压电声波器件的多场耦合问题ANSYS模拟与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电声波器件是基于压电材料的逆压电效应将电信号转化为机械振动和声波的一类重要的高频声波信号发生器件,其在航空航天、国防、机械、电子领域有着广泛而重要的应用。本论文采用大型商业有限元软件ANSYS,分析了一典型的圆柱壳状压电声波器件的压电-结构-声场耦合特性。
     在用有限元法进行分析的过程中,我们采用了ANSYS软件中的压电-结构耦合、流-固耦合单元,运用直接耦合分析法给出了不同压电贴片厚度、大小以及外加电压等因素对压电-结构-声场耦合系统的动态响应的影响,并进一步分析了其对器件周围声场、声压的影响等,初步获得了一些器件几何参数对其性能的影响规律曲线。最后文中还对器件内有填充介质以及存在障碍物两种情形下的压电-结构-声场耦合特性进行了数值模拟。
Piezoelectricity acoustic wave devices are one of the important high-frequency devices of wave-source that can radiate sound waves into the surrounding air. They work based on anti-piezoelectric effect, which converts electric signal into mechanical vibrations and sound waves. Piezoelectricity acoustic wave devices have a board important applications in the atmosphere of aerospace, defense, machinery and electronics. In this thesis, we analyzed the piezoelectric-structure-acoustic couplings of a cylindrical shaped piezoelectric acoustic wave device using the commercial finite element software of ANSYS.
     The piezoelectric-structure coupling elements and fluid-solid coupling elements in ANSYS are used during the FEM analysis. The direct coupling method is adopted through our analysis. We take into account the thickness and the size of piezoelectric patches, as well as factors such as the applied voltage which can influence the dynamic response of the piezoelectric-structure-acoustic coupling system and the sound pressure in the air sphere surrounding the device. Results are given in the form of curves which reflect how the geometric parameters influence this device's capabilities. In the end, we present the simulation and analysis of the piezoelectric-structure-acoustic couplings within mediums in the devices.
引文
[1]张福学,王丽坤,现代压电学,科学出版社,2002
    [2]杜善义,冷劲松,王殷富,智能材料系统与结构,科学出版社,2001
    [3]陈荣忠,陈莉,声表面波气体传感器的理论分析,传感器技术,1997,16(3):27-32
    [4]郑哲敏,周恒,张涵信,黄克智,白以龙(1995).21世纪的力学发展趋势.力学进展,V.25(4),433-441
    [5]周又和,郑晓静(1999),.电磁固体结构力学.科学出版社
    [6]Zhou,Y.H.and Zheng,X.J.(1997).A general expression of magnetic force for soft ferromagnetic plates in complex magnetic fields.Int.J.Engng Sci.,V.35(15),1405-1417
    [7]Zhou,Y.H.and Zheng,X.J.(1999).A generalized variational principle and theoretical model for magnetoelastic interaction of ferromagnetic bodies.Science in China(Series A),V.42(6),618-626
    [8]Zheng X J,Liu X E,A nonlinear constituteive model for Terfenol-D rods.J appl.Physics,2005,97:053901
    [9]Wang Xingzhe,Zhou You-He and Zheng Xiaojing.A generalized variational model of magneto-thermo-elasticity for nonlinearly magnetized ferroelastic bodies.Int.J.Engineering Science.2002,40:1957-1973
    [10]Chen Yeong-Chin and Wu Sean,Piezoelectric composites with 3-3 connectivity by injecting polymer for hydrostratic sensor,Ceramics International,2004,30(1):69-74
    [11]Saravanos D A,Heyliger R P,Mechanics and computational models for laminated piezoelectric beams,plates and shells.Applied mechanics Review,1999,52(10):305-319
    [12]Irschik H,A review on static and dynamic shape control of structures.Engineering Structures.2002,24:5-11
    [13]Crawley,E F,Luis J D,Use of piezoelectric actuators as element of intelligent structures.AIAA Journal,1987,25(10):1373-1385
    [14]Wang B T,Rogers,C A,Modeling of finite-length spatially-distributed induced strain actuator for laminated beams and plates.J of intelligent Materials Systems and Structures,1991,2:38-58
    [15]Tzou T S,Gadre M,Theoretical analysis of a multilayered thin shell coupled with piezoelectric shed actuators for distributed vibration controls.J of Sound and Vibration,1989,132(3):433-450
    [16]尹林,沈亚鹏,压电类智能结构的力学行为和工程应用,力学进展,1998,28:163-172
    [17]Allik H,Hughes,T J,finite element method for piezoelectric vibration.Int J Numerical Methods in Engineering,1970,2(2):151-157
    [18]Sung K H,Charles K,Chang F K.Finite element analysis of composite structure containing distributed piezoceramic sensors and actuators.AIAA Journal,1992,30(3):772-780
    [19]Hwang W S,Park H C.Finte element modeling of piezoelectric sensors and actuators.AIAA Journal,31(5):930-937
    [20]Gibbs G P,Fuller C R,Experiments on active control of vibration power flow using piezoelectric actuators/sensors.AIAA Journal,1992,30(2):457-463
    [21]石立华,陶宝琪,埋入压电元件的自诊断智能结构的理论分析与试验研究。实验力学,1998,13(3):370-376
    [22]Sung S H,Nefske D J.Component mode synthesis of a vehicle structureal-acoustic system model.AIAA Journal,1986,24:1021-1026
    [23]Everstine G C,Finite element formulations of structural acoustics problems.Comput.Struct.,1997,65(3):307-321
    [24]Ciskowski R D,Brebbia C A,Boundary element methods in acoustics.Southhampton:Computational Mechanics Publications.1991.
    [25]Pates C S,Shirahatti U S,Mei C.,Sound-structure interaction analysis of composite panels using coupled boundary and finite element methods.J Acoust.Soc.Am.,1995,98(2):1216-1221
    [26]姚德源,王其政.统计能量分析原理及其应用。北京:北京理工大学出版社,1995
    [27]Vlahopolos N,Garza-Rios L O,Mollo C.,Numerical implementation,validation and marine applications of an energy finite element formulateon.J Ship Research,1999,43(3):143-156
    [28]Ergin A.,The response behavior of a submerged cylindrical shell using the doubly asymptotic approximateon method.Comput.Struct.,1997,62(6):1025-1034
    [29]杜功焕,朱哲民,龚秀芬,声学基础,南京:南京大学出版社,2001
    [30]常道庆,刘碧龙,李晓东,田静.具有压电分流电路薄板的吸声特性—理论分析,声学学报,2008.33(2):36-40
    [31]李黎明,ANSYS有限元分析实用教程,北京:清华大学出版社,2005
    [32]贾宝贤,边文凤,赵万生,王振龙.压电超声换能器的应用与发展,压电与声光,2005,27(2),131-135
    [33]http:/hi.baidu.com/yangms/blog/item/108590ec7da99c1101e928ad.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700