消声器及穿孔元件声学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
消声器是控制发动机进、排气噪声的有效装置,其声学性能的计算与分析是消声器设计的基础。由于能改善消声效果和气体流动特性,穿孔元件在消声器中广泛应用,为预测消声器的声学性能,首先需要确定穿孔元件的声学特性。本文针对消声器声学性能的计算方法和穿孔元件的声学特性开展系统研究。
     研究并发展了消声器声学性能的计算方法,包括基于平面波理论的传递矩阵法、有限元法和三维时域CFD(计算流体动力学)方法。基于平面波理论推导了考虑流速和热粘效应时典型消声元件的传递矩阵,并利用三维解析方法计算管道的末端修正系数,利用管道末端修正系数的近似公式修正了平面波理论,改善了传递矩阵法的计算精度。发展考虑流动效应时消声器声学计算的有限元法以预测穿孔管消声器的传递损失,研究有限元法计算中的数值误差,比较分析有限元法计算消声器传递损失的声波分解法和四极参数法。发展三维时域CFD方法预测消声器的传递损失,分析时域CFD方法模拟管道内声波传播的数值误差,研究时域CFD法预测消声器传递损失的脉冲法和声波分解法。通过算例分析和总结三种方法预测消声器声学性能的优缺点。
     以穿孔板模型为对象,采用数值方法研究穿孔元件的声学特性。无流情况下,采用有限元法研究穿孔板的声阻抗,建立穿孔板声阻抗的有限元模型,分析各种结构参数对穿孔板声学厚度修正系数的影响,并根据计算结果给出穿孔板声学厚度修正系数的近似公式;有流情况下,采用时域CFD方法研究穿孔板的声阻抗,分别建立穿孔板在通过流、掠过流下声阻抗的CFD模型,分析结构参数和气流马赫数对穿孔板声阻和声抗的影响,根据计算结果分别拟合出两种流动形式下穿孔声阻抗的近似公式。综合无流、有流情况下穿孔板声阻抗的近似公式,给出穿孔元件声阻抗新模型。应用本文获得的穿孔声阻抗新模型预测穿孔管消声器的传递损失,预测结果和实验结果吻合很好,验证了本文模型的可用性和准确性,并通过和以往声阻抗模型的比较验证了本文模型的先进性。
     设计、搭建消声器声学性能测量实验台,研究消声器声学性能的测量方法。在有流情况下,应用快速正弦扫频和同步时域平均技术以提高信噪比,改善测量结果的精度。应用双负载法在该实验台上测量了无流、有流情况下穿孔管消声器实验件的传递损失,实验测量结果和应用本文穿孔声阻抗新模型的预测结果吻合良好,验证了本文穿孔声阻抗新模型的可用性和准确性。
     应用本文穿孔声阻抗新模型预测了不同结构和气流参数下穿孔消声器的传递损失,根据预测结果分析了穿孔元件的各种结构和气流参数对消声器传递损失的影响,为实际消声器的设计提供了有意义的指导。
Silencer is an efficient device to control the intake and exhaust noise of engines, and the prediction and analysis of acoustic attenuation performance is necessary for silencer design. The perforated elements are commonly used in silencers to improve the acoustic attenuation and flow characteristics. To predict the acoustic attenuation performance of silencers, the acoustic characteristics of perforated elements needs to be determined first. Therefore, the present thesis will investigate in detail the calculation methods of acoustic attenuation performance of silencers and the acoustic characteristics of perforated elements.
     Three kinds of methods for the prediction of silencer acoustic attenuation performance are developed, including the transfer matrix method based on the plane wave theory, finite element method and three-dimensional time domain CFD (Computational Fluid Dynamics) method. Based on the plane wave theory, the transfer matrices of several acoustic elements are derived with consideration of the flow and thermo-viscosity effect. A three-dimensional analytical approach is developed to calculate the duct end correction coefficient, and a curve-fitting expression for the end correction coefficients is obtained and used in the corrected plane wave theory to improve the accuracy of transfer matrix method. The finite element method for the prediction of silencer acoustic attenuation performance with consideration of the flow convected effect is developed to predict the transmission loss of perforated duct silencer. The numerical errors of finite element method for the acoustic computation are analyzed, and the wave decomposition method and four-pole parameter method for the calculation of silencer transmission loss by using the finite element method are discussed. The time domain CFD method is developed to predict the transmission loss of silencers. The numerical errors in the CFD simulation for sound propagation in duct are analyzed, the pulse method and wave decomposition method are combined with the time domain CFD approach to determine the transmission loss of silencers. The advantages and shortcomings of the three methods for the prediction of silencer acoustic attenuation performance are discussed.
     The acoustic characteristics of perforated plate are studied by using the numerical methods. For the case without flow, the acoustic impedance of perforated plate is calculated by using finite element method. The finite element model for determination of the acoustic impedance of perforation is first built, and then the effect of various structure factors on the acoustic thickness correction coefficient of perforated plate is investigated. A curve-fitting expression for the end correction coefficient is obtained based on the numerical results. For cases with flow, the acoustic impedance of perforated plate is studied with the time domain CFD method. The CFD models for the perforated plates with cross flow and grazing flow are built, and the effects of structure factors, cross flow and grazing flow on the acoustic resistance and reactance of the perforated plates are studied. Based on the numerical results, the curve-fitting expressions for the acoustic impedance of perforated plates with cross flow and grazing flow are obtained. Combining the curve-fitting expressions for the acoustic impedance of perforated plate without and with flow, the new models for acoustic impedance of perforated element without and with flow are presented. With the present models for the acoustic impedance of perforation, the transmission loss of perforated duct silencers is predicted, and the predictions are compared with measurements, and the good agreements demonstrate that the present models are suitable and accurate. The predictions with the present models are also compared with results models before, and the comparison demonstates that the present models are better.
     A testing bed for measuring the acoustic attenuation performance of silencer is designed and built, and the measurement method is studied. For the measurement of transmission loss of silencer with flow, the rapid sine sweep and sync time averaging techniques are used to increase the signal-to-noise ratio and improve the measurement accuracy. Using this testing bed, the transmission loss of prototype perforated duct silencers are measured with the two-load method for cases without and with flow. The measurements show good agreements with the predictions, which proves that the present models are accurate.
     Using the present models for the acoustic impedance of perforation, the transmission loss of perforated silencers with different structures and flow are predicted, and the effects of various structure factors and flow conditions on the transmission loss is examined, which may be used to guide the practical silencer designs.
引文
[1]蒋洤清.船舶噪声控制.北京:人民交通出版社,1985
    [2]朱孟华.内燃机振动与噪声控制.北京:国防工业出版社,1995
    [3]杨庆佛.内燃机噪声控制.太原:山西人民出版社,1985
    [4]方丹群.空气动力性噪声与消声器.北京:科学出版社,1978
    [5]赵松龄.噪声的降低与隔离(下册).上海:同济大学出版社,1989
    [6]赵松龄.噪声的降低与隔离(上册).上海:同济大学出版社,1985
    [7]Munjal M. L.. Acoustic of ducts and mufflers. New York: Wiley-Interscience Publication,1987
    [8]J. Igarashi and M. Toyama. Fundamental of acoustical silencers. Report No 339. Aeronautical Research Institute, University of Tokyo, December 1958:223-241P
    [9]Munjal M. L., Sreenath A. V., Narasimhan M. V.. Velocity ratio in the analysis of linear dynamical systems. Journa of Sound and Vibration,1973,26 (2):173-191P
    [10]Peat K. S.. The matrix of a uniform duct with a linear temperature gradient. Journal of Sound and Vibration,1988,123(1):43-53P
    [11]Davies P.0. A. L.. Practical flow duct acoustics. Journal of Sound and Vibration,1988,124 (1):91-115P
    [12]Rayleigh L.. The theory of sound, second edition. London: Macmillan,1894
    [13]Dokumaci E.. Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modeling of automobile catalytic converters. Journal of Sound and Vibration, 1995,182 (5):799-808P
    [14]Dokumaci E.. A note on transmission of sound in a wide pipe with mean flow and viscothermal attenuation. Journal of Sound and Vibration,1997,208 (4):653-655P
    [15]Zwikker C., Kosten C.. Sound absorbing materials. Amesterdam: Elsevier,1949
    [16]Sullivan J. W., Crocker M. J.. Analysis of concentric-tube resonators having unpartitioned cavities. The Journal of the Acoustical Society of America,1978,64 (1):207-215P
    [17]Sullivan J. W.. A method for modeling perforated tube muffler components. I. Theory. The Journal of the Acoustical Society of America,1979,66 (3):772-778P
    [18]Sullivan J. W.. A method for modeling perforated tube muffler components. II. Applications. The Journal of the Acoustical Society of America,1979,66 (3):779-788P
    [19]Jayaraman K., Yam K.. Decoupling approach to modeling perforated tube muffler components. The Journal of the Acoustical Society of America,1981,69:390-396P
    [20]Thawani P. T., Jayaraman K.. Modeling and application of straight-through resonators. The Journal of the Acoustical Society of America,1983,73 (4):1387-1389P
    [21]Rao K. N., Munjal M. L.. A generalized decoupling method for analyzing perforated element mufflers. Proceedings of the 1984 Nelson Acoustic Conference, Wisconsin,1984
    [22]Munjal M. L., Rao K. N., Sahasrabudhe A. D.. Aeroacoustic analysis of perforated muffler components. Journal of Sound and Vibration,1987,114:173-188P
    [23]Peat K. S.. A numerical decoupling analysis of perforated pipe silencer elements. Journal of Sound and Vibration,1988,128 (2):199-212P
    [24]Documaci E.. Matrizant approach to acoustic analysis of perforated multiple pipe mufflers carrying mean flow. Journal of Sound and Vibration,1996,191 (4):505-518P
    [25]Documaci E.. A subsystem approach for acoustic analysis of mufflers having identical perforated pipes. Journal of Sound and Vibration,1996,193 (5):985-1001P
    [26]Selamet A., Easwaran V., Falkowski A. G.. Three-pass mufflers with uniform perforations. The Journal of the Acoustical Society of America,1999,105 (3):1548-1562P
    [27]黄其柏,师汉民.计及气流和线性温度梯度的内燃机穿孔管消声器研究.内燃机学报.1993,11(1):20-25页
    [28]蔡超,宫镇,赵剑,曾发林.拖拉机抗性消声器声学子结构声传递矩阵研究.农业机械学报,1994,25(2):65-71页
    [29]赵松龄,盛胜我.管道结构中含同轴穿孔管时的声传播特性.声学技术,1999,18(3):103-106页
    [30]赵松龄,盛胜我.抗性消声其中含有穿孔管时的声传递矩阵.声学技术,2000,19(1):2-5页
    [31]Peat K. S.. LAMPS software for the acoustic analysis of silencers. Proceedings of EuroNoise 1995:791-796P
    [32]Boden H., Abom M., Nygard S.. SID, a computer code for prediction of sound from complex duct systems. The 8th International Congress on Sound and Vibraiton,2-6 July 2001
    [33]杨维平,朱德滨.内燃机排气消声器声传递矩阵分析及计算机辅助设计.西南林学院学报,1996,16(2):109-114页
    [34]陈朝阳,胡立臣,唐永琪.车用消声器性能预测与软件开发.拖拉机与农用运输车,1997,3:22-27页
    [35]张宏波,葛蕴珊,杨登峰等.基于传递矩阵方法的排气消声器计算机辅助设计.北京理工大学学报,2004,24(5):392-394页
    [36]Miles. J.. The reflection of sound due to change in cross section of a circular tube. The Journal of the Acoustical Society of America,1944,16 (1):14-19P
    [37]El-Sharkawy A. I., Nayfeh A. H.. Effect of the expansion chamber on the propagation of sound in circular pipes. The Journal of the Acoustical Society of America,1978,63:667-674P
    [38]Ih J. G., Lee B. H.. Analysis of higher-order mode effects in the circular expansion chamber with mean flow. The Journal of the Acoustical Society of America,1985,77 (4):1377-1388P
    [39]Selamet A., Radavich P. M.. The effect of length on the acoustic attenuation performance of concentric expansion chambers:an analytical, computaional and experimental investigation. Journal of Sound and Vibration,1997,201 (4):407-426P
    [40]Selamet A., Ji Z. L.. Acoustic attenuation performance of circular flow-reversing chambers. The Journal of the Acoustical Society of America,1998,104(5):2867-2877P
    [41]Selamet A., Ji Z. L.. Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet. Journal of Sound and Vibration,1999,223(2):197-212P
    [42]Selamet A., Ji Z. L.. Acoustic attenuation performance of circular expansion chambers with single-inlet and double-outlet. Journal of Sound and Vibration,2000,229(1):3-19P
    [43]Selamet A., Ji Z. L.. Circular asymmetric helmholtz resonators. The Journal of the Acoustical Society of America,2000,107(5): 2360-2369P
    [44]Xu M. B., Selamet A., Lee I., Huff N. T.. Sound attenuation in dissipation expansion chambers. Journal of Sound and Vibration, 2004,272(1):1125-1133P
    [45]Kirby R., Denia D. F.. Analytic mode matching for a circular dissipative silencer containing mean flow and a perforated pipe. The Journal of the Acoustical Society of America,2007,122(6): 3471-3482P
    [46]Gladwell G. M. L.. A finite element method for acoustics, Proceedings of the fifth international conference on acoustics, Liege,1965, L33
    [47]Craggs A.. The use of simple three-dimensional acoustic finite elements for determing the natural modes and frequencies of complex shaped enclosure. Journal of Sound and Vibration,1972, 23:331-339P
    [48]Young C. I. J., Crocker M. J.. Prediction of transmission loss in mufflers by the finite element method. Journal of the Acoustical Society of America,1975,57:144-148P
    [49]Craggs A.. A finite element method for modeling dissipation mufflers with a locally reactive lining. Journal of Sound and Vibration,1977,54 (2):285-296P
    [50]Ross D. F.. A finite element analysis of parallel-coupled acoustic system using subsystems. Journal of Sound and Vibration,1980,69 (4):509-518P
    [51]Ross D. F.. A finite element analysis of perforated compartment acoustic systems. Journal of Sound and Vibration,1981,79: 133-243P
    [52]Peat K. S.. Evaluation of four-pole parameters for ducts with flow by the finite element method. Journal of Sound and Vibration,1982,84 (3):389-395P
    [53]Cummings A., Chang I. J.. Sound attenuation of a finite length dissipative flow duct silencer with internal mean flow in the absorbent. Journal of Sound and Vibration,1988,127.(1):1-17P
    [54]Barbieri R., Barbieri N., Fonseca K.. Application of the Galerkin-FEM and the improved four-pole parameters method to predict acoustic performance of expansion chambers. Journal of Sound and Vibration,2004,276:1101-1107P
    [55]蔡超,宫镇,诸圣国.轴对称抗性消声器四端子参数有限单元法求解.江苏工学院学报,1986,7(3):50-62页
    [56]蔡超,宫镇,诸圣国.存在气流时轴对称抗性消声器传声损失的有限单元法求解.汽车工程,1994,16(5):296-302页
    [57]Chen W. H., Lee F. C., Chiang D. M.. On the acoustic absorption of porous materials with different surface shapes and perforated plates. Journal of Sound and Vibration,2000,237(2):337-355P
    [58]Lee F. C., Chen W. H.. On the acoustic absorption of multi-layer absorbers with different inner structures. Journal of Sound and Vibration,2003,259(4):761-777P
    [59]Mehdizadeh 0. Z., Paraschivoiu M.. A three-dimensional finite element approach for predicting the transmission loss in mufflers and silencers with no mean flow. Applied Acoustics,2005, 66:902-918P
    [60]康钟绪,季振林.穿孔管消声器消声性能的有限计算及分析.噪声与振动工程,2005,5:18-20页
    [61]葛蕴珊,张宏波,宋艳冗等.汽车排气消声器的三维声学性能分析.汽车工程,2006,28(1):51-55,63页
    [62]Seybert A. F., Cheng C. Y. R.. Application of the boundary element method to acoustic cavity response and muffler analysis. Transactions of the American Society of Mechanical Engineers, Journal of Vibration, Acoustics, Stress and Reliability in Design,1987,109:15-21P
    [63]Cheng C. Y. R., Seybert A. F.. A multidomain boundary element solution for silencer and muffler performance prediction. Journal of Sound and Vibration,1991,151:119-129P
    [64]Ji Z. L., Ma Q., Zhang Z. H.. Application of the boundary element method to predicting acoustic performance of expansion chamber mufflers with mean flow. Journal of Sound and Vibration,1994, 173:57-71P
    [65]Ji Z. L., Ma Q., Zhang Z. H.. A boundary element scheme for evaluation of the four-pole parameters of ducts and mufflers with low Mach number non-uniform flow. Journal of Sound and Vibration, 1995,183 (1):107-117P
    [66]王雪仁,季振林.快速多极子声学边界元法及其研究应用.哈尔滨工程 大学学报,2007,28(7):752-757页
    [67]王雪仁,季振林.双倒易边界元法应用于预测三维势流管道和消声器声学特性.声学学报,2008,33(1):76-83页
    [68]Jia Z. H., Mohanty A. R., Seybert A. F.. Numerical modeling of perforated reactive mufflers. Proc.2nd Int. Congress on Recent Advances in Air-and Structure-Borne Sound and Vibration. Alabama,1992:957-964P
    [69]Seybert A. F., Mohanty A. R., Jia Z. H.. Acoustic BEM for perforated muffler components. Proc.14th Int. Conf. on Boundary Element Methods,1993:269-278P
    [70]Wang C. N., Tse C. C., Chen Y. N.. A boundary element analysis of a concentric-tube resonator. Engineering Analysis with Boundary Elements,1993,12 (1):21-27P
    [71]Wang C. N., Liao C. Y.. Boundary integral equation method for evaluating the performance of straight-through resonator with mean flow. Journal of Sound and Vibration,1998,216:281-294P
    [72]Wu T. W., Wan G. C.. Muffler performance studies using a direct mixed body boundary element method and a three-point method for evaluating transmission loss. Journal of Vibration and Acoustic, 1996,118:119-129P
    [73]Wu T. W., Zhang P., Cheng C. Y. R.. Boundary element analysis of mufflers with an improved method for deriving the four-pole parameters. Journal of Sound and Vibration,1998,217(4):767-779P
    [74]Ji Z. L., Selamet A.. Boundary element analysis of three-pass perforated duct mufflers. Noise Control Engineering Journal, 2000,48:151-156P
    [75]李增刚.SYSNOISE Rev 5.6详解.北京:国防工业出版社,2005
    [76]Chang I. J., Cummings A.. A time domain solution for the attenuation, at high amplitudes, of perforated duct silencers and comparison with experiment. Journal of Sound and Vibration, 1988,122:243-259P
    [77]Morel T., Morel J., Blaser D. A.. Fluid-dynamic and acoustic modeling of concentric-tube resonators/silencers. SAE,1991, Paper 910072
    [78]Selamet A., Dickey N. S., Novak J. M.. A time domain computational simulation of acoustic silencers. Journal of Vibration and Acoustics,1995,117:323-331P
    [79]Dickey N. S., Selamet A., Novak J. M.. Multi-pass perforated duct silencers:a computational approach. Journal of Sound and Vibration,1998,211:435-448P
    [80]Dickey N. S., Selamet A., Novak J. M.. The effect of high-amplitude sound on the attenuation of perforated duct silencers. The Journal of the Acoustical Society of America,2000,108: 1068-1081P
    [81]Dickey N. S., Selamet A., Tallio K. V.. Effects of numerical dissipation and dispersion on acoustic predictions from a time-domain finite difference technique for non-linear wave dynamics. Journal of Sound and Vibration,2003,259(1):193-208P
    [82]Broatch A., Serrano J. R., Arnau F. J., Moya D.. Time-domain computation of muffler frequency response:comparison of different numerical schemes. Journal of Sound and Vibration, 2007,305:333-347P
    [83]Abd El-Rahman A. I., Sabry A. S., Mobarak A.. Non-linear simulation of single pass perforated tube silencers based on the method of characteristics. Journal of Sound and Vibration,2004, 278:63-81P
    [84]Middelberg J. M., Barber T. J., Leong S. S.. Computational fluid dynamics analysis of the acoustic performance of various simple expansion chamber mufflers. Proceeding of Acoustics,2004, 123-127P
    [85]Broatch A., Margot X., Gil A.. A CFD approach to the computation of the acoustic response of exhaust mufflers. Journal of Computational Acoustics,2005,13 (2):301-316P
    [86]Payri F., Desamtes J. M., Broatch A.. Modified impulse method for the measurement of the frequency response of acoustic filters to weakly nonlinear transient excitations. The Journal of the Acoustical Society of America,2000,107 (2):731-738P
    [87]GB/T 4760-1995.声学消声器测量方法.中华人民共和国国家标准,1995
    [88]Seybert A. F., Ross D. F.. Experimental determination of acoustic properties using a two-microphone random-excitation technique. The Journal of the Acoustical Society of America,1977,61 (5): 1362-1370P
    [89]Chung J. Y., Balser D. A.. Transfer function method of measuring in-duct acoustic properties, I:Theory. The Journal of the Acoustical Society of America,1980,68 (3):907-913P
    [90]Chung J. Y., Balser D. A.. Transfer function method of measuring in-duct acoustic properties, II:Experiment. The Journal of the Acoustical Society of America,1980,68 (3):914-921P
    [91]Chung J. Y., Balser D. A.. Transfer function method of measuring acoustic intensity in a duct system with flow. The Journal of the Acoustical Society of America,1980,68 (6):1570-1577P
    [92]Jang S. H., Ih J. G.. On the multiple microphone method for measuring in-duct acoustic properties in the presence of mean flow. The Journal of the Acoustical Society of America,1998, 103 (3):1520-1526P
    [93]Lee I., Selamet A.. Impact of perforation impedance on the transmission loss of reactive and dissipative silencers. The Journal of the Acoustical Society of America,2006,120 (6): 3706-3713P
    [94]Lee I.. Acoustic characteristics of perforated dissipative and hybrid silencers. PH. D thesis, The Ohio State University, Columbus, American,2005
    [95]Singh R., Katra T.. Development of an impulse technique for measurement of muffler characteristics. Journal of Sound and Vibration,1978,56:279-298P
    [96]To C. W. S., Doige A. G.. A transient testing technique for the determination of matrix parameters of acoustic systems. I: Theory and principles. Journal of Sound and Vibration,1979, 62:207-222P
    [97]To C. W. S., Doige A. G.. A transient testing technique for the determination of matrix parameters of acoustic systems. II: Experimental procedures and results. Journal of Sound and Vibration,1979,62:223-233P
    [98]To C. W. S., Doige A. G.. The application of a transient technique to the determination of acoustic properties of unknown systems. Journal of Sound and Vibration,1980,71:545-554P
    [99]Lung T. F., Doige A. G.. A time-averaging transient testing method for acoustic properties of piping systems and mufflers with flow. The Journal of the Acoustical Society of America, 1983,73 (3):867-876P
    [100]Lee S. H., Ih J. G.. Empirical model of the acoustic impedance of a circular orifice in grazing mean flow. The Journal of the Acoustical Society of America,2003,114 (1):98-113P
    [101]Lee S. H., Ih J. G.. Effect of non-uniform perforation in the long concentric resonator on transmission loss and back pressure. Journal of Sound and Vibration,2008,311:280-296P
    [102]Abom M., Boden H.. Error analysis of two-microphone measurements in ducts with flow. The Journal of the Acoustical Society of America,1988,83 (6):2429-2438P
    [103]Tao Z., Seybert A. F.. A review of current techniques for measuring muffler transmission loss. SAE paper,2003-01-1653, 2003
    [104]Munjal M. L., Doige A. G.. Theory of a two source-location method for direct experimental evaluation of the four-pole parameters of an aeroacoustic element. Journal of Sound and Vibration, 1990,141 (2):323-333P
    [105]蔡超,宫振.排气消声器声学实验台的研制.江苏工学院学报,1991,12(4):14-18页
    [106]唐宇彤,蔡翠雪.消声器模拟实验台的设计研究.山东机械,1998,2:12-13页
    [107]张猛,宋德耀,钟芳源.脉动气流条件下消声器特性研究的实验装置及初步结果.噪声与振动控制,1998,6:14-17页
    [108]刘丽萍,肖福明,陆辰,王祝炜.存在气流时消声器消声性能的实验研究.内燃机工程,2001,1:54-57,61页
    [109]阮登芳,邓兆祥,陈大勇,张振良.内燃机消声器特性实验装置的研究及应用.内燃机工程,2004,25(4):39-41页
    [10]王雪仁,张文平,朱明刚,张天元,季振林.船用柴油机排气消声器性能实验台的研制.内燃机工程,2006,27(2):64-67页
    [111]张晓东,杜江,欧阳华,杜朝辉.稳定气流对不同类型消声器气动-声学性能影响的实验研究.噪声与振动控制,2008,4:141-144,148页
    [112]Crandall I. B.. Theory of Vibration Systems and Sound. New York: D. Van Nostrand & Co. Inc.,1927
    [113]Sivan L. J.. Acoustic impedance of small orifice. The Journal of the Acoustical Society of America,1935,7:94-101P
    [114]Ingard U.. On the theory and design of acoustic resonators. The Journal of the Acoustical Society of America,1953,25 (6): 1037-1061P
    [115]Melling T. H.. The acoustic impedance of perforates at medium and high sound pressure levels. Journal of Sound and Vibration, 1973,29 (1):1-65P
    [116]Rschevkin S. N.. A course of lectures on the theory of sound. London:Pergamon Press,1963
    [117]Fok V. A.. A theoretical investigation of the acoustical conductivity of a circular aperture in a well put across a tube. Comptes Rendus (Doklady) de 1'Acadamie des Sciences de 1' URSS,1941, XXXI (9):875-878P
    [118]Lee I., Selamet A., Huff N. T.. Acoustic impedance of perforations in contact with fibrous material. The Journal of the Acoustical Society of America,2006,119:2785-2797P
    [119]Ingard U., Ising H.. Acoustic nonlinearity of an orifice. The Journal of the Acoustical Society of America,1967,42 (1): 6-17P
    [120]Garrison G. D., Schnell A. C., Baldwin C. D.et al. Suppression of combustion oscillations with mechanical damping devices. Pratt and Whitney Aircraft Report,1969, PWA FR3299
    [121]Rice E. J.. A model for the acoustic impedance of a perforated plate liner with multiple frequency excitation. NASA, TM X-67950, 1971
    [122]Ronneberger D.. The acoustical impedance of holes in the wall of flow ducts. Journal of Sound and Vibration,1972,24 (1): 133-150P
    [123]Rice E. J.. A theoretical study of the acoustic impedance of orifices in the presence of a steady grazing flow. NASA,1976, TM X-71903
    [124]Bauer A. B.. Impedance theory and measurement on porous acoustic liners. Journal of Aircraft,1977,14:720-728P
    [125]Rao K. N., Munjal M. L.. Experimental evaluation of impedance of perforates with grazing flow. Journal of Sound and Vibration, 1986,108 (2):283-295P
    [126]Kooi J. W., Sarin S. L.. An experimental study of the acoustic impedance of Helmholtz resonator arrays under a turbulent boundary layer. AIAA Paper,1981,81-1998
    [127]Cummings A.. The effects of grazing turbulent pipe-flow on the impedance of an orifice. Acustica,1986,61:233-242P
    [128]Kirby R., Cummings A.. The impedance of perforated plates subjected to grazing gas flow and backed by porous media. Journal of Sound and Vibration,1998,217:619-636P
    [129]Howe M. S.. On the theory of unsteady high Reynolds number flow through a circular aperture. Proceedings of Royal Society of London, Series A,1979,366:205-233P
    [130]Howe M. S., Scott M. I., Sipcic S. R.. The influence of tangential mean flow on the Rayleigh conductivity of an aperture. Proceedings of Royal Society of London, Series A,1996,452: 2303-2317P
    [131]Bechert D. W.. Sound absorption caused by vorticity shedding demonstrated with a jet flow. Journal of Sound and Vibration, 1980,70:389-405P
    [132]Jing X. D., Sun X. F.. Experimental investigation of perforated liners with bias flow. The Journal of Acoustical Society of America,1999,106 (5):2436-2441P
    [133]Jing X. D., Sun X. F.. Effect of plate thickness on impedance of perforated plates with bias flow. AIAA,2000,38(9):1573-1578P
    [134]Sun X., Jing X., Zhang H., Shi Y.. Effect of grazing-bias flow interaction on acoustic impedance of perforated plates. Journal of Sound and Vibration,2002,254 (3):557-573P
    [135]景晓东,孙晓峰.穿孔板切向流效应的理论和实验研究.航空学报,2002,23(5):405-410页
    [136]景晓东,孙晓峰,吴景枢等.基于声涡转化对穿孔板切向流效应的研究.力学学报,2002,34(5):657-665页
    [137]Easwavan V., Munjal M. L.. Plane wave analysis of conical and exponential pipes with incompressible mean flow. Journal of Sound and Vibration,1992,152(1):73-93P
    [138]华绍增,杨学宁等.实用流体阻力手册.北京:国防工业出版社,1985
    [139]杜功焕,朱哲民,龚秀芬.声学基础,第2版.南京:南京大学出版社,2001
    [140]Abramowitz M., Stegun I. A.. Handbook of Mathematical functions. New York:Dover,1970
    [141]王勖成,邵敏.有限单元法基本原理和数值方法,第2版.北京:清华大学出版社,1997
    [142]Astley R. J.. A finite element, wave envelope formulation for acoustical radiation in moving flows. Journal of Sound and Vibration,1985,103 (1):471-485P
    [143]Temkin Samuel. Elements of acoustics. New York:John Wiley & Sons, 1981
    [144]LMS International Corporation. Numerical Acoustics Theoretical Manual.2006
    [145]Ihlenberg F., Babuska I., Sauter S.. Reliability of finite element methods for the numerical computation of waves. Transactions on the Built Environment,1995,10:259-266P
    [146]Bouillard P., Ihlenburg F.. Error estimation and adaptivity for the finite element method in acoustic:2D and 3D applications. Computer methods in applied mechanics and engineering,1999, 176:147-163P
    [147]傅永华.有限元分析基础.武汉:武汉大学出版社,2003
    [148]Bilawchuk S., Fyfe K. R.. Comparison and implementation of the various numerical methods used for calculating transmission loss in silencer systems. Applied Acoustics,2003,64:903-916P
    [149]陶文铨.数值传热学,第二版.西安:西安交通大学出版社,2001
    [150]陶文铨.计算传热学的近代进展.北京:科学出版社,2000
    [151]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004
    [152]王瑞金等.Fluent技术基础与应用实例.北京:清华大学出版社,2007
    [153]Mattiussi C.. An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology. Journal of Computational Physics,1997,133 (2): 289-309P
    [154]Tidriri M. D.. Analysis of the hybrid finite element/finite volume methods for linear hyperbolic and convection-dominated convection-diffusion problems. Journal of Computational and Applied Mathematics,2002,139:323-350P
    [155]Fluent Inc. Fluent 6.3 User's guide,2006
    [156]Freitas C. J.. Editorial. ASME Journal of Fluids Engineering, 1993,115:339-340P
    [157]Oberkampf W. L, Blottner F. G., Aeschlinman D. P.. Methodology for computational fluid dynamics code verification and validation. AIAA Paper,1995,95-2226
    [158]傅德熏,马延文.高精度差分格式及多尺度流场特性的数值模拟.空气动力学学报,1998,16(1):24-35页
    [159]张涵信,呙超,宗文刚.网格与高精度差分计算问题.力学学报,1999,31(7):398-405页
    [160]胡广书.数字信号处理——理论、算法与实现.北京:清华大学出版社,1997
    [161]酒井英昭,白玉林.信号处理.北京:科学出版社,2001
    [162]周利清,苏菲.数字信号处理基础.北京:北京邮电大学出版社,2005
    [163]Nyquist H. Certain topics in telegraph transmission theory. AIEE. Trans.,1928,47:617-644P
    [164]王济,胡晓.Matlab在振动信号处理中的应用.北京:中国水利水电出版社,知识产权出版社,2006
    [165]Mechel F. P.. Formulas of Acoustics. New York:Springer,2002
    [166]Daniell P. J.. The coefficient of end-correction. Philosophical Magazine,1915,30:248-256P
    [167]Nomura Y., Yamamura I., Inawashiro S.. On the acoustic radiation from a flanged circular pipe. Journal of the Physical Society of Japan,1960,15:510-517P
    [168]Kergomard J., Garcia A.. Simple discontinuities in acoustic waveguides at low frequencies:Critical analysis and formulae. Journal of Sound and Vibration,1987,114:465-479P
    [169]Norris A. N., Sheng I.. Acoustic radiation from a circular pipe with an infinite flange. Journal of Sound and Vibration,1989, 135:85-93P
    [170]王雪仁.船用柴油机排气消声器声学性能预测的边界元法及实验研究.博士论文,哈尔滨工程大学,哈尔滨,2007
    [171]Holland K. R., Davies P.O. A. L.. The measurement of sound fower flux in flow ducts. Jounal of Sound and Vibration,2000,230 (4):915-932P
    [172]ASTM E1050-98. Standard test method for impedance and absorption of acoustical materials using a tube, two microphones, and a digital frequency analysis system. American Society for Testing and Materials,1998:951-961P
    [173]GB/T 18696.2-2002.声学阻抗管中吸声系数和声阻抗的测量第2部分:传递函数法.中华人民共和国国家标准,2002
    [174]Chung J. Y.. Cross-spectral method of measuring acoustic intensity without error caused by instrument phase mismatch. The Journal of the Acoustical Society of America,1978,64 (6): 1613-1616P
    [175]Salikuddin M., Ahuja K. K., Brown W. H.. An improved impulse method for studies of acoustic transmission in flow ducts with use of signal synthesis and averaging of acoustic pulses. Journal of Sound and Vibration,1984,94 (1):33-61P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700