程学报,2008,44(3):189~194.
    [106] K.A.Chen, G.Y.Chen, H.R.Pan, et al. Secondary actuation and error sensing for active acoustic structure [J]. Journal of Sound and Vibration, 2008, 309(1-2):40~51.
    [107]陈克安,陈国跃,李双,等.分布式位移传感下的有源声学结构误差传感策略[J].声学学报,2007,32(1):42~48.
    [108]赵志高,黄其柏.有限元与声辐射模态的薄板声辐射灵敏度分析[J].声学技术,2008,27(3):464~468.
    [109]臧献国,于徳介,姚凌云,郭建文.基于模态振型形状优化的结构声辐射控制[J].机械工程学报,2010,46(9):88~96.
    [110]李海渊,张雷,袁健等.“移頻降噪”理论研究及灵敏度分析[J].振动与冲击,2005,24(2):137~140.
    [111]杨德庆,柳拥军,金咸定.薄板减振降噪的拓扑优化设计方法[J].船舶力学, 2003, 7(5):91-96.
    [112]陈钢,赵国忠.声场-结构耦合系统的动力灵敏度分析[J].振动与冲击,2007,26(4):86~89.
    [113]张军,兆文忠,谢素明.结构-声场耦合系统声音响应优化设计研究[J].振动工程学报,2005,18(4):519~523.
    [114] N.H.Kim, J.Dong, K.K.Choi, et al. Design Sensitivity Analysis for Sequential Structural-Acoustic Problems [J]. Journal of Sound and Vibration, 2003,263(3):569~591.
    [115] N.H.Kim, J.Dong, K.K.Choi. Energy Flow Analysis and Design Sensitivity Analysis of Structural-Acoustic Problems at High Frequency [J]. Journal of Sound and Vibration, 2004, 269(1-2):213~250.
    [116] K.Du, Y.Wei. Structured Pseudo spectra and Structured Sensitivity of Eigenvalues [J]. Journal of Computational and Applied Mathematics, 2006, 197:502~519.
    [117] Denny Fritze, Steffen Marburg, Hans-Jürgen Hardtke. FEM–BEM Coupling and Structural-Acoustic Sensitivity Analysis for Shell Geometries [J]. Computers and Structures, 2005(83):143-154.
    [118] K.C.Kyung, N.H.Kim. Structural Sensitivity Analysis and Optimization [M]. Springer New York, 2005.
    [119] Z.S.Liu, H.P.Lee, C.Lu. Passive and Active Interior Noise Control of Box Structures Using the Structural Intensity Method [J]. Applied Acoustic, 2006,67:112~134.
    [120] Y.X.GU, H.W.Wang. Sensitivity Analysis for Coupled Structural-Acoustic Systems and Application in Interior Noise Reducing [C]. Proc.EPMESC VIII, Shanghai, 2001.
    [121] J.S.Lamancusa, H.Eschemanuer. A design optimization methods for rectangular panels with minimal sound radiation [J]. American Institute of Aeronautics and Astronautics, 1994, 32(3):472-479.
    [122] I. Haiwara, W. Kozukue, Z.D.Ma. The development of Eigen mode sensitivity analysis methods for coupled acoustic-structural systems and their application to reduction of vehicle interior noise [J]. Finite Element in Analysis and Design, 1993, 14(6):235-248.
    [123] P.Ramachandrana, S.Narayananb. Evaluation of modal density, radiation efficiency and acoustic response of longitudinally stiffened cylindrical shell [J]. Journal of Sound and Vibration, 2007 (304):154-174.
    [124] D.Li,J.S.Vipperman. On the noise transmission and control for a cylindrical chamber core composite structure [J]. Journal of Sound and Vibration, 2005, 288(2): 235-254.
    [125] Steen Marburg. A general concept for design modification of shell meshes in structural-acoustic optimization–part I: formulation of the concept [J]. Finite Element in Analysis and Design, 2002, 38:725~735.
    [126] Steffen Marburg, Hans Jurgen Hardtke. A general concept for design modification of shell meshes in structural-acoustic optimization- part II: application to a floor panel in sedan interior noise problems [J]. Finite Elements in Analysis and Design, 2002, 38:737~754.
    [127] D.Duhamel. Shape Optimization of Noise Barriers Using Genetic algorithms [J]. Journal of Sound and Vibration, 2006 (297):432-443.
    [128] J.Lee, S.Wang, A.Dikec. Topology optimization for the radiation and scattering of sound from thin-body using genetic algorithms [J]. Journal of Sound and Vibration. 2004,276:899-918.
    [129] J.B.Du, N.Olhoff. Minimization of sound radiation from vibrating bi-material structures using topology optimization [J]. Structural Multidisciplinary Optimization. 2007,33(4):305-321.
    [130] G.H.Yoon, J.S.Jensen. S.Ole. Topology optimization of acoustic-structure interaction problems using a mixed finite formulation [J]. International Journal for Numerical Methods in Engineering, 2007, 70:1049-1075.
    [131] Y.K.Tso,C.H.Hansen. Wave propagation through cylinder/plate junctions [J]. Journal of Sound and Vibration,1995,186(3):447-461.
    [132] J.S.Vipperman,D.Li,I.Avdeev,S.A.Lane. Investigation of the sound transmission into an advanced grid-stiffened structure [J]. Journal of the Acoustical Society of America,2003,125(3):257-266.
    [133] J.Missaoui,L.Cheng,M.J.Richard. Free and forced vibration of a cylindrical shell with a floor partition [J]. Journal of Sound and Vibration,1996,190(1):21-40.
    [134] D.Li,J.S.Vipperman. Mathematical model for characterizing noise transmission into finite cylindrical structures[J]. Journal of the Acoustical Society of America,2005,117 (2) :679-689.
    [135] J.T.Du, W.LLi, G.Y.Jin, T.J.Yang, Z.G.Liu. An Analytical Method for the In-plane Vibration Analysis of Rectangular Plates with Elastically Restrained Edges [J]. Journal of Sound and Vibration, 2007,306:908~927.
    [136] D.J.Gorman. Exact Solutions for the Free In-plane Vibration of Rectangular Plates with Two Opposite Edges Simply Supported [J]. Journal of Sound and Vibration, 2006, 294:131~161.
    [137] W.L.Li. Vibroacoustic analysis of rectangular plate with elastic rotational edge restraints [J], Journal of the Acoustical Society of America. 2006, 120(2):769~779.
    [138]谢琳艳.封闭圆柱壳振动与内声场耦合的数值计算[硕士学位论文].南京:南京航空航天大学,2009.
    [139]曹志远编著.板壳振动理论[M].北京:中国铁道出版社,1989.
    [140]黄大奎,舒慕曾.数学物理方法[M].北京:高等教育出版社,2001.
    [141]李庆扬,莫孜中,祁力群.非线性方程组的数值解法[M].北京:科学出版社,1987.
    [142] J.S.Yim, D.S.Sohn, Y.S.Lee. Free vibration of clamped-free circular cylindrical shell with a plate attached at an arbitrary axial position [J]. Journal of Sound and Vibration ,1998, 213(1):75-88.
    [143] L.Cheng. Fluid-structure coupling of a plate-ended cylindrical shell: vibration and internal sound field [J]. Journal of Sound and Vibration ,1994, 174(5):641-654.
    [144] S.A.Vera, P.A.A.Laura, D.A.Vega. Transverse vibrations of a free-free circular annular plate [J]. Journal of Sound and Vibration ,1999,224(2):379-383.
    [145] Y. Nala, A.A.Oberai, B.G.Shinn-Cunningham. Acoustic eigenvalues of rectangular rooms with arbitrary wall impedances using the interval newton/generalized bisection method [J]. Journal of the Acoustical Society of America, 2005, 118:3662~3671.
    [146] L.Cheng,J.Nicolas. Free vibration analysis of a cylindrical shell-circular plate system with general coupling and various boundary conditions [J]. Journal of Sound and Vibration,1992,155(2):231-247.
    [147] L.Cheng. Fluid-structural coupling of a plate-ended cylindrical shell:vibration and internal sound field [J]. Journal of Sound and Vibration,1994,174(5):641-654.
    [148] T.Irie , G.Yamada, Y.Muramoto. The axisymmetrical response of a circular cylindrical double-shell system with internal damping [J]. Journal of Sound and Vibration,1984,92:107-115.
    [149] G.Yamada,T.Irie, Y.Muramoto. Free vibration of a circular cylindrical double-shell system closed by end plates [J]. Journal of Sound and Vibration,1986,108:297-304.
    [150] L.Cheng, Y.Y. Li. Energy transmission in a mechanically-linked double-wall structure coupled to an acoustic enclosure [J]. Journal of the Acoustical Society of America, 2005:117(6):2742~2751.
    [151]胡海岩,孙久厚,陈怀海.机械振动与冲击(修订版) [M].北京:航空工业出版社,2002.
    [152] B. Pluymers et.al. Application of an efficient wave based prediction technique for the analysis of vibro-acousstic radiation problems [J]. Journal of Computational and Applied Mathematics, 2004, 168:353~364.
    [153] Q.H.Qin. The trefftz finite and boundary element method [M]. Southampton: WIT Press, 2000.73~102.
    [154] K.Y.Sze, Y.K.Cheung. A hybrid-Trefftz finite element model for Helmholtz problem [J]. Communications in Numerical Methods in Engineering, 2008; 24:2047–2060.
    [155] S.A.Yang. Evaluation of the Helmholtz Boundary Integral Equation and Its Normal and Tangential Derivatives in Two Dimensions [J]. Journal of Sound and Vibration, 2007(301):864-877.
    [156] J.Sladek, V.Sladek, R.V. Keer. Global and local Trefftz boundary integral formulations for sound vibration [J]. Advances in Engineering Software 2002; 33:469–476.
    [157] T. Belytschko, Y. Krongauz et al. Meshless Method: An Overview and Recent Developments [J]. Compute Method in Applied Mechanics and Engineering. 1996,139:3-47.
    [158] B.Nayroles, G.Touzot, P.Villon. Generalizing the finite element method: diffuse approximation and diffuse elements [J]. Computational Mechanics. 1992,10:307-318.
    [159] T.Belytschko, Y.Y.Lu, L.Gu. Element free Galerkin methods [J]. International Journal of Numerical Methods in Engineering. 1994,37:229-256.
    [160]史宝军,袁明武,李君,基于核重构思想的最小二乘配点型无网格方法[J].力学学报,2003,35(6):697-706.
    [161]姚昊萍,基于结构声源等效法的复杂结构声辐射建模与特性分析[博士学位论文],南京:东南大学,2007.
    [162]孙朝晖,王冲,戴扬,孙进才,结构振动主动控制理论及实验研究[J],振动工程学报,1994,7(2):154~160.
    [163] E.A.Skelton,J.H.James. Acoustics of an anisotropic layered cylinder[J],Journal of Sound and Vibration,1993,161(2):251-264.
    [164] B.Laulagnet,J.L.Guyader. Sound radiation from finite cylindrical shells partially covered with longitudinal strips of compliant layer[J],Journal of Sound and Vibration,1995,186(5):723-742.
    [165] W.C Tang, H. Zheng. Low frequency sound transmission through close fitting sandwich panels [J]. Applied Acoustic, 1998, 15(1):13-30.
    [166] E M.Kerwin. Damping of flexural waves by a constrained viscoelastic layer [J]. Journal of the Acoustical Society of America, 1959,31(7):952-962.
    [167] M.P.Bendsoe. Optimization of structural topology [M]. Berlin: Springger, 1997.
    [168] M.P.Bendsoe, O.Sigmund. Topology optimization: theory, methods and applications [M]. New York: Springer, 2003.
    [169]陈钢,内腔声-结构耦合系统的数值模拟与优化设计[博士学位论文],大连:大连理工大学,2008.
    [170]李增刚, Sysnoise Rev5.6详解[M],北京:国防工业出版社, 2006.
    [171]韦勇,阻尼结构的建模、识别和拓扑优化研究[博士学位论文],南京:航空航天大学, 2006.
    [172]龙凯,左正兴,基于拓扑优化和形状优化方法的主轴承盖结构设计[J],农业机械学院, 2008(4):152~156.
    [173]隋允康,任旭春,龙连春,基于ICM方法的刚架拓扑优化[J],计算力学学报,2003,20(2):286~289.
    [174]袁振,吴长春,采用非协调元的连续体拓扑优化设计[J],力学学报,2003,35(1):176~180.
    [175] D.C.Smith, R.J.Bernhard. Computation of acoustic shape design sensitivity using a boundary element method, numerical techniques in acoustic radiation [C], Winter Annual Meeting of ANME, SAN Francisco, California, 1989,109~116.
    [176] Z.S.Xu, Q.B.Huang, Z.G.Zhao. Topology optimization of composite material plate with respect to sound radiation [J]. Engineering Analysis with Boundary Elements, 2011, in Press.
    [177] A.W.Wolfgang, A.F.Moritz, C.Christian. Isogemetric Structural Shape Optimization [J]. Compute Methods Applied Mechanics and Engineering, 2008, 197(33):2976~2988.
    [178] J.Hilmann, M.Pass, A.Haenschke. Automatic Concept Model Generation for Optimization and Robust Design of Passenger Cars [J]. Advances in Engineering Software, 2007, (38):795~801.
    [179] Renato Barbieri, Nilson Barbieri. Finite Element Acoustic Simulation Based Shape Optimization for a Muffler [J]. Applied Acoustic, 2006, 67:346~357.
    [180] S.Marburg, H.J.Beer, et al. Experimental Verification of Structural–Acoustic Modeling and Design Optimization [J]. Journal of Sound and Vibration, 2002,252(4):591~615.
    [181] Zaiwei Li, Xinhua Liang. Vibro-acoustic Analysis and Optimization of Damping Structure with Response Surface Method [J]. Materials and Design, 2007(28):1999~2007.
    [182] Eddie Wadbro, Martin Berggren. Topology optimization of an Acoustic Horn [J]. Computer Methods in Applied Mechanics and Engineering, 2006(196):420~436.
    [183] Pasi Tanskanen. A Multi objective and Fixed Element Based Modification of the Evolutionary Structural Optimization Method [J]. Computer Methods in Applied Mechanics and Engineering, 2006(196):76-90.
    [184]王勖成,有限单元法[M],北京:清华大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700