低维纳米结构中声学声子的输运性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,半导体低维量子结构因其新颖的物理性质和广泛的应用前景,已成为凝聚态物理和材料科学中的重要前沿领域。同时,分子束外延等超薄生长技术和精细束加工技术的日益完善和迅猛发展也为量子器件的不断推陈出新给予了重要的技术支持。在本文中,我们对半导体低维纳米结构中的热输运和热导作了较深入的探索,并获得了一些有意义的结果,以期能为相关量子器件的设计和制造提供理论依据。
     首先,我们在连续弹性近似模型下,利用转移矩阵方法,研究了扩散层和缺陷层在多层薄膜结构中对声学声子输运的影响,计算结果表明:不同频率的声学声子,大多数都能很好地穿透该结构,但也有若干频率的声学声子只有较低的透射系数而在图像中形成相应的波谷;波谷处的声学声子频率的大小与扩散层和缺陷层的厚度、含Al浓度、薄膜周期数的变化没有关系;声学声子通过该结构的透射系数,与扩散层和缺陷层的厚度、含Al浓度、薄膜周期数有密切关系,有些声学声子的透射系数对结构参数的变化十分敏感。这些结论,一方面,告诉我们可以通过改变以上结构参数来调节和控制声学声子通过该结构的透射系数;另一方面,可以为声子器件的设计和相应的实验研究提供理论上的参考。
     接着,我们利用连续介质弹性模型和散射矩阵方法,研究了四垂直波导中的热输运,计算结果揭示了一些有趣的性质:总透射系数对约化频率的透射谱展示了一系列共振的峰谷结构。当四垂直波导中的一个弯曲高度大于或等于该量子波导中声子通道的最小维度时,透射谱中就会出现禁止频隙;当弯曲高度足够大时,透射谱中会出现一个或多个禁止频隙。有些具有较大弯曲高度的四垂直波导,它们对应的禁止频隙的宽度反而更窄,禁止频隙的数目可能更少。在波导的弯曲部分只有0模时,可以看到声子的透射系数随弯曲高度成周期性改变。在弯曲区域的高度和长度较小时,四垂直波导的热导对弯曲区域的高度和长度的变化十分敏感。随着温度的升高,四垂直波导的热导先减小,达到最小值后再增大。第一个连接在单个波导上的四垂直波导会抑制透射系数的增大和形成禁止频隙。在四垂直波导系列上每增加一个四垂直波导,就会在透射谱上增加二个共振峰。这些结论对人工控制热导和声子器件的设计具有指导意义。
     我们也对低温下四通道量子结构的声子输运和热导进行了数值分析。计算的结果表明:当声学声子通过对称四通道量子结构时,声学波将在区域II的边界发生多重反射,这些声学波在区域II相互干涉形成具有一定波长和周期的驻波。不同的声学声子模在对称四通道量子结构中能够自动选择性地进入不同的输运通道。声学声子模的选择输运特性依赖于区域II的的宽度和长度、不同通道的横向宽度和相对位置。通过适当调谐该纳米结构的几何参数,可以加强或者削弱声子在不同通道中的输运强度。当声学声子通过非对称四通道量子结构时,不同的声学声子模也能够自动选择性地进入不同的输运通道。不同声子通道在低温下的热导是非整数量子化的。因此,该半导体四通道纳米结构在低温下可以用作声子模的分离器,或用于控制声学声子输运。
     最后,我们研究了两种不同性质的双缺陷对纳米线中的声学声子热输运的影响,研究结果表明:当声学声子通过内含双缺陷的纳米线时,总透射系数( T )随约化声子频率(ω/? )的变化图像呈现一系列的峰―谷结构;由于缺陷和纳米线的边缘对声波的多重反射,声波在该纳米线中相互干涉可以形成驻波。在有真空缺陷的纳米线中,当T→0时,声子透射系数趋近于1 ;当双缺陷是硬材料时,在纳米线中传播的声学声子,其频率必须大于其阈限频率。这两种缺陷对热导的影响有本质的不同。若双缺陷是真空,当T→0时,可以看到普适的量子化热导和热导平台。然而,若双缺陷是硬材料,当T→0时,纳米线的热导为0 ,激发0模必须大于其阈限温度。这些结论既让人们获得了一些有关缺陷的重要性质,又为实现人工控制热导和声子器件的设计提供了又一新的思路。
In the last several decades, the semiconductor low-dimensional quantum structureshave become one of frontier research topics in condensed matter physics and materialscience as they exhibit some novel physical properties and potential application values.Simultaneously, the rapid advances and maturing in the ultrathin growth, such as molecu-lar beam epitaxy, and nanoscale lithography techniques have made it possible to fabricatevarious nano-devices. In this thesis, we deeply investigate the features of acoustic phonontransmission and thermal conductance in low-dimensional nanostructures and some use-ful results are obtained. It is expected to be helpful theoretically for the design and man-ufacture of quantum devices.
     At first, by using the continuum elastic approximation model and the transfer matrixmethod, we investigate the effect of diffusion layers and defect layer on acoustic phononstransport through the structure consisting of different films. Our work show that mostacoustic phonons can easily pass the structure, but some only have much less transmissionprobabilities and form corresponding dips in the transmission spectrum. With the changeof the structure parameters such as the width of diffusion layers and defect layer, thenumber of unit cell and the density of containing Al in diffusion layers and defect layer,the magnitude of the frequencies of acoustic phonons corresponding to the dips almostremain unchanged, but the transmission coefficients corresponding to the dips change atdifferent degree, and the transmission probabilities of some frequencies are very sensitiveto the variation of the above-mentioned structure parameters. These results can providesome references in controlling the transmission coefficients of acoustic phonons, devisingparts of acoustic apparatus and theoretical investigation related.
     Then, we investigate acoustic phonon transmission and thermal conductance in afour-perpendicularity-bend quantum waveguide at low temperatures using the scatteringmatrix method. The calculated results show some interesting features. The transmis-sion spectrum of the quantum waveguide displays a series of resonant peaks and dips;and when one of the bend heights is larger than or equal to the minimum of the dimen-sions of the phonon channel in the quantum waveguide, a stop-frequency gap will ap-pear; and some single four-perpendicularity-bend quantum waveguides with larger bendheights exhibit narrower width or smaller number of the stop-frequency gaps than thatwith smaller bend heights. When only the mode 0 is excited in the bend section, the transmission spectra can be seen to vary periodically with the bend heights. The ther-mal conductivity is much sensitive to the change of the smaller heights and longitudinallengths of the bend section; and the thermal conductivity decreases with the increasingof the temperature first, then increases after reaches a minimum. The investigations ofmultiple four-perpendicularity-bend waveguides connected in series indicate that the firstadditional four-perpendicularity-bend waveguide to the single one suppresses the trans-mission coefficient and forms stop-frequency gap; and two additional resonance peakswill be formed when each four-perpendicularity-bend waveguide is added in the series.The results could be useful for controlling thermal conductance artificially and the designof phonon devices.
     The acoustic phonon transport in a four-channel quantum structure is also investigated by use of the scattering matrix method. It is found that different acoustic phonon modes transport selectively into different channels, standing waves can be formed owning to acoustic phonons interfering with each other in the quantum structure, the transmission coefficients of acoustic phonon through different channels depend sensitively on the parameters of the structure, and the channels all exhibit the noninteger quantized thermal conductance at very low temperitures due to the splitting of the quantum structure. The structure may be used as a split device for acoustic phonon modes and controlling the acoustic phonon transport.
     Finally, we investigate the effect of two different kinds of double defects embeddedin a nanowire on acoustic phonon transport at low temperatures by using scattering matrixmethod. When acoustic phonons propagate through the nanowire, the total transmissioncoefficient versus the reduced phonon frequency exhibits a series of resonant peaks anddips, and acoustic waves interfere with each other in the nanowire to form standing wavewith particular wavelengths. In the nanowire with void defects, acoustic phonons whosefrequencies approach zero can transport without scattering. The acoustic phonons prop-agating in the nanowire with clamped material defects, the phonons frequencies must belarger than a threshold frequency. It is also found that the thermal conductance versustemperature is qualitatively different for different types of defects. At low temperatures,when the double defects are void, the universal quantum thermal conductance and a ther-mal conductance plateau can be clearly observed. However, when the double defectsconsist of clamped material, the quantized thermal conductance disappear but a thresholdtemperature where mode 0 can be excited emerges. The results both help people to knowsome important features on defects and give another way to control the transmission co-efficients of acoustic phonons and devise parts of acoustic apparatus.
引文
[1] Esaki, Tsu R. Supperlattice and negative differential conductivity in semiconduc-tors. IBM J. Res. Devel., 1970, 14(1):61–65
    [2]郑厚植.人工物性裁剪.长沙:湖南科学技术出版社,1997,1–25
    [3] Wees B J V, Houten H V, Beenakker C W J, et al. Quantized conductance of pointcontacts in a two-dimensional electron gas. Phys. Rev. Lett., 1988, 60(9):848–850
    [4] Roukes M L, Scherer A, Allen S J Jr, Craighead H G, Ruthen R M, Beebe E D,and Harbison J P. Quenching of the Hall Effect in a One-Dimensional Wire. Phys.Rev. Lett., 1987, 59(26):3011–3014
    [5] Roukes M L, Scherer A, and Van der Gaag B P. Are transport anomalies in”elec-tron waveguides”classical? Phys. Rev. Lett., 1990, 64(10):1154–1157
    [6] Roukes M L, Scherer A, and Van der Gaag B P. Observation by resonant tunnelingof high-energy states in GaAs ? Ga1?xAlxAs quantum wells. Phys. Rev. B, 1986,33(10):7368–7370
    [7] Xia Jian-Bai. Theory of hole resonant tunneling in quantum-well structures. Phys.Rev. B, 1988, 38(12):8365–8370
    [8] Xia Jian-Bai.Γ-X mixing effect in GaAs/AlAs superlattices and heterojunctions.Phys. Rev. B, 1990, 41(5):3117–3122
    [9] Bleuse J, Bastard G, and Voisin P. Electric-Field-Induced Localization and Oscil-latory Electro-optical Properties of Semiconductor Superlattices. Phys. Rev. Lett.,1988, 60(3):220–223
    [10] Xia Jian-Bai. Semiclassical and envelope-function treatment of magnetic levels insuperlattices under an in-plane magnetic field. Phys. Rev. B, 1990, 42(18):11884–11888
    [11] Fulton T A and Dolan G J. Observation of single-electron charging effects in smalltunnel junctions. Phys. Rev. Lett., 1987, 59(1):109–112
    [12]严守胜,甘子钊.介观物理.北京:北京大学出版社,1995,99–124
    [13] Cho A Y, Panish M, hayashi I. Molecular beam epitaxy of GaAs, AlxGa1?xAsand GaP. Proc. Symp. GaAs and Related Compounds, 1970, 2(1):18–19
    [14] Cho A Y. Growth of periodic structures by the molecular-beam method. Appl.Phys. Lett., 1971, 19(11):467–468
    [15] Petroff P M, Gossard A C, Logan R A, and Wiegmann W. Toward quantum wellwires: Fabrication and optical properties. Appl. Phys. Lett., 1982, 14(7):635–637
    [16] Kash K, Scherer A, Worlock J M, Craighead H G, and Tamargo M C. Opticalspectroscopy of ultrasmall structures etched from quantum wells. Appl. Phys. Lett.,1986, 49(16):1043–1045
    [17] Reed M A, Randall J N, Aggarwal R J, Matyi R J, Moore T M, and Wetsel AE. Observation of discrete electronic states in a zero-dimensional semiconductornanostructure. Phys. Rev. Lett., 1988, 60(6):535–537
    [18] Dingle R, Stormer H L, Gossard A C, et al. Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett., 1978,33(7):665–667
    [19] Dingle R, Wiegmann W, Henry C H. Quantum states of confined carriers in verythin AlxGa1?xAs?GaAs?AlxGa1?xAs heterostructures. Phys. Rev. Lett., 1974,33(14):827–830
    [20] Dingle R, Gossard A C, Wiegmann W. Direct observation of superlattice formationin a semiconductor heterostructure. Phys. Rev. Lett., 1975, 34(21):1327–1330
    [21] Weisbuch C, Miller R C, Dingle R, et al. Intrinsic radiative recombination fromquantum states in GaAs?AlxGa1?xAs multi-quantum well structures. Solid StateCommun., 1981, 37(1):219–222
    [22] Levine B F, Choi K K, Bethea C G, et al. New 10μm infrared detector usingintersubband absorption in resonant tunneling GaAlAs superlattices. Appl. Phys.Lett., 1987, 50(16):1092–1094
    [23] Brown E R, Goodhue W D, Sollner T C L G. Fundamental oscillations up to 200GHz in resonant tunneling diodes and new estimates of their maximum oscillationfrequency from stationary-state tunneling theory. J. Appl. Phys., 1988, 64(3):1519–1529
    [24] Wood T H, Burrus C A, Miller D A, et al. High-speed optical modulation withGaAs/GaAlAs quantum wells in a p-i-n diode structure. Appl. Phys. Lett., 1983,44(1):16–18
    [25] Kondo K. MBE as a production technology for HEMT LSIs. J. Cryst. Growth,1989, 95(1):309–316
    [26] Sonoda T. Ultra-high throughput of GaAs and (AlGa)As layers grown by MBEwith a specially designed MBE system. J. Cryst. Growth, 1989, 95(1):317–321
    [27]夏建白,朱邦芬著,黄昆审订.半导体超晶格物理.上海:上海科学技术出版社,1995,1–14
    [28]杨树人,康昌鹳.半导体超晶格材料及应用.北京:国防工业出版社,1995,1–20
    [29]夏建白.现代半导体物理.北京:北京大学出版社,2000,65–82,236–287
    [30] Bastard G, Mendez E E, Chang L L, and Esaki L. Exciton binding energy inquantum wells. Phys. Rev. B, 1982, 26(4):1974–1979
    [31] Dawson P, Duggan G, Ralph H I, and Woodbridge K. Free excitons in room-temperature photoluminescence of GaAs ? AlxGa1?xAs multiple quantum wells.Phys. Rev. B, 1983, 28(12):7381–7383
    [32] Von Bardeleben H J, Stievenard D, and BourgoinJ C. Identification of EL2 inGaAs. Appl. Phys. Lett., 1985, 47(9):970–978
    [33] Shen H, Parayanthal P, Pollak Fred H, and Micha Tomkiewicz et al. Photore-?ectance study of GaAs/AlAs superlattices: Fit to electromodulation theory. Appl.Phys. Lett., 1986, 48(10):635–659
    [34]江剑平.半导体激光器.北京:电子工业出版社,2001,1–25
    [35] Cahill D G, Ford W K, Goodson K E, et al. Nanoscale thermal transport. J. Appl.Phys., 2003, 93(2):793–818
    [36] Balandin A. Thermal properties of semiconductor low-dimensional structures.Phys. Low-Dim. Struc., 2000, 1/2:1–28
    [37] Chen G, Zeng T F. Nonequilibrium phonon and electron transport in heterostruc-tures and superlattices. Microscale thermophysical engineering, 2001, 5:71–88
    [38] Chen G, Zeng T F. Phonon heat conduction in nanostructures. Int. J. Therm. Sci.,2000, 39(1):471–480
    [39] Chen G, Zeng T F. Thermal conductivity and ballistic phonon transport in cross-plane direction of superlattices. Phys. Rev. B, 1998, 57(23):14958–14973
    [40] Ju Y S, Goodson K E. Phonon scattering in silicon films with thickness of order100 nm. Appl. Phys. Lett., 1999, 74(20):3005–3007
    [41] Imry Y, Landauer R. Conductance viewed as transmission. Rev. Modern Phys.,1999, 71:S306–S312
    [42] Wharam D A, et al. One-dimensional transport and the quantization of the ballisticresistance. J. Phys. C, 1988, 21(1):L209–L214
    [43] Pendry J B. One-dimensional transport and the quantization of the ballistic resis-tance. J. Phys. A, 1983, 16(12):2161–2171
    [44] Maynard R, Akkermanns E. Thermal conductance and giant ?uctuation in one-dimensional disordered systems. Phys. Rev. B, 1985, 32(8):5440–5442
    [45] Angelescu D E, Cross M C, Roukes M L. Heat transport in mesoscopic systems.Superlatt. Microstruct., 1998, 23:673–689
    [46] Rego L G C, kirczenow G. Quantized thermal conductance of dielectric quantumwires. Phys. Rev. Lett., 1998, 81(1):232–235
    [47] Schwab K, Henriksen E A, Worlock J M, et al. Measurement of the quantum ofthermal conductance. Nature, 2000, 404: 974–977
    [48] Cross M C, Lifshitz R. Elastic wave transmission at an abrupt junction in a thinplate with application to heat transport and vibrations in mesoscopic systems. Phys.Rev. B, 2001, 64(8):085324–1–085324–22
    [49] Joshi A A, Majumdar A. Transient ballistic and diffusive phonon heat transport inthin films. J. Appl. Phys., 1993, 74(1):31–39
    [50] Chen G. Ballistic-diffusive heat-conduction equation. Phys. Rev. Lett., 2001,86(11):2297–2300
    [51] Balandin A, Wang K L. Significant decrease of the lattice thermal conductivity dueto phonon confinement in a free-standing semiconductor quantum well. Phys. Rev.B, 1998, 58(3):1544–1549
    [52] Khitun A, Balandin A, Wang K L. Modification of the lattice thermal conductivityin silicon quantum wires due to spatial confinement of acoustic phonons. Superlatt.Microstruct, 1999, 26(5):181–192
    [53] Mingo N, Yang L, Li D Y, et al. Predicting the thermal conductivity of Si and Genanowires. Nano Letters, 2003, 3(12):1713–1716
    [54] Walkauskas S G, Broido D A, Kempa K, et al. Lattice thermal conductivity ofwires. J. Appl. Phys., 1999, 85(5):2579–2582
    [55] Zou J, Balandin A. Phonon heat conduction in a semiconductor nanowire. J. Appl.Phys., 2001, 89(5):2932–2938
    [56] Simkin M V, Mahan G D. Minimum thermal conductivity of superlattices. Phys.Rev. Lett., 2000, 84(5):927–930
    [57] Chen G. Thermal conductivity and transfer in superlattices. Appl. Phys. Lett.,1997, 71(19):2761–2763
    [58] Sparavigna A. Lattice thermal conductivity in cubic silicon carbide. Phys. Rev. B,2002, 66(17):174301–1–174301–5
    [59] Mingo N. Calculation of Si nanowire thermal conductivity using complete phonondispersion relations. Phys. Rev. B, 2003, 68(11):113308–1–113308–4
    [60] Joseph D D,Preziosi L. Heat waves. Rev. Mod. Phys., 1989, 61(3):41–73
    [61] Li D Y, Wu Y Y, Kim P, et al. Thermal conductivity of individual silicon nanowires.Appl. Phys. Lett., 2003, 83(14):2934–2936
    [62] Volz S G, Chen G. Molecular dynamics simulation of thermal conductivity ofsilicon nanowires. Appl. Phys. Lett., 1999, 75(14):2056–2058
    [63] Osman M A, Srivastava D. Temperature dependence of the thermal conductivityos single-wall carbon nanotubes. Nanotechnology, 2001, 12: 21–21
    [64] Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulationmethods for computing thermal conductivity. Phys. Rev. B, 2002, 65(14):144306–144314
    [65] Ladd A J C, Moran B, Hoover W. Lattice thermal conductivity: A comparisonof molecular dynamics and anharmonic lattice dynamics. Phys. Rev. B, 1986,34(8):5058-5064
    [66] Majumdar A J. Heat Transfer. 1997, 115:7
    [67] Lu X, Shen W Z, Chu J H. Size effect on the thermal conductivity of nanowires. JAppl. Phys., 2002, 91(3):1542–1552
    [68] Lu X, Chu J H, Shen W Z. Modification of the lattice thermal conductivity insemiconductor rectangular nanowires. J Appl. Phys., 2003, 93(2):1219–1229
    [69] Volz S, Lemonnier D. Phys. Low-Dimens. Semicond. Struct., 2000, 5-6(2):91–91
    [70] Dieleman D J, Koenderink A F, Veghel M G A, et al. Transmission of coherentphonon through a metallic multiplayer. Phys. Rev. B, 2001, 64(17):174304–1–174304–4
    [71] Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individualmultiwalled nanotubes. Phys. Rev. Lett., 2001, 87(21):215502–1–215502–4
    [72] Blencowe M P. Quantum energy ?ow in mesoscopic dielectric structures. Phys.Rev. B, 1999, 59(7):4992–4998
    [73] Steslicka M, Kucharczyk R, Akjouj A, et al. Localised electronic states in semi-conductor superlattices. Surf. Sci. Reports, 2002, 47(1):93–196
    [74] Kucharczyk R, Steslicka M. Density-of-states formalism for multi-quantum-barrierstructures. Solid State Commun., 1992, 84(2):727–730
    [75] Caves C M, Drummond P D. Quantum limits on bosonic communication rates.Rev. Mod. Phys., 1994, 66(8):481–537
    [76] Rego L C G, Kirczenow G. Fractional exclusion statistics and the universalquantum of thermal conductance: A unifying approach. Phys. Rev. B, 1999,59(20):13080–13086
    [77] Krive I V, Mucciolo E R. Transport properties of quasiparticles with fractionalexclusion statistics. Phys. Rev. B, 1999, 60(3):1429–1432
    [78] Tighe T S, Worlock J M, Roukes M L. Direct thermal conductance measurementson suspended monocrystalline nanostructures. Phys. Rev. B, 1997, 70(20):2687–2689
    [79] Leivo M M, Pekola J P. Thermal characteristic of silicon nitride membranes atsub-Kelvin temperatures. Appl. Phys. Lett., 1998, 72(11):1305–1307
    [80] Holmes W, Gildermeister J M, Richards P L, et al. Measurements of thermal trans-port in low stress silicon nitride films. Appl. Phys. Lett., 1998, 84(13):2250–2252
    [81] Santamore D H, Cross M C. Effect of surface roughness on the universal thermalconductance. Phys. Rev. B, 2001, 63(18):184306–1–184306–6
    [82] Santamore D H, Cross M C. Surface scattering analysis of phonon transport inthe quantum limit using an elastic model. Phys. Rev. B, 2002, 66(14):144302–1–144302–19
    [83] Santamore D H, Cross M C. Effect of phonon scattering by surface roughnesson the universal thermal conductance. Phys. Rev. lett., 2001, 87(11):115502–1–115502–4
    [84] Chen G. Ballistic-diffusive heat-conduction equation. Phys. Rev. lett., 2001,86(11):2297-2300
    [85] Cahill D G, Katiyar M, Abelson J R. Thermal conductivity ofα-Si:H thin films.Phys. Rev. B, 1994, 50(9):6077-6081
    [86] Lee S M, Cahill D G. THeat transport in thin dielectric films. J. Appl. Phys., 1997,81(6):2590–2595
    [87] Lee S M, Cahill D G, Venkatasubramanian R. Thermal conductivity of Si-Gesuperlattices. Appl. Phys. Lett., 1997, 70(22):2957–2959
    [88] Young D A, Thomsen C, Grahn H T, et al. Phonon Scattering in Condensed Matter.Berlin: Springer, 1986, 49–56
    [89] Paddock C A, Eesley G L. Transient thermore?ectance from thin metal films. J.Appl. Phys., 1986, 60(1):285–296
    [90] Clemens B M, Eesley G L, Paddock C A. Time-resolved thermal transport incompositionally modulated metal films. Phys. Rev. B, 1988, 37(3):1085–1096
    [91] Merlin R. Generation coherent THz phonons with light pulses. Solid State Com-mun., 1997, 102(3):207–220
    [92] Hao H Y, Maris H J. Study of phonon dispersion in silicon and germanium at longwavelengths using picosecond ultrasonics. Phys. Rev. Lett., 2002, 84(24):5556–5559
    [93] Fon W, Schwab K C, Worlock J M, et al. Phonon scattering mechanism in sus-pended nanostructures from 4 to 40K. Phys. Rev. B, 2002, 66(4):045302–1–045302–5
    [94] Williams C C, Wickramasinghe H K. Scanning thermal profiler. Appl. Phys. Lett.,1986, 49(23):1587–1589
    [95] Shi L, Plyasunov S, Bachtold A, et al. Scanning thermal microscopy of carbonnanotubes using batch-fabricated probes. Appl. Phys. Lett., 2000, 77(26):4295–4297
    [96] Szafer A, Stone A D. Theory of Quantum Conduction through a Constriction.Phys. Rev. Lett., 1989, 62(3):300–303
    [97] Leng M H, Lent C S. Recovery of quantized ballistic conductance in a periodicallymodulated channel. Phys. Rev. Lett., 1993, 71(1):137–140
    [98] Leng M H, Lent C S. Conductance quantization in a periodically modulated chan-nel. Phys. Rev. B, 1994, 50(15):10823–10833
    [99] Haanappel E G, Marel D V D,et al. Conductance oscillations in two-dimensionalSharvin point contacts. Phys. Rev. B, 1989, 39(8):5484–5487
    [100] Tekman E, Ciraci S. Novel features of quantum conduction in a constriction. Phys.Rev. B, 1989, 39(12):8772–8775
    [101] Castao E, Kirczenow G. Case for nonasiabatic quantized conductance in smoothballistic constrictions. Phys. Rev. B, 1992, 45(3):1514–1517
    [102] Avishai Y, Band Y B. Ballistic electronic conductance of an orifice. Phys. Rev. B,1989, 40(18):12535–12538
    [103] Yamamoto T, Watanabe S, Watanabe K. Universal features of quantized ther-mal conductance of carbon nanotubes. Phys. Rev. Lett., 2004, 92(7):075502–1–075502–4
    [104] Agullo-Rueda F, Mendez E E, Ohno H, et al. Interactions between extended andlocalized states in superlattices. Phys. Rev. B, 1990, 42(2):1470–1473
    [105] Mizuno S. Eigenfrequency and decay factor of the localized phonon in a superlat-tice with a defect layer. Phys. Rev. B, 2002, 65(19):193302–1–193302–4
    [106] Li Wen-Xia, Chen Ke-Qiu, Duan Wenhui, Wu Jian, and Gu Bing-Lin. Acousticphonon mode splitting behavior of an asymmetric y-branch three terminal junction.Appl. Phys. Lett., 2004, 85(5):822–824
    [107] Chen K Q, Wang X H, Gu B Y. Localized folded acoustic phonon modes in coupledsuperlattices with structural defect. Phys. Rev. B, 2000, 61(18):12075–12081
    [108] Chen K Q, Li W X, Duan W H, Shuai Z, and Gu B L. Effect of defects on thethermal conductivity in a nanowire. Phys. Rev. B, 2005, 72(4):045422–045426
    [109] Tang L-M, Wang L, Chen K-Q, Huang W Q, and Zou B S. Coupling effect onphonon thermal transport in a double-stub quantum wire. Appl. Phys. Lett., 2006,40(16):163505–163507
    [110] Huang W-Q, Huang G-F, Wang L, and Huang B. Phonon-cavity-enhanced low-temperature thermal conductance of a semiconductor nanowire with narrow con-strictions. Phys. Rev. B, 2007, 75(23):233415–233418
    [111]刘静.微米/纳米尺度传热学.北京:科学出版社, 2001
    [112] Bies W E, Radtke R J and Ehrenreich H. Phonon dispersion effects and thethermal conductivity reduction in GaAs/AlAs superlattices. J. Appl. Phys, 2000,88(3):1498–1503
    [113] Li Wen-Xia, Chen Ke-Qiu, Duan Wenhui, Wu Jian and Gu Bing-Lin. Phonontransport and thermal conductivity in dielectric quantum wire. J. Phys. D, 2003,36(7):3027–3033
    [114] Li Wen-Xia, Chen Ke-Qiu, Duan Wenhui, Wu Jian and Gu Bing-Lin. Phonontransport through a T-shaped quantum waveguide. J. Phys.: Condens. Matter, 2004,16(21):5049–5059
    [115] Camley R E, Djafari-Rouhani B, Dobrzynski L, Maraduin A A. Transverse elasticwaves in periodically layered infinite and semi-infinite media. Phys. Rev. B, 1983,27(12):79318–7329
    [116] Tamura S, Wolfe J P. Acoustic phonons in multiconstituent superlattices. Phys.Rev. B, 1988, 38(8):5610–5614
    [117] Bria D, Boudouti E H El, Nougaoui A, Djafari-Rouhani B, Velasco V R. Localizedand resonant guided elastic waves in an adsorbed layer on a semi-infinite superlat-tice. Phys. Rev. B, 2000, 61(18):15858–15856
    [118] Boudouti E H El, Djafarii-Rouhan B, Khourdifi E M, Dobrzynski L. Optical prop-erties of silicon nanostructures. Phys. Rev. B, 1993, 48(15):10978–10982
    [119] Mizuno Si and Tamura S I. Impurity levels and resonant transmission of acousticphonons in a double-barrier system. Phys. Rev. B, 1992, 45(23):13423–13430
    [120] Mizuno Si, Tamura S I. Resonant interaction of phonons with surface vibrationalmodes in a finite-size superlattice. Phys. Rev. B, 1996, 53(8):4549–4552
    [121] Pereyra Pedro. Annals of Physics, 2005, 320(8):1–20
    [122] Peroz-Alvarez R, Garlia-Moliner F, Velasco V R. Simultaneous surface Greenfunction matching for N interfaces. J. Phys.: Condens. Matter, 1995, 7(6):2037–2049
    [123] Boudouti E H El, Djafari-Rouhani B, Akjouj A, Dobrzynski L. Ballistic electronicconductance of an orifice. Phys. Rev. B, 1989, 40(18):12535–12538
    [124] Sun Jia-Hong and Wu Tsung-Tsong Propagation of surface acoustic wavesthrough sharply bent two-dimensional phononic crystal waveguides using a finite-difference time-domain method. Phys. Rev. B, 2006, 74(17):174305–174311
    [125] Khelif A, Djafari-Rouhani B, Vasseur J O, and Deymier P A. Transmission and dis-persion relations of perfect and defect-containing waveguide structures in phononicband gap materials. Phys. Rev. B, 2003, 68(2):024302–024309
    [126] Jusserand B, Paquet D, Mollot F, Alexandre F, Roux G L. In?uence of the supercellstructure on the folded acoustical Raman line intensities in superlattices. Phys. Rev.B, 1987, 35(6):2808–2817
    [127] Lockwood D J, Devine R L S, Rodriguez A, Mendialdua T, Djafari Rouhani B,Dobrzynski L. Raman scattering from folded acoustic phonons and photolumines-cence in multilayer GaAs-AlAs superlattices. Phys. Rev. B, 1993, 47(20):13553–13560
    [128] Bartels A, Dekorsy T, Kurz H, Kohler K. Coherent Zone-Folded LongitudinalAcoustic Phonons in Semiconductor Superlattices: Excitation and Detection. Phys.Rev. B, 1999, 82(5):1044–1047
    [129] Santos P V., Ley L, Mebert J, Koblinger O. Frequency gaps for acoustic phononsin a-Si:H/a-SiNx:H superlattices. Phys. Rev. B, 1987, 36(9):4858–4868
    [130] Tamura S, and WolfeJ P. Coupled-mode stop bands of acoustic phonons in semi-conductor superlattices. Phys. Rev. B, 1989, 35(5):2528–2531
    [131] Mizoguchi K, Matsutani K,Nakachima S, Dekorsy T, Kurz H, and Nakayama M.Observation of coherent acoustic phonons in Fibonacci superlattices. Phys. Rev.B, 1997, 55(5):9936–9939
    [132] Mishina T,Iwazaki Y, Masumoto Y, and Nakayama M. Real time-space dynamicsof zone-folded phonons in GaAs/AlAs superlattices. Solid State Commun., 1998,107(2):281–284
    [133] Wu S, Geiser P, Jun J, Karpinski J, and Sobolewski Roman. Femtosecond opti-cal generation and detection of coherent acoustic phonons in GaN single crystals.Phys. Rev. B, 2007, 76(8):085210–085217
    [134] Djafari-Rouhani B, Boudouti E H El, Khourdifi E M, and Dobrzynski L. Local-ized and resonant acoustic modes in semi-infinite superlattices. Vacuum, 1994,45(18):341–344
    [135] Peng Xiao-Fang, Chen Ke-Qiu, and Zou B S. Ballistic electronic conductance ofan orifice. Appl. Phys. Lett., 2007, 90(19):193502–193504
    [136] Huang Wei-Qing, Chen Ke-Qiu, Shuai Z, Wang Linglng, Hu Wangyu. Discon-tinuity effect on the phonon transmission and thermal conductance in a dielectricquantum waveguide. Phys. Lett. A, 2005, 336(2-3):245–252
    [137] Nie Liu-Ying, Wang Lingling, Zhao L H and Chen Ke-Qiu. Acoustic phonontransport and thermal conductance in a multiple channels nanostructure. Phys.Lett. A, 2007, 364(3):343–347
    [138] Hurley D C, Tamura S, Wolfe J P, Morkoo H. Imaging of acoustic phonon stopbands in superlattices. Phys. Rev. B, 1987, 58(23):2446–2449
    [139] Adachi S. GaAs, AlAs, and AlxGa1?xAs:Material parameters for use in researchand device applications. J. Appl. Phys., 1985, 58(3):R1
    [140] Song D, Chen G. Thermal conductivity of periodic microporous silicon films.Appl. Phys. Lett., 2004, 84(5):687–679
    [141] Li K-M, Wang L-L, Huang W-Q, and Zou B-S. Effect of diffusion layers and defectlayer on acoustic phonons transport through the structure consisting of differentfilms. Phys. Lett. A, 2008, 372(30):5046–5051
    [142] Venkatasubramanian Rama. Lattice thermal conductivity reduction and phonon lo-calizationlike behavior in superlattice structures. Phys. Rev. B, 2000, 61(4):3091–3097
    [143] Broido D A and Reinecke T L. Lattice thermal conductivity of superlattice struc-tures. Phys. Rev. B, 2004, 70(8):081310–081313
    [144] Glavin B A. Low-Temperature Heat Transfer in Nanowires. Phys. Rev. Lett., 2001,86(19):4318–4321
    [145] Costa-Kra¨mer J L, Garc′ia N, and Olin H. Conductance quantization histograms ofgold nanowires at 4 K. Phys. Rev. B, 1997, 55(19):12910–12538
    [146] Chantrenne P, Lysenko V. Thermal conductivity of interconnected silicon nanopar-ticles: Application to porous silicon nanostructures. Phys. Rev. B, 2005,72(3):035318–035322
    [147] Yang Ronggui, Chen Gang, and Mildred S Dresselhaus. Thermal conductivity ofsimple and tubular nanowire composites in the longitudinal direction. Phys. Rev.B, 2005, 72(12):125418–125424
    [148] Mingo N and Broido D A. Carbon Nanotube Ballistic Thermal Conductance andIts Limits. Phys. Rev. Lett., 2005, 95(9):096105–096108
    [149] Mingo N and Broido D A. Length Dependence of Carbon Nanotube ThermalConductivity and the“Problem of Long Waves”. Nano Lett., 2005, 5(7):1221–1225
    [150] Ming Y, Wang Z X, Ding Z J. Acoustic phonon transport through a double-bendquantum waveguide. Phys. Lett. A, 2006, 350(3-4):302–308
    [151] Nie Liu-Ying, Wang Ling-ling, Chen Ke-Qiu, Zou B S and Zhao L H. Thermalconductance in quantum wire with two obstances. Physica E, 2007, 39(2):185–190
    [152] Graff K F. Wave Motion in Elastic Solids. Clarendon: Oxford, 1975
    [153] Xu H Q. Electron transport through one-dimensional lateral surface superlatticesin magnetic fields. Phys. Rev. B, 1995, 52(8):5803–5812
    [154] Xu H Q. Diode and transistor behaviors of three-terminal ballistic junctions. Appl.Phys. Lett., 2002, 80(5):853–855
    [155] Madelung O. Semiconductors: Group IV Elements and III-V Compounds. Berlin:Springer, 1982
    [156] Li B, Lan J, and Wang L. Interface Thermal Resistance between Dissimilar Anhar-monic Lattices. Phys. Rev. Lett., 2005, 95(10):104302–104305
    [157] Li B and Casati G. Thermal conductivity of Si–Ge superlattices. Appl. Phys.Lett., 2006, 88(22):143501–143503
    [158] Prasher R, Tong T, and Majumdar A. Diffraction-limited phonon thermal conduc-tance of nanoconstriction. Appl. Phys. Lett., 2007, 91(14):143119–143121
    [159] Zhang W, Mingo N, and Fisher T S. Simulation of phonon transport across a non-polar nanowire junction using an atomistic Green’s function method. Phys. Rev. B,2007, 76(19):195429–195437
    [160] Meschke M, Guichart W, and Pekola J P. Single-mode heat conduction by photons.Nature (London), 2006, 444(09):187–190
    [161] Bourgeois O., Fourmier T., and Chaussy J. Measurement of the thermalconductance of silicon nanowires at low temperature. J. Appl. Phys., 2007,101(1):016104–1–016104–3
    [162] Yang S, Page J H, Liu Z, Cowan M L, Chan C T, and Sheng P. Ultrasound Tunnel-ing through 3D Phononic Crystals. Phys. Rev. Lett., 2002, 88(10):104301–104304
    [163] Sun C K, Liang J C, and Yu X Y. Coherent Acoustic Phonon Oscillations in Semi-conductor Multiple Quantum Wells with Piezoelectric Fields. Phys. Rev. Lett.,2000, 84(1):179–182
    [164] Fokker P A, Dijkhuis J I, and Wijn H W de. Stimulated emission of phonons in anacoustical cavity. Phys. Rev. B, 1997, 55(5):2925–2933
    [165] Camps I, Makler S S, Pastawski H M, and Torres L E F Foa. GaAs?AlxGa1?xAsdouble-barrier heterostructure phonon laser: A full quantum treatment. Phys. Rev.B, 2001, 64(12):125311–125323
    [166] Chen J, Khurgin J B, and Merlin R. Stimulated-emission-induced enhancement ofthe decay rate of longitudinal optical phonons in III–V semiconductors. Appl.Phys. Lett., 2002, 80(16):2901–2903
    [167] Trigo M, Bruchhausen A, Fainstein A, Jusserand B, and Thierry-Mieg V. Confine-ment of Acoustical Vibrations in a Semiconductor Planar Phonon Cavity. Phys.Rev. Lett, 2002, 89(22):227402–227405
    [168] Huynh A, Lanzillotti-Kimura N D, Jusserand B, Perrin B, Fainstein A, Pascual-Winter M F, Peronne E, and Lemao¨tre A. Subterahertz Phonon Dynamics in Acous-tic Nanocavities. Phys. Rev. Lett., 2006, 97(11):115502–115505
    [169] Soukiassian A, Tian W, Tenna D A, Xi X X, Schlom D G., Lanzillotti-Kimura N.D., Bruchhausen A., Fainstein A., Sun H. P. Acoustic Bragg mirrors and cavitiesmade using piezoelectric oxides. Appl. Phys. Lett., 2007, 90(4):042909–042911
    [170] Lacharmoise P, Fainstein A, Jusserand B, and Thierry-Mieg V. Optical cavity en-hancement of light–sound interaction in acoustic phonon cavities. Appl.Phys.Lett., 2004, 84(17):3274–3276
    [171] Lanzillotti-Kimura N D, Fainstein A, and Jusserand B. Phonon Bloch oscillationsin acoustic-cavity structures. Phys. Rev. B, 2005, 71(4):041305–041308
    [172] Ming Y, Wang Z X, Li Q, and Ding Z J. Nonlinear thermal properties of three-terminal mesoscopic dielectric systems. Appl. Phys. Lett., 2007, 91(14):143508–143510
    [173] Yang B, Chen G. Partially coherent phonon heat conduction in superlattices. Phys.Rev. B, 2003, 67(19):195311–195314
    [174] Chen D Z A, Narayanaswamy A, and Chen G. Surface phonon-polariton mediatedthermal conductivity enhancement of amorphous thin films. Phys. Rev. B, 2005,72(15):155435–155438
    [175] Sun Q, Yang P, and Guo H. Four-Terminal Thermal Conductance of MesoscopicDielectric Systems. Phys. Rev. Lett., 2002, 89(17):175901–175904
    [176] Wang J, Wang J-S. Dimensional crossover of thermal conductance in nanowires.Appl. Phys. Lett., 2007, 90(24):241908–241910
    [177] Guthy C, Nam C-Y, and Fischer J E. Unusually low thermal conductivity of galliumnitride nanowires. J. Appl. Phys., 2008, 103(6):064319–064327
    [178] Xie F, Chen K-Q, Wang Y G, Wan Q, Zou B S, and Zhang Y. Acoustic phonontransport and ballistic thermal conductance through a three-dimensional double-dend quantum structure. J. Appl. Phys., 2008, 104(5):054312–054315
    [179] Li K-M, Wang L-L, Huang W-Q, Zou B-S, and Wan Q. Heat transport in a four-perpendicularity-bend quantum waveguide. Phys. Lett. A, 2008, 372(36):5816–5824
    [180] Chiu H-Y, Deshpande V V, Postma H W Ch, Lau C N, Miko C, Forro L., BallisticPhonon Thermal Transport in Multiwalled Carbon Nanotubes. Phys. Rev. Lett.,2005, 95(22):226101–226105
    [181] Wu G and Li B. Thermal rectification in carbon nanotube intramolecular junctions:Molecular dynamics calculations. Phys. Rev. B, 2007, 76(8):085424–085431
    [182] Schwab K, Arlett J L, Worlock J M, and Roukes M L. Thermal conductancethrough discrete quantum channels. Physica E, 2001, 9(1):60–68
    [183] Tanaka Y, Yoshida F, and Tamura S. Lattice thermal conductance in nanowires atlow temperatures: Breakdown and recovery of quantization. Phys. Rev. B, 2005,71(20):205308–205319
    [184] Yang P, Sun Q-f, Guo H, and Hu B. Thermal transport in a dielectric T-shapedquantum wire. Phys. Rev. B, 2007, 75(23):235319–235324
    [185] Li B and Casati G. Thermal Diode: Rectification of Heat Flux. Phys. Rev. B, 2004,93(18):184301–184304
    [186] Sheng W-D. The scattering matrix method for quantum waveguide. J. Phys.:Condens Matter, 1997, 9(6):8369–8380

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700