高能激光烧蚀靶材动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲激光沉积(PLD,Pulsed Laser Deposition)技术的迅猛发展和诱人的应用前景,使其成为当今世界的研究热点之一,其在薄膜和纳米粒子制备技术方面的优势更是独树一帜。该领域的实验进展一直远超前于理论进展。目前,伴随着激光锁模技术和啁啾技术的实验发展,能量超高化和脉宽超短化成为脉冲激光向极端条件发展的两个主要方向,相应的,在高能与超短激光脉冲条件下的PLD实验技术的进一步发展,呼唤着理论研究的不断进步。
     本文比较系统和深入地研究了纳秒级和飞秒级PLD技术的脉冲激光烧蚀(PLA,Pulsed Laser Ablation)动力学,细致地讨论了纳秒级PLA过程中的蒸发效应、等离子屏蔽效应以及动态吸收效应;飞秒级PLA过程中的非傅里叶热传导效应、电子—电子碰撞、电子态密度改变引起的效应(即DOS效应:Density of States)等对于靶材烧蚀的影响。在纳秒量级内将整个热物理过程细致地分为熔融前和熔融后两个子过程,构建了更为合理的热传导动力学模型;在飞秒级PLA动力学研究中取得了更为丰硕的成果:构建了能统一描写从纳秒级到飞秒级的统一双温方程(TTM,Two Temperature Model),能反映电子和电子碰撞效应的改进TTM以及适用于更高能域(包括DOS效应)的新的TTM。在上述模型的框架内,我们分别以金属Ni,Au,Fe,Cu及高温超导YBa_2Cu_3O_7(YBCO)等靶材为对象,对其热传导性质进行了模拟研究,结果均与现有的文献更为精确。我们的研究结果,对于正确深入地了解PLA过程中的物理图像具有重要的理论价值。
     本文的结构组织如下:
     第一章简要综述了PLD技术发展及其动力学研究进展,尤其分析了纳秒级PLA和飞秒级PLA过程的特性,并将两者进行了对比。
     第二章和第三章介绍了我们对高能纳秒(紫外和红外)脉冲激光对单组分金属靶材和多组分氧化物钇钡铜氧超导体靶材YBCO的烧蚀特性研究的新成果。首先,从激光辐照结束后的超热效应和靶材烧蚀相变特性分析出发,将烧蚀过程分为靶材熔融前和熔融后两个子过程,给出了不同子过程下的热传导方程,细致地考虑了蒸发效应,等离子屏蔽效应以及动态吸收效应,构建了更为合理的热传导模型。尤其值得指出的是,我们提出了平均电离能的概念,成功地描述了相应的等离子屏蔽效应,解决了研究多组分靶材的等离子体屏蔽效应的瓶颈问题。在新的模型框架内,给出了靶材温度随时间和深度的演化分布规律。最后,详细讨论了蒸发效应,等离子屏蔽效应以及动态吸收效应对烧蚀过程的影响。
     第四章在深入分析纳秒级PLA的平衡烧蚀和飞秒级PLA的非平衡烧蚀的基础上,通过引入电声耦合时间(ΥR)和脉冲宽度(ΥL)的比值构建了平滑过渡参数,建立了能够描述从纳秒到皮秒、飞秒级脉冲激光烧蚀的热物理现象的非傅立叶统一双温方程TTM。利用此方程,我们细致地研究了电子和晶格亚系统随时间和位置的演化规律,以及蒸发阈值随脉宽的变化规律。
     第五章深入探讨了飞秒激光的脉宽和能量密度对电声驰豫时间的影响。研究发现,当激光能量密度固定时,脉宽越短,电声驰豫时间越短。当脉宽固定时,激光能量密度越低,电声驰豫时间越长。
     第六章和第七章系统地研究了随着能量的进一步提高,高能飞秒激光烧蚀机制发生深刻变化的情况。第六章针对电子温度大于4000K的情况,研究发现此时电子—电子碰撞效应必须考虑。在同时考虑电子—晶格碰撞和电子—电子碰撞的基础上,构建了改进的双温方程。利用改进的双温方程,研究了靶材表面的电子和晶格亚系统随时间的演化规律和靶材内的电子和晶格亚系统随时间和烧蚀深度的三维变化规律。第七章研究了电子温度超过10000K时,在烧蚀机制中必须进一步考虑DOS效应的变化。在此基础上,以过渡金属Ni和贵重金属Au为例,研究了由DOS效应引起的热物理参数随温度的变化规律,然后利用新的TTM对不同厚度薄膜的融化阈值进行了数值模拟,发现理论值与实验值符合的较好,该研究表明,当电子温度超过10000K时,DOS效应是不能被忽略的。
     本文主要有如下创新之处:
     (1)构建了考虑蒸发效应、多组分等离子屏蔽效应以及动态吸收效应的不同烧蚀阶段的热传导方程组,将方程组分为靶材熔融前、熔融后两个子过程的相应热传导方程。
     (2)首次建立了能统一描述从纳秒到皮秒、飞秒级脉冲激光烧蚀的热物理现象的非傅立叶双温方程,并进一步探讨了电子和晶格亚系统温度随时间和位置的演化规律,以及不同脉宽下的蒸发阈值。
     (3)在电子温度大于4000K情况下,在同时考虑电子—晶格碰撞和电子—电子碰撞的基础上,构建了改进的TTM。
     (4)当电子温度超过10000K时,靶材的电子态密度、能带结构发生了变化,更进一步考虑了DOS效应的影响,建立了新的TTM。
Pulsed laser deposition (PLD) has received a great deal of attention nowadaysin the world as a promising and versatile technique, especially for growingthin films and preparing nanoparticle field. The research on the experiment isfar beyond the corresponding theoretical research. With the development ofchirp technology and mode-locking technique, high energy and short pulse arethe two main directions of laser development to the extreme conditions. Underthis condition, the rapid development trend of PLD calls for appearance ofcorresponding new mechanism.
     Our dissertation systematically and intensively focuses on the dynamic ofnanosecond and femtosecond PLD technology, specially, we discuss in detailthe dynamic caused by the the vaporization effect, plasma shielding effect, dynamicabsorption effects in nanosecond pulsed laser ablation (PLA) processing,and non-equilibrium conduction, electron-electron collisions, the effect causedby electron density of states (i.e., DOS effect), et al. We divide the thermophysicalprocessing into two subprocess which before and after the melting target toestablish more reasonable thermal conductivity dynamics model. More fruitfulresults in femtosecond PLA dynamic research are obtained: we establish a unifiedthermal model of thermophysical effects with pulse width from nanosecondto femtosecond, a new TTM equation includes electron-electron collisions andDOS effect which can be suitable for higher energy field. Using the correspondingnew model, take Ni, Au, Fe, Cu and superconducting YBCO as examples tosimulate their thermal conductivity properties, we find our simulation is moreprecise than the previous research. Our results will be valuable to understand widely the physical representation of PLA processing.
     The dissertation is organized as follows:
     The first chapter briefly introduces the PLD technique and correspondingdynamic mechanism, especially the ablation characteristics of nanosecond PLDand femtosecond PLD.
     The second and third chapters summarize our new results of thenanosecond pulsed laser (include ultraviolet and infrared one) ablationof one-component metal target and multi-elemental oxide superconductingYBa_2Cu_3O_7 (YBCO) target. Firstly, based on the superheat and phase transitionanalysis, two different heat flux equations for different ablation stages, namelybefore and after target melting are presented. Simultaneously considering influenceof vaporization effect, plasma shielding effect, dynamic absorption effects,the results obtained from the two heat flux equations are more reasonable.It must be mentioned that the mean ionization energy we introduced into theequation solve effectively the key part for the plasma shielding effect in multielementtarget. The dynamic development of space- and time-dependence oftemperature in the target is studied. Finally, the influence of vaporization effect,plasma shielding effect, dynamic absorption effects on whole ablation depth arestudied.
     In the fourth chapter, based on the study of equilibrium ablation fornanosecond laser ablation and non-equilibrium ablation for femtosecond laserablation, the ratio of the electron-phonon coupling timeτ_R and laser pulse widthτ_L is introduced as a smoothly transition parameter for making unified nonfourierthermal model. The space- and time-dependence of electron and latticetemperature of target, and the evolvement of vaporization threshold fluence withlaser pulse width are discussed.
     In the fifth chapter, the effect of pulse width and fluence of femtosecondlaser on the electron-phonon relaxation time is studied depending on twotemperaturemodel (TTM). For a certain laser fluence the shorter the pulsewidth, the shorter the electron-phonon relaxation time is. However, the electronphononrelaxation time becomes long for low laser fluence when the pulse widthis fixed.
     In the sixth and seventh chapters, the great improvement of femtosecondlaser ablation mechanism is studied following the increase of the laser energy.In the sixth chapter, when the electron temperature is higher than 4000K, bothelectron-phonon collisions and electron-electron collisions must be consideredfor describing the improved TTM. Utilizing the improved TTM equations, westudied the dynamic of the electrons and lattices on the target surface followingthe time and the three-dimensional development of the electrons and latticesinside the target following the time and the ablation depth. Moreover, in theseventh chapter, for electron temperature is higher than 10000K, the temperaturedependencies of thermophysical properties are studied for transition metalNi and noble metal Au based on electron density of states (DOS). The results ofthe analysis of the thermophysical properties at high electron temperatures areincorporated into TTM model and applied for simulations of laser melting ofthin films. The new calculated values of the threshold fluences for surface meltingare in a better agreement with the results of experimental measurements, sothe DOS effect can not be neglected when the electron temperature is higherthan 10000K.
     The main innovations of the dissertation are as follows:
     (1) Based on the consideration of vaporization effect, plasma shieldingeffect, dynamic absorption effect, two different heat flux equations for different ablation stages, namely before and after target melting, are presented.
     (2) A non-fourier unified thermal model is made for the first time, whichcan describe the thermophysical effects with laser pulse width ranges fromnanosecond to femtosecond. The space- and time-dependence of electron andlattice temperature of target, and the evolvement of vaporization threshold fluencewith laser pulse width are discussed in detail.
     (3) The improved TTM for high energy femtosecond ablation on the conditionthat temperature of electron is higher than 4000K is made by consideringelectron-phonon collisions and electron-electron collisions.
     (4) A new TTM is established by considering DOS effect under thecondition that temperature of electron is higher than 10000K.
引文
[1] Hohig R H, Woolston J R. Laser-induced emission of electrons, ions and neutral atoms from solid surfaces. Appl.Phys.Lett., 1963, 2:138-139
    [2] 谭新玉.纳秒脉冲激光沉积技术中靶材烧蚀机制及等离子体膨胀动力学的再探索:[博士学位论文].华中科技大学图书馆,2008
    [3] Dijkkamp D, Venkateasan T, X.D W. Preparation of Y-Ba-Cu oxide supper conductior thin films using pulsed laser evaporation from high Tc bulk material. Appl.Phys.Lett., 1987, 51:619-621
    [4] Dietz T, Smalley R. Laser production of supersonic metal cluster beamsl. Journal of Chemistry Physics, 1981, 74:6511-6512
    [5] Lowdes D H, Geohegan D B, A.Puretzky A. Synthesis of Novel Thin-Film Materials by Pulsed Laser Deposition. Science, 1996, 273:898-903
    [6] Paszti Z, Horvath Z E, peto G. Pressure dependent formation of small Cu and Ag particles during laser ablation. Appl. Surf. Sci., 1996, 109-110:67-73
    [7] Ferkel H, Naser J, W.Riehemann. W.Riehemann. Laser induced solid solution of binary nanoparticle system A1203-ZrO2. Nanostmctured Materials, 1997, 8:457-464
    [8] Li S, EI-Shall M S. Synthesis of nanoparticles by reactive laser vaporization: silicon namocrystals in polymers and properties of gallium and tungsten oxides. Appl. Surf. Sci., 1998, 127-129:330-338
    [9] Horn J L, Chapelle D W, Grimes C A. Curie temperature enhancement in Fe3C nanoparticles nade by laser pyrolysis. IEEE Transaction on Magnetics, 1997, 33:3736-3738
    [10] Vorobyev A Y, Guo C L. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals. J.Appl.Phys., 2008, 103:043513-043515
    [11] Vorobyev A Y, Guo C L. Femtosecond laser-induced periodic surface structure formation on tungsten. J.Appl.Phys., 2008, 104:063523-063525
    [12] Z. Y. Guo Y H H, Liu S T. Multi-photon fabrication of two-dimensional periodic structure by three interfered femtosecond laser pulses on the surface of the silica glass. J.Appl.Phys., 2007, 280:23-25
    [13] Amoruso S, Ausanio G. Femtosecond laser pulse irradiation of solid targets as a general mute to nanoparticle formation in a vacuum. Phys. Rev. B, 2005, 71:033406-033415
    [14] Bera S, Sabbah A J. Development of a femtosecond micromachining workstation by use of spectral interferometry. Optics Letters, 2005, 30:373-375
    [15] Schaffer C B, Mazur E. Morphology of femtosecond laser-induced structurals changes in bulk transparent materials. Appl. Phy. Lett., 2004, 84:1441-1443
    [16] 孙晓慧,周常河.飞秒激光加工最新进展.激光与光电子学进展,2004.41:37-45
    [17] 李莉.脉冲激光烧蚀及靶材光学性质的研究:[博士学位论文].华中科技大学图书馆,2007
    [18] Itina T E, Marine W, Autric M. Monte Carlo simulation of the effects of elastic collisions and chemical reactions on the angular distributions of the laser ablated particles. Appl. Surf. Sci., 1998, 127-129:171-176
    [19] Jordan R, Cole D, Lunney J G. Pulsed laser deposition of particulate-free thin films using a curved magnetic filter. Appl. Surf. Sci., 1997, 109-110:403-407
    [20] Watanabe Y, Tanamura M, Matsumoto S. Laser power dependence of particulate formation on pulse laser deposited film. J. Appl. Phys., 1995, 78:2029 2036
    [21] Singh R K, Narayan J. Pulsed laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys.Rev. B, 1990, 41:317-320
    [22] 马卫东,张端明.高取向KTN薄膜的PLD法制备研究.华中理工大学学报.1998.26:7-9
    [23] 马卫东,王世敏,张端明.用脉冲准分子激光在P-Si(100)衬底上沉积高取向KTN薄膜.科学通报,1998,43:259-262
    [24] Zhang D M, Li Z H, Zhang M J. The Technical Study of Preparing the KTN films on Transparent Monocry Stalline Quarts (100). Ceramic Bulletin, 2001, 80:57-61
    [25] 钟志成,张端明,刘素玲.用Sol-Gel法制备粉料及KTN陶瓷烧结研究.华中理工大学学报,1998,26:101-103
    [26] 关丽,张端明,李智华.PLD制膜过程中靶材等离子体羽辉的动力学模.华中科技大学学报,2001,29:103-105
    [27] Zhang D M, Guan L, Li Z H, et al. Monte Carlo Simulation of Growth of Thin Film Prepared by Pulsed Laser. Chin.Phys.Lett., 2003, 20:263-266
    [28] Zhang D M, Guan L, Li Z H. Influence of kinetic energy and substrate temperature on thin film growth in pulsed laser deposition. Sur.Coat.Techn., 2006, 200:4027-4031
    [29] Zhang D M, Liu D, Li Z H. A new model of pulsed laser ablation and plasma shielding. Physica B, 2005, 362:82-87
    [30] Zhang D M, Li L, Li Z H, et al. Variation of the target absorptance and target temperature distribution before melting in the pulsed laser ablation process. Acta Phys. Sin., 2005, 54:1283-1289
    [31] Zhang D M, Li L, Li Z H, et al. Non-Fourier heat conduction studying on high-power short-pulse laser ablation considering heat source effectn. Eur. Phys.J-Appl. Phys., 2006, 33:91-98
    [32] Tan X Y, Zhang D M, Li Z H, et al. Ionization effect to plasma expansion study during nanosecond pulsed laser deposition. Phys. Lett. A, 2008, 370:64-70
    [33] Joseph D D, Preziosi L. Rev. Mod. Phys. Addendum to the paper Heat waves. Rev. Mod. Phys., 1990, 62:375-391
    [34] Anisimov S I, Kapeliovich B L, Perel'man T L. Perelman et al. Electron emission from metal surfaces exposed to ultra short laser pulses. Soy. Phys. JETP, 1975, 39:375-378
    [35] Elsayed-Ali H E, Nordsal T B. Time-resolved observation of electron-phonon relaxation in copper. Phys. Rev. Lett., 1987, 58:1212-1215
    [36] Corkum P B, Brunel F.Sherman N K. Thermal Response of Metals to Ultrashort-Pulse Laser Excitation. Phys. Rev. Lett., 1998, 61:2886-2889
    [37] Chichkov B N, Nolte S. Femtosecond picosecond and nanosecond laser ablation of solids. Appl Phys, 1996, 63:109-115
    [38] Chen J K, Grimes L E. Modeling of femtosecond laser-induced non-equibrium deformation in metal films. International Journal of Solids and Structures, 2002, 39:3199-3216
    [39] Naganuma K, Mogi K. 50-fs pulse generation directly from a colliding-pulse mode-locked Ti: sapphire laser using an antiresonant ring mirror. Opt. Lett, 1991, 16:738-740
    [40] Gamaly E G, Madsen N R, Duedng M. Ablation of metals with picosecond laser pulses: Evidence of long-lived non-equilibrium surface states. Laser and Particle Beams, 2005, 23:167-176
    [41] 门海宁.飞秒激光与固体材料相互作用机理与应用研究.西安:中科院西安光学精密机械研究所,2006
    [42] Goldman J R. Ultrafast dynamics of laser-excited electron distributions in silicon. Phys. Rev. Lett, 1994,72:1364-1367
    [43] Linde V D, Bialkowski J. Laser-solid interaction in the femtosecond time regime. Appl. Surf. Sci., 1997,109-110:1-10
    [44] Pronko P P, Dutta S K, Squrer J, et al. Maching of Submicro holes using a Femtosecond Laser at 800nm. Optic Communications, 1995, 11:106-110
    [45] Bonse J, Rudolph P, Kruege J, et al. Femtosecond pulse laser processing of TiN on silicon. Appl. Surf. Sci., 2000,154:659-663
    [46] Birnbaum M. Semiconductor Surface Damage Produced by Ruby Lasers. J.Appl.Phys., 1965, 36:3688-3689
    [47] Driel H M V, Sipe J E, F. Young J. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals. Phys. Rev. Lett., 1982,49:1955-1957
    [48] Reif J, Costache F, Henyk M, et al. Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl. Surf. Sci., 2002,197:891-895
    [49] Stoian R, Rosenfeld A, Ashkenasi D. Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation. Phys. Rev. Lett., 2002, 88:097603-097605
    [50] Pedraza A J, Guan Y F, Fowlkes J D, et al. Nanostruc-tures produced by ultraviolet laser irradiation of silicon. J. Vac. Sci. Technol. B, 2004,22:2823-2835
    [51] Wang J C, Guo C L. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals. Appl. Phys. Lett., 2005, 87:251914-251916
    [52] Groenendijk M N W, Meijer J. Surface Microstructures obtained by Femtosecond Laser Pulses. CIRP Annals - Manufacturing Technology, 2006,55:183-186
    [53] Guillermin M, Garrelie F, Sanner N, et al. Single- and multi-pulse formation of surface structures under static femtosecond irradiation. Appl. Surf. Sci., 2007, 253:8075-8079
    [54] Guo X D, Li R X, Hang Y, et al. Femtosecond laser-induced periodic surface structure on ZnO. Materials Letters, 2008, 62:1769-1771
    [55] Vorobyev A Y, Guo C L. Enhanced absorptance of gold following multipulse femtosecond laser ablation. Phys. Rev. B, 2005,72:195422-195427
    [56] Amoruso S, Toftmann B, Schou J. Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow. Phys. Rev. E, 2004,69:056403-056409
    [57] Amoruso S. Modeling of UV pulsed-laser ablation ofmetallic targets. Appl. Phys. A, 1999, 69:323-332
    [58] Toftmann B, Schou J, Hansen T N, et al. Angular Distribution of Electron Temperature and Density in a Laser-Ablation Plume. Phys. Rev. Lett., 2000, 84:3998-4001
    [59] Fang R R, Zhang D M, Li Z H, et al. Improved thermal model and its application in UV high-power pulsed laser ablation of metal target. Solid State Commun., 2008,145:556-560
    [60] Fang R R, Zhang D M, Li Z H, et al. Laser - target interaction during high-power pulsed laser deposition of superconducting thin films. Phys. Status Solidi A, 2007,204:4241-4248
    [61] Lu Q M, Mao S, Mao X L, et al. Delayed phase explosion during high-power nanosecond laser ablation of silicon. Appl. Phys. Lett., 2002, 80:3072-3075
    [62] Roger K, Miotello A. Comments on explosive mechanisms of laser sputtering. Appl. Surf. Sci., 1996,96:205-215
    [63] Bulgakova N M, Bourakov L M. Phase explosion under ultrashort pulsed laser ablation: modeling with analysis of metastable state of melt. Appl. Surf. Sci., 2002,197:41-44
    [64] Ellegaard O, Schou J. Non-Equilibrium Phase Change in Metal Induced by Nanosecond Pulsed Laser Irradiation. Appl. Phys. A, 1999, 69:S577-S583
    [65] Xu X F, Willis D A. Monte Carlo description of gas flow fromlaser-evaporated silver. J. of Heat Transfer, 2002,124:293-298
    [66] Yoo J H, Jeong S H, Greif R. Explosive change in crater properties during high power nanosecond laser ablation of silicon. J.Appl.Phys., 1999, 88:1638-1649
    [67] A. Peterlongo A M, Kelly R. Laser-pulse sputtering of aluminum: Vaporization, boiling, superheating, and gas-dynamic effects. Phy.Rev. E, 1994, 50:4716-4727
    [68] Miotello A, Kelly R. Critical assessment of thermal models for laser sputtering at high fluences. Appl. Phys. Lett., 1996,96-98:205-215
    [69] Craciun V, Craciun D. Evidence for volume boiling during laser ablation of single crystalline targets. Appl. Surf. Sci., 1999,138:218-223
    [70] Lu Q M, Mat S S, Mao X L. Delayed phase explosion during high-power nanosecond laser ablation of silicon. Appl. Phys. Lett., 2001, 80:3072-3074
    [71] Yoo J H, Jeong S H, Mao X L, et al. Evidence for phase-explosion and generation of large particles during high power nanosecond laser ablation of silicon. Appl. Phys. Lett., 2000, 76:783-785
    [72] Wood R F, Leboeuf J N. Dynamics of plume propagation, splitting, and nanoparticle formation during pulsed-laser ablation. Appl. Surf. Sci., 1998, 127-129:151-158
    [73] Zhang D M, Tan X Y, Li Z H. Thermal regime and effect studying on the ablation process of thin films prepared by nanosecond pulsed laser. Physica B, 2005, 357:348-355
    [74] 郑启光.激光与物质相互作用.武汉:华中理工大学出版社,1996
    [75] Huang C H, Shen H Y, Zeng Z D. Measurement of the total absorption coefficient of a KTP crystal. Opt. Laser Technol., 1990, 22:345-351
    [76] Huang Y L, Yang F H, Liang G Y, et al. Using In-situ technique to determine laser absorptivity of al-alloys. Chin. J. Lasers, 2003, 30:449-458
    [77] 陆彦文.军用激光技术.北京:国防工业出版社,1999
    [78] Amoruso S, Ausanio G, Bruzzese R, et al. Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration. Appl. Surf. Sci, 2006, 252:4863-4870
    [79] Hirayama Y, Obara M. Heat-affected zone and ablation rate of copper ablated with femtosecond laser. J. Appl. Phys, 2005, 97:064903-064910
    [80] Gamaly E G, LUTHER-DAVIES B, Koley V Z, et al. Ablation of metals with picosecond laser pulses: Evidence of long-lived non-equilibrium surface states. Laser Part. Beams, 2005, 23:167-176
    [81] Lam Y C, Tran D V, Zheng H Y. A study of substrate temperature distribution during ultrashort laser ablation of bulk copper. Laser Part. Beams, 2007, 25:155-159
    [82] Anwar M S, Latif A, Iqbal M, et al. Theoretical model for heat conduction in metals during interaction with ultra short laser pulse. Laser Part. Beams, 2006, 24:347-353
    [83] Hassan A F, El-nicldawy M M. A general problem of pulse laser heating of a slab. Optics Laser Technology, 1993, 25:155-162
    [84] Amoruso S, Armenante M, Berardi V, et al. Absorption and saturationmechanisms in aluminiumlaser ablated plasmas. Appl. Phys. A, 1997, 65:265-271
    [85] 孙承纬.激光辐照效应.北京:国防工业出版社,2002
    [86] Ya. B. Zel' dovich and Yu. P. Raizer. Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena. New York: Academic Press, 1966
    [87] Lunney J G, Jordan R. Pulsed laser ablation of metals. Appl. Surf. Sci., 1998, 127:941-946
    [88] Li L, Zhang D M, Li Z H, et al. The investigation of optical characteristics of metal target in high power laser ablation. Phys. B, 2006, 383:194-201
    [89] Zhang D M, Li Z H, Yu B M, et al. Dynamic Simulation on the Preparation Process of the KTN Thin Films by Pulsed laser. Science in China(Series A), 2001,44:1485-1496
    [90] Garrelie F, Aubreton J, Catherinot A. Monte Carlo simulation of the laser-induced plasma plume expansion under vacuum: Comparison with experiments. J. Appl. Phys., 1998, 83:5075-5083
    [91] Y. S. Touloukian and R. W. Powell and C. Y. Ho and P. G. Klemens. Thermo-physical Properties of High Temperature Solid Materials. New York: Macmil-lan, 1976
    [92] C. T. Lynch. CRC Handbook of Materials Science, Vol.1 General Properties. Cleveland: CRC Press, 1974
    [93] Bulgakova N M, Bulgakov A V. Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. Appl. Phys. A., 2001,73:199-206
    [94] Amoruso S. Modeling of UV pulsed-laser ablation ofmetallic targets. Appl. Phys. A, 1999, 69:323-332
    [95] Amoruso S, Toftmann B, Schou J. Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow. Phys. Rev. B, 2004,69:056403-056409
    [96] Amoruso S, Ausanio G, Bruzzese R, et al. Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum. Phys. Rev. B, 2005,71:033406-033410
    [97] Villars P, Phillips J C. Quantum structural diagrams and high-Tc superconductivity. Phys. Rev. B, 1988, 37:2345-2352
    [98] Bhattacharya D, Singh R K, Holloway P H. Laser-target interactions during pulsed laser deposition of superconducting thin films. J.Appl. Phys., 1991, 70:5433-5438
    [99] Stuart B C, Feit M D, Herman S, et al. Optical ablation by high-power shortpulse lasers. J.Opt.Soc.Am. B, 1996, 13:459-468
    [100] Jiang L, Tsai H L. Improved Two-Temperature Model and Its Application in Ultrashort Laser Heating of Metal Films. J. Heat. Trans., 2005, 127:1167-1173
    [101] Lu Q M. Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation. Phys. Rev. E, 2003, 67:016410-016414
    [102] Amoruso S, Armenante M, Bruzzese R, et al. Emission of prompt electrons during excimer laser ablation of aluminum targets. Appl. Phys. Lett., 1999, 75:7-9
    [103] Zhang D M, Liu D, Li Z H. Thermal model for nanosecond laser sputtering at high fluences. Appl. Surf. Sci., 2007, 253:6144-6148
    [1041 Zeng X, Mao X L, Greif R, et al. Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon. Appl. Phys. A, 2005, 80:237-241
    [105] Crouch C H, Carey J E, Warrender J M, et al. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon. Appl. Phys. Lett., 2004, 84:1850-1852
    [106] Stuart B C, Felt M D, Herman S, et al. Nanosecond-to-femtosecond laserinduced breakdown in dielectrics. Phys. Rev. B, 1996, 53:1749-1761
    [107] Saidane A, Pulko S H. High-power short-pulse laser heating of low dimensional structures: a hyperbolic heat conduction study using TLM. Microelectronic Engineering, 2000, 21-52:469-478
    [108] 姜任秋.热传导、质扩散与动量传递中的瞬态冲击效应.北京:科学出版社,1997
    [109] 蒋方明,刘登瀛.非傅立叶导热的最新研究进展.力学进展,2002,32:128-140
    [110] Luikov A V. Application of irreversible thermodynamics methods to investigation of heat and mass transfer. Int.J.Heat Mass Transfer, 1966, 9:139-152
    [111] Taitel Y. On the parabolic, hyperbolic and discrete formulation of the heat cinduction equation. Int.J.Heat Mass Transfer, 1972, 15:369-371
    [112] Sieniutycz S. The variational principle of classical type for non-stationary irreversible transport prrpcesses with Converctive motional relaxation. Int.J.Heat Mass Transfer, 1977, 20:1221-1231
    [113] Lin Z B, Zhigilei L V. Temperature dependences of the electron - phonon coupling, electron heat capacity and thermal conductivity in Ni under femtosecond laser irradiation. Appl. Surf. Sci., 2007,253:6295-6300
    [114] Furusawa K, Takahashi K, Kumagai H, et al. Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser. Appl. Phys. A, 1999, 69:S359 - S366
    [115] Wellershoff S S, Hohlfeld J, G(?)idde J, et al. The role of electron-phonon coupling in femtosecond laser damage of metals. Appl. Phys. A, 1999, 69:S99-S107
    [116] Fujimoto J G, Liu J M, Ippen E P, et al. Femtosecond Laser Interaction with Metallic Tungsten and Nonequilibrium Electron and Lattice Temperatures. Phys. Rev. Lett., 1984,53:1837-1840
    [117] Brorson S D, Kazeroonian A, Moodera J S, et al. Femtosecond room-temperature measurement of the electron-phonon coupling constant Y in metallic superconductors. Phys. Rev. Lett., 1990, 64:2172-2175
    [118] Hertel T, Knoesel E, Wolf M, et al. Ultrafast Electron Dynamics at Cu(lll): Response of an Electron Gas to Optical Excitation. Phys. Rev. Lett., 1996, 76:535-538
    [119] Gamaly E G, Madsen N R, Duering M, et al. Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface. Phys. Rev. B, 2005,71:174405-174416
    [120] Fisher D, Fraenkel M, Zinamon Z, et al. Intraband and interband absorption of femtosecond laser pulses in copper. Laser PartBeams, 2005,23:391-393
    [121] Anisimov S I, Kapeliovich B L. Electron emission from metal surface exposed to ultrashort laser pulse. Sov. Phys. JETP, 1974, 39:375-377
    [122] Povarnitsyn M E, Itina T E, Sentis M, et al. Material decomposition mechanisms in femtosecond laser interactions with metals. Phys. Rev. B, 2007,75:235414-235418
    [123] Lorazo P, Lewis L J, Meunier M. Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation. Phys. Rev. Lett., 2003,91:225502-225505
    [124] Preuss S, Demchuk A, Stuke M. Sub-ps UV laser ablation. Appl. Phys. A, 1995,61:33-37
    [125] Amoruso S, Bruzzese R, Spinelli N, et al. Generation of silicon nanoparticles via femtosecond laser ablation in vacuum. Appl. Phys. Lett., 2004, 84:4502-4504
    [126] B(?)uerleD. Laser Processing and Chemistry. Berlin: Springer, 2000
    [127] Chrisey D B, Hubler G K. Pulsed Laser Deposition of Thin Films. New York: Wiley, 1994
    [128] Nedialkov N N, Imamova S E, Atanasov P A. Ablation of metals by ultrashort laser pulses. J. Phys. D: Appl. Phys., 1997, 37:638-643
    [129] Eesley G L. Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. Phys. Rev. B, 1986, 33:2144-2151
    [130] Fann W S, Storz R, Tom H K, et al. Electron thermalization in gold. Phys.Rev.B, 1992,46:13592-13595
    [131] Sun C K, Vallee F, Acioli L, et al. Femtosecond investigation of electron thermalization in gold. Phys. Rev. B, 1993,48:12365-12368
    [132] Sun C K, Vallee F, Acioli L, et al. Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B, 1994,50:15337-15348
    [133] Lin Z B, Zhigilei L V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B, 2008,77:075133-075149
    [134] Lin Z B, Zhigilei L V. Thermal excitation of d band electrons in Au: implications for laser-induced phase transformations. Proc. SPIE, 2006,6261:62610U-1-62610U-14
    [135] Tsuchiya T, Kawamura K. First-principles electronic thermal pressure of metal Au and Pt. Phys. Rev. B, 2002,66:094115-094119
    [136] Wang X Y, Riffe D M, Lee Y S, et al. Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission. Phys. Rev. B, 1994, 50:8016-8019
    [137]郭硕鸿.电动力学.北京:高等教育出版社,1979
    [138] Venkatesan T, Ogale S B, Chang C C, et al. Pulsed laser etching of high Tc superconducting films. Appl. Phys. Lett., 1987, 51:1112-1115
    [139] Andrea P, Antonio M. Laser-pulse sputtering of aluminum: Vaporization, boiling, superheating, and gas-dynamic effects. Rev. Rev. E, 1994, 50:4716-4721
    [140] B. H. Billings and H. P. R. Frederikse. American Institute of Physics Handbook, 3rd ed. New York: McGraw-Hill, 1972
    [141] Schafer C, Urbassek H M, Zhigilei L V. Metal ablation by picosecond laser pulses: A hybrid simulation. Phys. Rev. B, 2002,66:115404-115411
    [142] N. W. Ashcroft and N. D. Mermin. Solid State Physics. New York: McGraw-Hill, 1976
    [143] American Institute of Physics Handbook. New York: Holt, Rinehart and Winston, 1982
    [144] McMillan W L. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev., 1968,167:331-339
    [145] Wellershoff S S, Gudde J, Hohlfeld J, et al. The role of electron-phonon coupling in femtosecond laser damage of metals. Proc. SPIE, 1998,3343:378-387
    [146] Beaurepaire E, Merle J C, Daunois A, et al. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett., 1996,76:4250-4253
    [147] Caffrey A P, Hopkins P E, Klopf J M, et al. Thin film non-noble transition metal thermophysical properties. Microscale Thermophys. Eng., 2005,9:365-377
    [148] Hohlfeld J, Wellershoff S S, Gudde J, et al. Electron and lattice dynamics following optical excitation of metals. Chem. Phys., 2000,251:237-258
    [149] Hostetler J L, Smith A N, Czajkowsky D M, et al. Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au,Cr,and Al. Appl. Opt., 1999,38:3614-3620
    [150] Groeneveld R H M, Sprik R, Lagendijk A. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys. Rev. B, 1995,51:11433-11445
    [151] Elsayed-Ali H E, Juhasz T, Smith G O, et al. Femtosecond thermoreflectivity and thermotransmissivity of polycrystalline and single-crystalline gold films. Phys. Rev. B, 1991, 43:4488-4491
    [152] Fang R R, Zhang D M, Wei H, et al. Improved two-temperature model. Applied physics B-laser and optics, submitted

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700