声学—结构灵敏度及结构—声学优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声学-结构灵敏度是振动声学指标对结构参数的变化率,该值对结构降噪有重要意义,是设计低噪声结构的重要内容之一;基于声学-结构灵敏度的结构-声学优化可设计出最优的低噪声结构,是结构声学设计追求的目标之一。结构降噪设计是车辆、航空、航海及一般工业中的重要设计内容之一,可改善乘坐的舒适性及产品的竞争力,声学-结构灵敏度和结构声学优化设计可为相关工程中的结构降噪提供定量和最优的设计方法。本文研究的目的是基于声学-结构灵敏度,开发一种有效的、通用的结构-声学优化设计方法。
     本文论述了结构-声学仿真的有限元法、边界元法原理,比较了有限元法与边界元法的优缺点,概述了有限元法、边界元法在结构-声学仿真中的应用,讨论了声学-结构灵敏度及结构-声学优化设计的研究历史与现状。基于结构-声学仿真的有限元法和边界元法推导了响应声压、声功率对结构参数的灵敏度,基于敏度信息建立了结构声学优化的数学模型,用可行方向法对结构声学指标进行了优化设计研究,给出了研究算例。
     论文完成的主要工作有:基于有限元法,分析推导了振动响应位移和响应速度对壳厚度的灵敏度,通过实例分析了位移灵敏度和速度灵敏度的关系。速度灵敏度是声学-结构灵敏度计算中所必需的,也是结构振动优化的先决条件;基于有限元直接法计算结构振动响应及响应速度对壳厚度的灵敏度,基于边界元法计算了结构声学响应及响应声压、声功率对振动速度的灵敏度,联合两个灵敏度计算了声学指标对结构参数的灵敏度;追求声学指标最小化,建立了减小结构振动速度的优化设计数学模型,对振动结构进行了振动速度最小化设计研究。通过对结构优化前和优化后的边界元声学分析,定量分析了振动优化后的降噪效果;基于结构-声场耦合系统的有限元法,分析推导了结构-声场耦合系统特征值灵敏度的计算方法;基于结构-声场耦合系统的有限元法,分析推导了结构-声场耦合系统声学响应的计算方法,用模态叠加法分析推导了响应声压对结构参数的灵敏度;基于结构-声场耦合系统的有限元法,建立了结构-声学优化的数学模型;基于响应声压对结构参数的灵敏度信息,用可行方向法对响应声压、结构重量分别进行了单目标优化设计研究和多目标优化设计研究;分别用有限元法、边界元法分析推导了内场、外场声学频率响应函数的计算方法,基于随机振动的基本理论,分析推导了随机载荷激励下结构随机声场的计算方法,用可行方向法对响应声压谱密度进行了优化设计研究。
     上述工作得出以下结论:1.结构振动位移敏度与振动速度敏度的关系与振动位移和振动速度的关系一致,即从幅值上看后者是前者的ω倍;2.声学-结构灵敏度随激励频率的增大而增大,在结构系统模态频率处出现峰值,可根据灵敏度信息直接修改结构以降低噪声,也可用于对结构进行声学优化设计研究;3.结构-声学优化可在结构重量相对不变的
Acoustic-structure sensitivity is a change rate of response acoustic pressure with respect to structure design parameters, it has the vital significant to the structure noise reduction, and it is one in the design contents of quiet structure; structure-acoustic optimization based on Acoustic-structure sensitivity may design the most superior low noise structure, and it is one of goals of structure-acoustics design. The acoustic design for vehicle, ship, plane and ordinary industry is very important to improve the carborne acoustic comfort and to enhance competitiveness for the products in market, the Acoustic-structure sensitivity and the structure-acoustic optimization can provide a ration and optimum design method for the vibration structure. The objective of this fundamental study is to develop effective ,general method for the noise reduction of vibration structure .
    This paper discusses the fundamental theory of FEM and BEM for structure-acoustic numerical simulation, compares advantage and disadvantage for FEM and BEM, summarizes their application in structure-acoustic simulation, debates the research history and actuality for Acoustic-structure sensitivity and structure-acoustic optimization. The acoustic-structure sensitivity formulation basing on FEM and BEM is deduced and implemented, the mathmatical model of structure-acoustic sizing design optimization is established and achieved basing on acoustic- structure sensitivity by used of the the feasible direction method.
    The main work in the thesis is as follows: Based on the FEM, the numerical analysis of Dynamics displacement Response, velocity Response and its Sensitivity is deduced and implemented for the plate vibration. The velocity Sensitivity of structure vibration with respect to structure parameters is essential to calculate the acoustic- structure sensitivity; The velocity sensitivity of vibration structure with respect to structure parameter, the response pressure and response acoustic power with respect to the normal velocity is carried out by using of FEM and BEM, respectively, and then these sensitivity were combined to obtain a acoustic- structure sensitivity; For purpose of minimizing structure noise, the mathematical model of the sizing design optimization for minimizing the vibrating velocity is established and performed. The acoustic radiation of structure vibration bas been studied by use of the BEM before optimization and after optimization, the results were compared for the former and the latter; Based on the FEM of the coupled acoustic-structure system, the sensitivity of eigenvalue is deduced and performed; Based on the FEM of the coupled acoustic-structure system, the acoustic response feature is deduced and performed, the modal superpose method of the acoustic-structure sensitivity is put forward and performed; Based on the FEM of the coupled acoustic-structure system, the mathematical model of the sizing design optimization for minimizing acoustic response, structure weight and the multi-object optimization is established and performed basing on acoustic-structure sensitivity by used of the feasible direction method; The acoustic transfer function simulated by a unit force is deduced and performed by used of FEM and BEM, respectively, and then acoustic response feature of the structure random vibration simulated by a
引文
[1] 何作镛,赵玉芳.声学理论基础.北京:国防工业出版社,1981.
    [2] 邵汝椿,黄振吕.机械噪声及其控制.广州:华南理工大学出版社,1997.
    [3] 钱维权,周强,黄端生等.轨道段飞船舱内噪声允许水平的研究.航天医学工程研究所论文汇编,第三集.1981,10-17.
    [4] 赵明,田丽江,陈晓东.飞机噪声对机场周围环境污染的调查.中国公共卫生.1999,15(8):71-76.
    [5] 陈越澎,潭林森.船舶舱室噪声控制技术综述.武汉造船.1995,NO5:34-40.
    [6] 胡正元,史秀凤等,潜艇航行时舱室中噪声水平的探讨.中华航海医学杂志,1997,4(2):69-71.
    [7] 唐人辉,唐光武.汽车噪声控制技术及低噪声客车产品开发措施.客车技术与研究.2001,23(6):19-21.
    [8] 金磊.全球减灾与灾害物理学灾害声学及其噪声控制技术.工程物理.1999,9(1):29-32.
    [9] 李敬东,王炳权,宫瑞婷建筑设计中声环境的研究.北京建筑工程学院学报.2001,17(4):104-106.
    [10] 孙广容.从建筑声学到环境声学.应用声学.2002,21(1):46-49.
    [11] 田新浩.电力机车司机室的噪声特性研究.环境工程.2000,18(3):36-39.
    [12] 滕合芹,尹正莲,安月东.舱室噪声对船员听觉及心血管系统的影响.中华劳动卫生职业病杂志.1994,12(5):286-287.
    [13] 王大力.歼一8D飞机噪声对对飞行员工效影响的试验研究.中华航空航天医学杂志.1998,9(3):17-20.
    [14] 应怀樵.现代振动与噪声技术(第2卷).北京:航空工业出版社,2000.
    [15] 盛美萍,乇敏庆,孙进才.噪声与振动控制技术基础.北京:科学出版社,2001年6月.
    [16] 钱人一.汽车发动机噪声控制.上海:同济大学出版社,1997年9月。
    [17] 黄其柏.工程噪声控制学.武汉:华中理工大学出版社,1999年8月
    [18] 张志华,周松,黎苏.内燃机排放与噪声控制.哈尔滨:哈尔滨工程大学出版社,1999年11月
    [19] 杜功焕等.声学基础.上海:上海科学技术出版社,1981.
    [20] 黎志勤,黎苏.汽车排气系统噪声和消声器设计.北京:中国环境科学出版社,1991.
    [21] 丁渭平.车辆结构低频声学分析理论及设计方法研究.博士学位论文.西安:西安交通大学,2001.
    [22] 蔡秀兰等.北京机场周围的飞机噪声.应用声学.1991,21(10):45-49.
    [23] 刘岩,阿久津胜则.高速铁道车辆噪声机理解析.大连铁道学院学报.2001,22(1):5-8.
    [24] 马大鱿.第八届全国噪声与振动控制工程学术会议大会报告.噪声与振动控制.1999,No5:2-5.
    [25] 郑治国.水利机械内部流场的数值模拟与流固耦合问题研究.博士学位论文.大连:大连理工大学,1997.
    [26] Junger M C. Sound Scattering by Thin Elastic Shells. J. Acoust. Soc. Am. 1952, 24(6): 366-373.
    [27] Goodman, Stern R. Reflection and transmission of sound by elastic spherical shells, J. Acoust. Soc. Am. 1962, 34(6): 338-344.
    [28] Uickling R. Analysis of echoes from hollow metallic sphere in water. J. Acoust. Soc. Am. 1964, 36(3): 1124-1137.
    [29] Hayek S. Vibration of a spherical shell in an acoustic medium. J. Acoust. Soc. Am. 1966, 40(2): 342-248.
    [30] Zhang P Z Thomasl G. Excitation of a fluid -filled submerged spherical shell hy a transient acoustic wave. J. Acoust. Soc. Am. 1993, 93(5): 696-706.
    [31] 姚德源,王其政.统计能量分析原理及其应用.北京:北京理工大学出版社,1995.
    [32] S. Kopuz. Analysis of Interior Acoustic Fields Using the Finite Element Method and the Boundary Element Method. Applied Acoustics. 1995, 45(2): 193-210.
    [33] Burroughs C. B., Fischer R. W. An introduction to statistical energy analysis. J. Acoust. Soc. Am. 1997, 101(40): 1779-1789.
    [34] Vlahopoulos N., Garza-Rios L. O.. Numerical implementation, validation and marine application of an energy finite element formulation. Journal of ship Research. 1999, 43(3): 143-156.
    [35] Nefske D. J., Sung S. H.. Power flow finite element analysis of dynamic systems: basic theory applications to beams. Journal of Vibration, Acoustics, Stress and Reliability. 1989, 111(9): 94-106.
    [36]. D. J. Nefske and L. J. Howell.. Automobile interior noise reduction using finite element methods. Transactions of the society of Automotive Enineers. 1978, 87(2): 1726-1737.
    [37]. Sung, S. H. Automotive Applications of Three-Dimensional Acoustic Finite Element Methods. Society of Automotive Engineers Paper. No810397, 1981.
    [38]. Nefske DJ, Wolf JA, Howell LJ. Structural-acoustic finite element analysis of the automobile passenger compartment: a review of current practice. Journal of Sound and Vibration. 1982, 80(7): 247-266.
    [39]. Sung SH, Nefske DJ. A coupled structural-acoustic finite element model for vehicle interior noise analysis. Journal of Vibration, Acoustics, Stress and Reliability. 1984, 106(3): 314-318.
    [40] 闫再友,姜楫,严明.利用边界元法计算无界声场中结构体声辐射.上海交通大学学报.2000,34(4):56-62.
    [41] 夏恒,宫镇,陆森林.用边界元法计算高速车辆内部气流噪声.江苏大学学报(自然科学版).2003,24(1):23-28.
    [42] 黎胜,赵德有.用边界元法计算结构振动辐射声场.大连理工大学学报.2000,40(4):32-37.
    [43] 汪鸿振,郭芃.用边界元法计算有反射面的结构体声辐射.声学技术.1999,26(4):45-50.
    [44] CLM. L., Gladwell, G. Zimmermann. On energy and complementary energy formulations of acoustic and structural vibration problem. Journal of sound and vibration, 1966, 22(3): 233-241.
    [45] A. Craggs. The use of simple three-dimensional acoustic finite element for determining the natural modes and frequencies of complex shaped enclosure. Journal of sound and vibration. 1972, 23(4): 331-339.
    [46] T. Shuku, K. Ishihara. The analysis of the acoustic field in riregular shaped rooms by the finite element methods. Journal of Sound and Vibration, 1973, 29: 67-76.
    [47]. T. Shuku and K. Ishihara. The analysis of the acoustic field in irregularly shaped room by the finite element method. Journal of sound and vibration. 1973, 29(7): 67-76.
    [48]. J. A. Wolf, JR., D. J. Nefske and k. J. Howell. Structure-acoustic finite element analysis of automotic passenger compartment. Transactions of the society of Automotive Engineers. 1976, 8501: 857-864.
    [49]. D. J. Nefske and L. J. Howell. Automobile interior noise reduction using finite element methods. Transactions of the society of Automotive Enineers. 1978, 87: 1726-1737.
    [50]. Sung, S. H., Automotive Applications of Three-Dimensional Acoustic Finite Element Methods. Society of Automotive Engineers Paper, No 810397, 1981.
    [51]. Sung SH, Nefske DJ. A coupled structural-acoustic finite element model for vehicle interior noise analysis. ASME Transactions, Journal of Vibration, Acoustics, Stress and Reliability. 1984, 106(3): 314-318.
    [52]. Nefske DJ, Wolf JA, Howell LJ. Structural-acoustic finite element analysis of the automobile passenger compartment: a review of current practice. Journal of Sound and Vibration. 1982, 80(3): 247-266.
    [53] 张维雄,翟红生,冯华.汽车乘坐室内声学特性的有限元分析.西安公路交通大学学报,1995,15(2):50-55.
    [54] 沈壕,孙洪生,工程声学的有限元法.声学学报,1981,17:249-259.
    [55] 王维综,吴卫彬,孙洪生.轴对称形消声器的有限元分析.应用声学.1985,6(1):23-27.
    [56] 丁渭平,陈花玲.腔体声振耦合的对称化有限元模型及其特性研究.西安交通大学学报,2000,34(3):58-62.
    [57] 丁渭平.车辆乘坐室声学泄漏分析的声振耦合有限元模型.噪声与振动控制.2002,2(1):6-8.
    [58] 丁渭平.车身结构低频声学分析理论及设计方法研究.[博士学位论文].西安:西安交通大学,2002.
    [59] 丁渭平,陈花玲,胡选利.腔体声振耦合方程低频解辐误差的研究.噪声与振动控制.2000,8:6-10.
    [60] 丁渭平,陈花玲.基于对称有限元模型的车辆乘坐室声振耦合分析的子结构方法.噪声与振动控制.2001,23(2):1-7.
    [61] 刘懿,靳晓雄,郝峥.应用有限元法分析和降低轿车室内噪声.汽车工程.2001,23(3):186-189.
    [62] 王登峰等.拖拉机整车系统声固耦和噪声响应分析.农业机械学报.1994,25(1):33-38.
    [63] Zheng-Dong Ma, Ichiro Hagiwara. Sentivity Analysis Methods for Coupled Acoustic-Structural System, Part I: Modal Sentivity. AIAA journal. 1991, 29(5): 113-125.
    [64] Zheng-Dong Ma, Ichiro Hagiwara. Sensitivity Analysis Methods for Coupled Acoustic-Structural System PartⅡ: Direct Frequency Response and Its Sentivities. AIAA journal. 1991, 29(6): 56-67.
    [65] Ichiro Hagiwara, Wakae Kozukue, Zheng-Dong Ma. The development of eigenmode sensitivity analysis methods for coupled acoustic-structural systems and their application to reduction of vehicle interior noise. Finite Elements in Analysis and Design. 1993, 14(6): 235-248.
    [66] Zheng-Dong Ma, Ichiro Hagiwara. Sentivity Calculation for Conducting Modal Frequency Response Analysis of coupled acoustic-structural systems. JSME International Journal. 1992, 35(3): 14-21.
    [67] S. A. Hambric. Sensitivity Calculation for BroadBand Acoustic Radiated Noise Design Optimization Problems. J. Vib. Acoust. 1995, 117(1): 136-144.
    [68] K. K. Choi, I. Shim, S. Wang. Design sensitivity analysis of structure-induced noise and vibration. J. Vib. Acoust. 1997, 119(3): 173-179.
    [69] S. Wang. Design sensitivity analysis of noise, vibration, and harshness of vehicle body structure. Mech. Struct. Mach. 1999, 27(3): 317-336.
    [70] 王登峰等.拖拉机驾驶室内部噪声响应的灵敏度分析.农业机械学报.1993,24(1):25-30.
    [71] 吴小清,王登峰,徐诚,程悦荪.壁面有吸声材料时驾驶室内噪声响应的灵敏度分析.农业机械学报.1999,15(3):20-24.
    [72] 王登峰,程悦荪,刘明树,赵荣宝.拖拉机驾驶室的声固耦和动态择优声学设计.农业机械学报.1994,25(3):23-26.
    [73] Wang H W, Gu Y X, Gao J. Sensitivity Analysis and Design Optimization for Pressure Level Integral of Structure-Acoustics System. Proceeding of the World Congress of Structural and Multidisciplinary Optimization, June, 2001, Dalian, China: 120-121.
    [74] Gu Y X, Wang H W, Sensitivity analysis for Coupled Structural-acoustic Systems. S. N. Atluri, F. W Brust(eds.), Tech Science Press, Proc. of ICES2K, 2000: 1231-1237.
    [75] Gu Y X, Wang H W. The Sensitivity analysis Methods of Coupled acoustics- structure Systems And Application in Interior Noise Reducing. Proc. EPMESC Ⅷ, Shanghai, 2001.
    [76] Christos I. Papadopoulos. Redistribution of the low frequency acoustic modes of a room: a finite element-based optimisation method. Applied Acoustics. 2001, 62(3): 1267-1285.
    [77] Jianhui Luo, nae Chang Gea. Optimal Stiffener Design for Interior Sound Reduction Using a Topology Optimization Based Approach. Journal of Vibration and Acoustics. 2003, 125(7): 267-272.
    [78] Ciskowski R. D., Brebbia C. A.. Boundary element methods in acoustic. Southampton: Computation Mechanics Publications, 1991.
    [79] 黎胜.水下结构声辐射和声传输的数值分析及主动控制模拟研究.大连:大连理工大学,博士学位论文,2001.
    [80] Chen L. H., Schweikert D. G.. Sound radiation from an arbitrary. J. Vib. Acoust. Soc. Am. 1963, 35(5): 1626-1623.
    [81] Chertock G. Sound radiation from vibrating surfaces. J. Vib. Acoust. Soc. Am., 1964, 36: 1305-1313.
    [82] Seybert A. F., Soenarko B., Rizzo F. J., Shippy D. J., Application of the BIE method to sound radiation problems an isoparametric element. ASME Traansactions, J. VIB. Acoust. Stress Rel. Dsgn., 1984, 106: 414-420.
    [83] Seybert A. F.,Soenarko B., Rizzo F. J., Shippy D. J.. An advanced computational method for radiation and scattering of acoustic waves in three dimensions. J. Acoust. Soc. Am., 1985, 77(6): 362-368.
    [84] Seybert A. F., Soenarko B., Rizzo F. J., Shippy D. J.. A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions. J. Acoust. Soc. Am. 1986, 80(1): 1241-1247.
    [85] Seybert A. F., Soenarko B., Radiation and scattering of acoustic waves from bodies of arbitrary shape in a three-dimensional half space. ASME Transactions .J.Vib. Acoust. Stress Rel. Dsgn..1988,110(3):112-117.
    [86] Seybert A. F., Wu T. W. Modified Helmholtz integral equation for bodies sitting on an infinite plane. J. Acoust. Soc. Am..1989,85(1):19-23.
    [87] 束永平.用边界元法计算机曲阜舍得声功率.机械工程学报.1991,271):58-61.
    [88] D. C. Hodgson, M.M. Sadek. A technique for the prediction of the noise field from an arbitrary vibrating machine. Engineering Science Division. 1983,197(8):189-197.
    [89] M. M. Nigm, M.M. Sadek. Noise emitted from a drop hammer tup and the effects of tup configurations. Proc. ASME Conf. Coputer Aided Design. Chicago, USA, 1982,323-342.
    [90] 赵翔.旋转式冰箱压缩机辐射噪声的计算与实验研究.航天工艺.1993,17(4):14-17.
    [91] 赵翔,谢状宁,黄幼玲.自由场结构体声辐射研究.声学学报.1994,19(1):22-31.
    [92] 余兴倬,方新,周禹.用FEM-BEM法预测箱型振动构件的声辐射.华中理工大学学报.1993,21(1):163-168.
    [93] Y. Kagawa, R. Shimoyama, T. Yamabuchi, T. Murai, K. Takarada. Boundary element models of the vocal tract and radiation field and their response characteristics. Journal of Sound and Vibration. 1992,157(3):385-403.
    [94] 戴诗亮.随机振动实验技术.北京:清华大学出版社,1984.
    [95] 仪垂杰,夏虹,姜兴序.结构振动模态声辐射理论及试验研究.应用声学.1990,9(6):33-42.
    [96] C. Y. R. Ceng, A.F. Seybert, T. W. Wu. A multidomain boundary element solution for silencer muffler perdiction. Journal of Sound and Vibration. 1991,151(1):119-129.
    [97] S. M. Kirkup, D.J. Henwood. Computational solution of acoustic radiation problems by Kussmaul' s boundary element method. Journal of Sound and Vibration. 1992,158(2):295-305.
    [98] 葛蕴珊,王芝秋,张志华.内燃机辐射三维计算模型.内燃机工程.1994,15(4):46-51.
    [99] 葛蕴珊,王芝秋,张志华,等.声边界元法在内燃机机体辐射噪声预报中的应用研究.内燃机学报.1995,13(1):78-83.
    [100] D. E. Montgomery, R. L. West, R.A. Burdisso. Acoustic radiation prediction of a compressor housing from three-dimension experimental spatial dynamics modeling. Applied Acoustics. 1996,47(2):165-185.
    [101] A. R. Mohanty, D. St. Pierre, P. Suruli—Narayanasami. Structure-borne noise reduction in a truct cab interior using numerical techniques. Applied Aoustics. 2000,59(4):1-17.
    [102] 商德江,何祚镛.加肋双层圆柱壳振动声辐射数值计算分析.声学学报.2001,26(3):193-201.
    [103] 杨德庆,王德禹,刘洪林.舰艇振动声学特性数值分析.上海交通大学学报.2002,36(11):87-93.
    [104] 杨德庆,郑靖明,王德禹,金咸定.基于SYSNOISE软件的船舶振动声学数值计算.中国造船.2002,(4):34-40.
    [105] 杨德庆,胡波.水下结构振动和声辐射数值分析.2002年MSC.Software中国用户论文集.
    [106] H. Zheng, G.R. Liu, J.S. Tao, K.Y. Lam. FEM/BEM analysis of diesel piston-slap induced ship hull vibration and underwater noise. Applied Acoustics. 2001, 62(6):341-358.
    [107] S. Le Moyne, J.L. Tebec. Ribs effects in acoustic radiation of a gearbox—their modelling in a boundary element method. Applied Acoustics. 2002,63(5):223-233.
    [108] E. W. Constans, A.D. Belegundu, G. H. Koopmann. Design approach for minimizing sound power from vibrating shell structures. AIAA J. 1998,36(2):134-139.
    [109] S. Marburg. Efficient optimization of a noise transfer function by modification of a shell structure geometry-Part I: Theory. Struct Multidisc Optim. 2001,24(5):51-59.
    [110] M. Tinnsten, B. Esping, M. Jonsson. Optimization of acoustic response. Structural Optimization: 1999,18(1):36-47.
    [111] Semyung Wang, Jeawon Lee. Acoustic Design Sensitivity Analysis and Optimization for Reduced Exterior Noise. AIAA Journal. 2001,39(4):1237-1245.
    [112] Belegundu, A.D. Salagame, R.R. Koopmann, G.H. A general optimization strategy for sound power minimization. Structural Optimization. 1994,34(8):113-119.
    [113] Steen Marburg. A general concept for design modication of shell meshes in structural-acoustic optimization—Part Ⅰ: formulation of the concept. Finite Elements in Analysis and Design. 2002,38(7):725-735.
    [114] Steen Marburg. A general concept for design modification of shell meshes in structural-acoustic optimization—Part Ⅱ: Application to a floor panel in sedan interior noise problems. Finite Elements in Analysis and Design . 2002,38(7):735-754.
    [115] J. S. Lamancusa. Numerical optimization techniques for structural-acoustic design of rectangular panels. Computer and Structural 1993,48(4):661-675.
    [116] J. S. Lamancusa, H.A. Eschenauer. Design optimization methods for rectangular panels with minimal sound radiation. AIAA J. 1994,32(3):472-479.
    [117] Scott P. Crane, Kenneth A. Cunefare, Stephen P. Engelstad. Comparison of Design Optimization Formulations for Minimization of Noise Transmission in a Cylinder. Journal of Aircraft. 1997,34(2):106-117.
    [118] K. Naghshineh, G. H. Koopmann, A.D. Belegundu. Material tailoring of structures to achieve a minimum radiation condition. J. Acoust. Soc. Am. 1992,92(2):841-855.
    [119] K. K. Choi, I. Shim, S. Wang. Design sensitivity analysis of structure-induced noise and vibration. J. Vib. Acoust. 1997,119(4):173-179.
    [120] 邓晓龙,张宗杰,李少鹤.内燃机油底壳加强板声学优化.内燃机工程.2003,24(1):37-41.
    [121] S. T. Christensen, S.V. Sorokin, N. Olho. On analysis and optimization in structural acoustics—part 1:Problem formulation and solution techniques. Structural Optimization . 1998, 16(1):83-95.
    [122] 杨德庆,柳拥军等.薄板减振降噪的拓扑优化设计.船舶力学.2003,7(5):91-96.
    [123] 白杨,汪鸿振.声学-结构设计灵敏度分析.振动与冲击.2003,22(3):43-45.
    [124] Fox R L ,KapoorM P. Rates of change of eigenvalue and eigenvectors. AIAA J. 1968,6(12):2426-2429.
    [125] Nelson R B. Simplified calculation of eigenvector derivatives. AIAA J. 1976,14(9):1201-1205.
    [126] Yang R L. Shape design sensitivity analysis with frequency response. Computers & Structures. 1989, 33(4) :1089-1093.
    [127] 胡海昌.多自由度结构固有振动理论.北京:科学出版什,1987.
    [128] 林树枝,程耿东.动力响应灵敏度分析的振形空间法.地震工程与工程振动.1990,10(3):57-64.
    [129] 王文亮.离散振型的灵敏度分析.力学学报.1995,27(2):180-188.
    [130] 王成端,杨肃.动态优化中的灵敏度分析研究.计算结构力学及其应用.1991,8(1):77-83.
    [131] 张令弥,何柏庆等.特征向量导数计算各种模态法的比较和发展.应用力学学报.1994,11(3):68-74.
    [132] 邹时智,宋天霞.非线性结构动力响应中的灵敏度分析.华中理工大学学报.1996,24(9):71-74.
    [133] 陈建军,车建文等.结构动力优化设计述评与展望.力学进展.2001,31(2):181-19.
    [134] Niordson F I. The optimum design of a vibrating beams. Quarterly of Applied Mathematics. 1965,23(1):47-53.
    [135] Karihaloo B L, Niordson F I. Optimum design of vibrating cantilevers beam. J. Opt. Theory & App. 1973,6:705-712.
    [136] ZarghameeM S. Optimum frequency of structures. AIAA J. 1968,6(6):749-756.
    [137] Venkayya V B, Knot N S, Keddy V S. Energy distribution in an optimum structural design AFFDL-TR-68-156,1969.
    [138] BerkeL ,Khot N S .Use of optimality riteria methods for large-scale system. AGRAD Lecture Series, 1974,70.
    [139] SadekE A. Dynamic optimization of framed structures with variable layout. Numerical Method in Engineering. 1986,23(7):1273-1294.
    [140] 林家浩.有频率禁区的结构优化设计.大连工学院学报.1981,20(1):27-36.
    [141] 钱令希.工程结构优化设计.北京:水利电力出版社,1983.
    [142] 程耿东,顾元宪.序列二次规划在结构动力优化中的应用.振动与冲击.1986,5(1):12-20.
    [143] 夏人伟,汪丽平.含静、动力约束的复合材料结构优化设计.复合材料学报.1989,6(2):78-83.
    [144] Vanderplaats 6 N, Salajegheh E. An efficient approximation technique for frequency constraints in frame optimization. Numerical Methods in Engineering. 1988,26(5):1057-1070.
    [145] Takewaki I. Optimal frequency design of tower structures via an approximation concept. Computers & Structures. 1996,58(3):445-452.
    [146] Lim OK, Lee J S. Topology optimization of thin plate for the natural frequency. Proceedings of the First China-Japan-Korea Joint Symposium on optimization of Structural & Mechanical Systems. Xi'an: Xidian University Press, 1999,57-65.
    [147] 孙国钧,茅人杰.频率约束下复合材料圆柱壳的最轻重量设计.振动工程学报.1997,10(4):470-473.
    [148] 王福新,胡海岩.含弹性和阻尼约束的隔振系统动力学设计.振动工程学报.1997,10(4):395-403.
    [149] Cassia J H ,Schmit L A .Optimal structural designs with dynamic constraints. ASCEJ .Struct. Div. 1976,102:2053-2071.
    [150] Kapoor M P, Kumarasamy K. Optimum configuration of transmission towers in dynamic responses regime. Proceedings International Symposium on Optimum Structural Design, Tucson, Ariz, Oct.,1981
    [151] Lin J H. Structural optimization on geometrical configuration and element sizing with static and dynamically constraints. Computers & Structures. 1982,15(5):507-526.
    [152] Chahande A I, Arora J S. Development of a multiplier method for dynamic response optimization problem. Structural Optimization. 1993,6:69-78.
    [153] Pantelides C P, Tzan S R. Optimal design of dynamically constrained structures. Computers & Structures. 1997;62(1):141-150.
    [154] 孙焕纯,石连栓,柴山.考虑动应力、动位移约束的离散变量结构优化设计.计算力学学报.1997,14(增刊):723-726.
    [155] 顾元宪,亢战等.MCADS系统在航天结构动力优化设计中的应用和发展.计算力学学报.1997,14(增刊):589-594.
    [156] 李福松,陈建军.射流发电机机械振动系统的动力优化设计.兵工学报.2000,21(1):46-49.
    [157] Min S, Kikuchi N, Park Y C. Optimal topology design of structures under dynamic loads. Structural Optimization. 1999,17:208-218.
    [158] Rao S S. Optimization of airplane wing structures under gust loads. Computers & Structures. 1985,21(3):741-749.
    [159] Rao S S. Optimization of airplane wing structures under taxiing loads. Computers & Structures, 1987,26(3):467-479.
    [160] 王秀峰,陈心昭.计算随机振动结构声辐射的统计体积源边界点法.振动工程学报,2001,14(4):392-397.
    [161] 王秀峰,陈心昭.随机振动结构声辐射的统计边界点法分析.声学技术.2001,20(3):107-110.
    [162] 刘钊,陈心昭.求解随机振动结构声辐射的统计边界元方法.声学学报.1997,22(6):495-500.
    [163] Michael J. Allen, Nickolas Vlahopoulos. Integration of finite element and boundary element methods for calculating the radiated sound from a randomly excited structure. Computers and Structures. 2000,77:155-169.
    [164] Michael J. Allen, Nickolas Vlahopoulos. Noise generated from a flexible and elastically supported structure subject to turbulent boundary layer flow excitation. Finite Elements in Analysis and Design. 2001,37:687-712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700