多尺度分析方法在旋转机械状态监测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多尺度思想是人们在对世界认识的不断加深的过程中逐渐产生和发展的,与单尺度的观点相比,多尺度方法更贴近人们认识事物的习惯,也更加符合事物的本质。本论文立足多尺度分析方法在旋转机械状态监测与故障诊断中的应用,以多尺度分析方法为主要研究内容,深入研究了四种典型的多尺度方法在旋转机械状态监测中的原理、方法和效果,并最后将它们引入高速列车轴承轨边声学诊断系统的研究中。研究包括:
     根据旋转机械状态信号包含有特征频率及高频谐振的特征,将小波方差的能量特性引入到旋转机械状态信号的频谱特征提取中,提出了旋转机械多尺度小波方差拟合特征的分析方法。即根据不同工作状态下旋转机械状态信号的“小波方差对数—尺度”最小二乘法拟合直线呈现出的与设备状态相关的特点,通过拟合直线斜率对状态信号进行分类。通过滚动轴承三状态振动测试和齿轮箱三状态测试两个独立实验对该方法进行了验证和分析,证明小波方差拟合特征作为一种新的信号多尺度分析参数,可以有效的反映旋转机械的不同故障和同一故障的不同故障阶段,同时计算简便,易于计算机实现实时监测。
     针对状态监测中经常要遇到的设备状态突变现象,将信息熵理论与小波变换结合,研究了多尺度小波熵对设备状态信号突变的检测能力,提出基于小波熵的旋转机械状态监测方法。该方法通过特征频率的选择,消除低信噪比对信号整体熵的影响,利用小波熵对系统参数突变的敏感性,实现对设备故障的预警。齿轮箱全寿命实验表明小波时间熵和小波奇异熵可以有效的检测齿轮箱状态突变情况。
     齿轮发生磨损时,轮对故障点周期性啮合时将会产生附加振动而激励齿轮共振,这种共振信号具有较强的尺度行为。根据该特征研究了标度分析在旋转机械状态监测中的应用。并以去趋势波动分析为基础,将去趋势波动分析中子区间概念细化到每一个采样点,通过权重函数调节计算不同尺度下的滑动平均和二阶中心距,可以得到每一个采样点的波动函数,发展了一种新的局域标度指数方法。该方法比去趋势波动分析更加重视信号局部的精细结构。齿轮箱磨损试验清晰的表明局域标度指数可以滤除其他频率成分,有效直观的检测出故障齿啮合时信号的微弱故障频率成分。
     分析了单重分形刻画信号的特征时只能从整体上反映信号的不规则性,缺乏对局部奇异性刻画的缺点,研究了多重分形对旋转机械状态信号局部尺度行为的表征能力。并将去趋势多重分形方法引入到旋转机械状态监测中,并定义了多重分形谱的形态学特征,以此定量提取了信号的状态参数进行故障分类。齿轮箱磨损试验的去趋势多重分形分析证明了该方法具有良好的故障分类效果。
     在高速铁路快速发展的背景下,分析了我国列车轴承轨边声学诊断系统的研究现状,设计制造了高速列车轴承的声学测试平台,并利用本文提出的多尺度分析方法,对多种工作状态下的高速列车轴承声学信号进行了深入的分析,进一步确认了多尺度方法在旋转机械故障诊断中的有效性,也给出了高速列车轴承声学诊断的一个可行的研究方向。
The origin and development of multi-scale analysis is on the basis of the people's deepening understanding of the world. Multi-scale thought is much more abutted the natures of things and much more in line with the habit of people exploring new things than the view of single scale. On the basis of multi-scale analysis, rotating machinery condition monitoring and fault diagnosis is deeply studied on four kinds of multi-scale methods, and finally these multi-scale analysis methords are introduced to the high-speed train bearing acoustics diagnostic systems.
     According to the characteristic frequency and high-frequency resonance frequency that typical rotating machinery state signals contained, the wavelet coefficient variance feature is proposed with wavelet coefficient variance's energy property. The wavelet-based multi-scale slope features which can identify the different working conditions of rotating machinery are estimated from the slope of logarithmic variances after the DWT analysis of the signals. The effectiveness of the proposed feature was verified by two experiments on bearing defect identification and gear wear diagnosis. Experimental results show that the wavelet-based multiscale slope features have the merits of high accuracy and stability in classifying different conditions of both bearings and gearbox, and thus are valuable for machinery fault diagnosis.
     The status mutations phenomenon often encountered in the equipment condition monitoring, and the multi-scale wavelet entropy analysis is studied to solve this problem. This method combines information entropy theory and wavelet transform, and eliminate the noise in low SNR signals by selecting the characteristic scale. Experimental results show that the wavelet time entropy, the wavelet singular entropy and the wavelet scale entropy are sensitive to the early mutation of gearbox vibration signal and can make warning of equipment failure.
     During the gearbox experiences wear process, there is a structure resonance phenomenon when the failure point of the gear periodic meshing. This resonance signal has a strong scale behavior and there is a strong correlation between adjacent signal points. Based on detrended fluctuation analysis, local scaling exponent method is proposed var refinement the concept of subspace to each sampling point, and adjusting the weighting function to calculate the moving average and second-order center distance in different scales. The new local scaling exponent method pays more attention to the fine local structure of the signal than the detrended fluctuation analysis. A gearbox wear test verified the local scaling exponent analysis can filter out other frequency components or noise, and effectively monitor the weak fault component.
     The lack of local singularity characterization make the single fractal only can reflect the overall analysis of the signals, when multi fractal analysis can characterize the signal local-scale behavior of rotating machinery more effectively. The detrended trend multifractal method is introduced to the condition monitoring of rotating machinery, and the morphological characteristics of the multifractal spectrum are proposed for quantitative extraction of the state parameters of the signal for fault classification. A gearbox wear test verifies the multi fractal analysis has a good effect in condition classification.
     In the context of the rapid development of high-speed railway, the Trackside Acoustic Diagnostic System (TADS) receives much more attention. A test platform is designed and manufactured for high-speed train bearing acoustic diagnosis and take advantage of the proposed multi-scale analysis method by this paper for high speed train bearing acoustic diagnosis. The analysis results further confirm the validity of multi-scale method and suggest a feasible research direction for acoustic diagnostics of high-speed train bearings.
引文
Acharyya M, De R K, Kundu M K. Segmentation of Remotely Sensed Images Using Wavelet Features and Their Evaluation in Soft Computing Framework[J]. IEEE Trans, on Geoscience and remote sensing,2003,41(12):2900-2905.
    Alderbank R C, Daubechies I, Sweldens W. Wavelet Transform That Map Integers to Integers[J]. Applied and Computational Harmonic Analysis,1998,5(3):332-369.
    Bak P, Tang C, Wiesenfeld K. Self-organized criticality:An explanation of the 1/f noise[J]. Phys. Rev. Lett.,1987,59:381-388.
    Bakshi B B. Multiscale Analysis and Modeling Using Wavelets[J]. Journal Of Chemometrics. 1999,13(3-4):415-434
    Barke D, Chiu W K. Structural Health Monitoring in the Railway Industry:A Review. Structural Health Monitoring,2005,4:81-93.
    Barnett S M, Phoenix S J. Entropy as a Measure of Quantum Optical Correlation[J]. Phys. Rev. A, 1989,40:2404-2409.
    Binder K, Heermann D W. Monte-Carlo Methods[M]. Wiley Online Library,1979.
    Boumen R, Jong S, Vermunt J, et al. Test Sequencing in Complex Manufacturing Systems. IEEE Transactions on Systems Man and Cybernetics Part A:Systems And Humans[J].2008, 38(1):25-37.
    Brandt A. Multiscale Scientists Computation:Review[C]. Proc.10 the Copper Mountain Conferences on Multigrid Methods, Copper Mountain, CO, USA,2001:3-96.
    BRIE D. Modeling of the Spalled Rolling Element Bearing Vibration Signal:An Overview and Some New Results[J], Mechanical Systems and Signal Processing,2000,14(3)353-369.
    Buldyrev S V, Goldberger A L, Havlin S, et al. Statistics of Returen Intervals in Long Term Correlated Records[J]. Phys. Rev. E,2007,75:011128.
    Bunde A, Havlin S, Kantelhardt J W, et al. Correlated and Uncorrelated Regions in Heart-Rate Fluctuations During Sleep[J]. Phys. Rev. Lett.2000,85:3736.
    Bunde E K, Bunde A Havlin S, et al. Analysis of Daily Temperature Fluctuations [J]. Physica A, 1996,231:393-394.
    Castellano C, Pastor-Satorras C. Routes to Thermodynamic Limit on Scale-free Networks[J]. Physical Review Letters.2008,100(14).
    Choe H C, Wan Y L, Chan A K. Neural Pattern Identification of Railroad Wheel-Bearing Faults from Audible Acoustic Signals:Comparison of FFT, CWT and DWT features[C]. SPIE Proceedings on Wavelet Applications,1997,3087:480-496.
    Chui C K. Wavelets:A Tutorial in Theory and Applications[M], Academic Press,1992:603-654.
    Chui C K. An Introduction to Wavelets[M]. Salt Lake City:Academic Press,1992.
    Cline J E and Bilodeau J R. Acoustic Wayside Identification of Freight Car Roller Bearing Detects[C]. Proceedings of the 1998 ASME/IEEE Joint Railroad Conference,1998,1:79-83.
    Daubechies I. Sweldens W. Factoring Wavelet Transforms into Lifting Steps[J]. Fourier J. Anal. Appl,1998,4(3):245-267
    Daubechies I. Orthonormal Bases of Compactly Supported Wavelets[J]. Comm. Pure Appl. Math, 1988,41(7):909-996.
    Davies R B, and Harte D S. Tests for Hurst Effect, Biometrika,1987,74(1):95-101.
    Donelson J, Dicus R L. Bearing Defect Detection Using On-Board Accelerometer Measurements[C]. Proceedings of the 2002 ASME/IEEE Joint Rail Conference, Washington, 2002,1:95-102.
    Duan Z S, Wang J Z, Chen G R, et al. Stability Analysis and Decentral-ized Control of a Class of Complex Dynamical Networks[J]. Automatica.2008,44(4):1028-1035.
    Flandrin P. Wavelet Analysis and Synthesis of Fractional Brownian Motion[J]. IEEE Transactions on Information Theory,1992,38:910-917.
    Florom R L, Hiatt J E, and Smith R L. Wayside Acoustic Detection of Railroad Roller Bearing Defects[J].1987,87-WART-1.
    Frank P M and Ding X. Frequency Domain Approach to Optimally Robust Residual Generation and Evaluation for Model-Based Fault Diagnosis[J]. Automatica,30(1994) 789-804.
    Frank P M. Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-based Redundancy-a Survey and some New Results[J]. Automatica.1990,26(3):459-474
    Ganesan R, Das T K and Venkataraman V. Wavelet Based Multiscale Statistical Process Monitoring-A Literature Review[J]. HE transactions,2004,36:787-806.
    Gaskell P H, Jimack P K, Koh Y Y et al. Development and Application of a Parallel Multigrid Solver for the Simulation of Spreading Droplets [J]. International Journal for Numerical Methods in Fluids.2008,56(8):979-989.
    Goodman T. Interpolatory Hermite Spline Wavelet[J]. J. Approx. Theory,1994,78:174-189.
    Grossman A, Morlet J. Decomposition of Hardy Functions into Square Integable Wavelet of Constant Shape[J]. Siam.tJ.Math.AnalT,1984,15(4):723-736.
    Gutenberg B, Richter C F. Frequency of Earthquakes in California. Bul.1 Seism. Soc. Ame.,1944, 34:185-186.
    Harr A. Zur Theorie der Orthogonalen Funktionen Systeme. Mathematische Annalen.1910,69 (3):331-171.
    Harris, T A. Rolling Bearing Analysis 3rd ed. [M], John Wiley & Sons, Inc,1991.
    Hartin J R. Application of a Wavelet Based FRF to the Analysis of a Bilinear Structure[C]. Proceedings of the International Modal Analysis Conference-IMAC,2001,2:1414-1419.
    HeZY, CaiYM, Qian Q Q. A Study of Wavelet Entropy Theory and Its Application in Electric Power System Fault Detection[J]. Proceedings of the CSEE,2005,25(5):39-43.
    Heck L and Chou K, Gaussian mixture model classifier for machine monitoring[C], Proc. of the IEEE world Congress on Computational Neural Network and Int. Conf. on Intelligence,1994, New York,7:4493-4496.
    Hu Q, He Z, Zhang Z, and Zi Y. Fault Diagnosis of Rotating Machinery Based on Improved Wavelet Package Transform and Svms Ensemble[J], Mechanical Systems and Signal Processing, 21(2007) 688-705.
    Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. Proc. Roy. Soc. London A,1998, 454:903-995.
    Hurst H E. Long-Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civ. Eng.,1951; 116:770-808.
    Irani F D先进道旁车辆状态监视系统的开发和应用[J].国外铁道车辆,2002,39(2):39-45.
    Kantelhard W, Stephan A, Koscielny-Bunde Z, et al. Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series[J]. Physica A:Statistical Mechanics and its Applications,2002, 316:87-114.
    KeshnerM S. 1/f Noise[J]. Proceedings of the IEEE,1982,70:212-218.
    Kim H O, Lim J K. On Frame Wavelets Associated with Frame Multi-resolution Analysis[J]. Appl. Comput. Harmon. Anal.,2001,10:61-70.
    Kitagawa T, Thompson D J. The Horizontal Directivity of Noise Radiated by a Rail and Implications for the Use of Microphone Arrays [J]. Journal of Sound and Vibration,2010, 329:202-220.
    Kundakcioglu O E. Unluyurt T. Bottom-up Construction of Minimum-cost and/or Trees for Sequential Fault Diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans,2007,37(5):621-629.
    Lagnebck R. Evaluation of Wayside Condition Monitoring Technologies for Condition-Based Maintenance of Railway Vehicles[M], Licentiate Thesis, Lule:University of Technology,2007.
    Lakshmanan V, Rabin R, DeBrunner V. Multiscale Storm Identication and Forecast[J], Atmospheric Research.2003,67:367-380.
    Laura R, Jennifer R, Ashok R. Optimal Filtering and Bayesian Detection for Friction-Based Diagnostics in Machines[J]. ISA transactions,2001,40:207-221.
    Lazic P, Stefancic H, Abraham H. The Robin Hood Method-a New View on Differential Equations[J]. Engineering Analysis with Boundary Elements,2008,32(1):76-89.
    Leu J S, and Papamarcou A. On Estimating the Spectral Exponent of Fractional Brownian Motion[J], IEEE Trans. Inf. Theory,1995,41(1):233-244.
    Li J P, Wu C Z, Long L. Non-stationary Random Signal Processing Based on Wavelet Transfrom[J]. Journal of Engineering Mathmatics,2001,18(5):99-104.
    Li J, Kwauk M. Exploring Complex Systems in Chemical Engineering-theMulti-scale Methodology[J]. Chemical Engineering Science,2003,58(3):521-535.
    Littlewood J. Theorems on Fourier Series and Power Series[J]. Proc. London Math. Soc.,1937 42(1):52-89.
    Liu Y H, Gopikrishnan P, et al. Statistical properties of the volatility of price fluctuations [J]. Phys. Rev. E,1999,60:1390.
    Lou X and Loparo K. Gearbox Fault Diagnosis Based on Wavelet Transform and Fuzzy Inference[J]. Mechanical Systems and Signal Processing,2004,18:1077-1095.
    Loutridis S J, and Trochidis A. Classification of Gear Faults Using Hoelder Exponents[J]. Mech. Syst. Signal Process,2004,18(5):1009-1030.
    Loutridis S J, Self-similarity in Vibration Time Series:Application to Gear Fault Diagnostics[J]. ASME Journal of Vibration and Acoustics,2008,130:031004.
    Luo R F, Misra M and Himmelblau D M. Sensor Fault Detection via Multiscale Analysis and Dynamic PCA[J]. Industrial & Engineering Chemistry Research,1999,38:1489-1495.
    Mallat M. A Wavelet Tour of Signal Processing[M]. San Diego:Academic,1998.
    Mallat S G. A Theory for Multiresolution Signal Decomposition:The Wavele-trepresentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence,1989, 11(7):674-693
    Mandelbrot B B, and Van Ness J W. Fractional Brownian Motions, Fractional Noises and Applications[J]. SIAM Rev.,1968,10:422-437.
    Mclnerny S A, Dai Y. Basic vibration signal processing for bearing fault detection[J]. IEEE Trans. on Education,2003,46(1):149-156.
    Mechefske C. Objective Machinery Fault Diagnosis using Fuzzy Logic[J]. Mechanical Systems and Signal Processing,12(1998) 855-862.
    Meyer Y. Ondelettes et Operateurs[M]. Hennann,1990.
    Meyer Y. Pseudo Differential Operators[J]. Proc. Symp. Pure. Math,1985,43(1):215-235.
    Muzy J F, Bacry E, and Arneodo A. Wavelets and Multifractal Formalism for Singular Signals: Application to Turbulence Data[J]. Phys. Rev. Lett.,1991,67:3515-3518.
    Norouzzadeh P, Rahmani B. A Multifractal Detrended Fluctuation Description of Iranian Rrial-US dollar Exchange Rate[J]. Physica A,2006,367:328-336.
    Oraintara S, Tran T D, and Heller P N. Lattice Structure for Regular Paraunitary Linear-Phase Filter banks and M-Band Orthogonal Symmetric Wavelets[J]. IEEE Traps. On Signal Processing,2001,49:2659-2672.
    Pattipati K, and Alexandridis M G. Application of Heuristic Search and Infor-mation Theory to Sequential Fault Diagnosis[J]. IEEE Transactions on Systems, Man and Cybernetics,1990, 20(4):872-887.
    Peng C K, Buldyrev S V, Havlin S. et al. Mosaic organization of DNA nucleotides [J]. Physical Review E.1994,49(2):1685-1689.
    Peng Z K, Chu F L, and Tse P W. Singularity Analysis of the Vibration Signals by Means of Wavelet Modulus Maxima Method[J]. Mech. Syst. Signal Process,2007,21:780-794.
    Percival D B, and Walden A T. Wavelet methods for time series analysis[M]. Beijing:China Machine Press,2004:295-299.
    Plerou V, Gopikrishnan P, et al. Scaling of the Distribution of Price Fluctuations of Individual Companies[J]. Phys. Rev. E,1999,60:6519.
    Rezek I A, and Roberts S J. Stochastic Complexity Measures for Physiological Signal Analysis[J]. IEEE Trans Biomed Engin,1998,45(9):1186-1191.
    Robertson A N, Farrar C R, and Sohn H. Singularity Detection for Structural Health Monitoring Using Holder Exponents[J]. Mech. Syst. Signal Process,2003,17(6):1163-1184.
    Rosson O A, Blanco S, Yordanova J, et al. Wavelet Entropy:a New Tool for Analysis of Short Duration Brain Electrical Signals[J]. Neurosci Meth,2001,105(1):65-75.
    Satish L. Short-time Fourier and Wavelet Transforms for Fault Detection in Power Transformers during Impulse Tests[J]. IEE Proc. of Science, Measurement and Technology,1998,145:77-84.
    Satoh M, Tomita H, Miura H, et al. Development of a Global Cloud Resolving Model:A Multi-scale Structure of Tropical Convections [J]. Journal of the EarthSimulator,2005,3:11-19.
    Scalise L, and Paone N. Laser Doppler Vibrometry Based on Self-Mixing Effect[J]. Optics and Lasers in Engineering,2002,38(3-4):173-184.
    Schertzer D, Lovejoy S, Schmitt F et al. Multifractal Cascade Dynamics and Turbulence Intermittency[J]. Fractals,1997,5(3):427-471.
    Schravendijk P, Ghiringhelli L M, DelleSite L, et al. Interaction of Hydrated Amino Acids with Metal Surfaces:A Multiscale Modeling Description[J]. Journal of Physical Chemistry,2007, 111(6):2631-2642.
    Scovazzi G. Multiscale Methods in Science and Engineering[D], Stanford University.2005
    Sneed W H and Smith R L. On-Board Real-Time Bearing Defects Detection and Monitoring[C]. Proceedings of the 1998 ASME/IEEE Joint Railroad Conference,1998,1:149-153.
    Spiesman B J, Gumming G S. Communities in Context:The Ingenues of Multiscale Environmental Variation on Local Ant Community Structure[J]. Land-scape Ecology,2008, 23(3):313-325.
    Sriyananda H and Towill D R. Fault Diagnosis using Time-domain Measurements [J]. Radio and Electronic Engineer,1973,9:523-533.
    Staniek M and Lehnertz K. Parameter Selection for Permutation Entropy Measurements [J]. International Journal of Bifurcation and Chaos,2007,17(10):3729-3733.
    Staszewski W J, and Tomlinson G R. Application of the Wavelet Transform to Fault Detection of a Spur Gear[J]. Mech. Syst. Signal Process,1994,8(3):289-307.
    Struzik Z R. Determining Local Singularity Strengths and Their Spectra With the Wavelet Transform[J]. Fractals,2000,8(2):163-179.
    Sweldens W. The Lifting Scheme:A Chustom-Design of Biothogonal Wavelets[J]. Applied and Computational Harmonic Analysis,1996,3(2):186-200.
    Telesca L, Colangelo G, Lapenna V, et al. Fluctuation Dynamics in Geoelectrical Data:an Investigation by Using Multifractal Detrended Fluctuation Analysis[J]. Phys. Lett. A,2004, 332:398-404.
    Turiel A, and Perez-Vicente C. Multifractal Geometry in Stock Market Time-Series[J]. Physica A, 2003,332:629-649.
    Turiel A, Mato G, Parga N, et al. The Self-Similarity Properties of Natural Images Resemble Those of Turbulent Flows [J]. Phys. Rev. Lett.,1998,80:1098-1101.
    Venkatasubramanian V, Rengaswamy R, Kavuri S N. A Review of Process Fault Detection and Diagnosis Part Ⅱ:Qualitative Models and Search Strategies [J]. Computers and Chemical Engineering.2003,27(3):313-326.
    Venkatasubramanian V, Rengaswamy R, Yin K, et al. A Review of Process Fault Detection and Diagnosis Part I:Quantitative Model-based Methods. Com-puters and Chemical Engineering. 2003,27(3):293-311.
    Wornell G. Signal Processing With Fractals[J]. Prentice-Hall,1996.
    Yang D M,. Stronach A, MacConnel P et al. Third-order Spectral Techniques for the Diagnosis of Motor Bearing Condition using Artificial Neural Network[J]. Mechanical Systems and Signal Processing,2002,16:391-411.
    Yang Y, LI J, Ke X. Study on Wavelet Variance and Its Application in Signal Feature Extraction[J]. Sensor World,2006,12(1):33-35.
    Yao Y Y. Information Granulation and Rough Set Approximation[J]. Interna-tional Journal of Intelligent Systems,2001,16(1):87-104
    Yong R. An Introduction to Nonlinear Fourier Series[M]. New York:Academic Press,1980.
    Yoo C K, Choi S W, Lee I B. Dynamic Monitoring Method for Multiscale Fault Detection and Diagnosis in MSPC[J]. Industrial & Engineering Chemistry Research,2002,41:4303-4317.
    Zhang L, Xu J, Yang J, et al. Multiscale Morphology Analysis and Its Application to Fault Diagnosis[J]. Mechanical Systems and Signal Processing,2008,22:597-610.
    Zhou Y H, and Zhou J. A Muddied Wavelet Approximation for Multi-resolution in Simulating Nonlinear Vibration of Systems[J]. Computer Methodsin Applied Mechanics and Engineering. 2008,197(17-18):1466-1478.
    Zipf G K. Selected Studies of Principle of Relative Frequency in Language[M]. Massachusette:Harvard University press,1932.
    曹豫宁,李永丽,梅云。基于小波变换的频谱细化方法在电动机故障检测中的应用[J]。继电器,2002,30(6):1-3。
    陈克兴,李川奇。设备状态监测与故障诊断技术[M]。北京:科学技术出版社,1991。
    陈森发。复杂系统建模理论与方法[M]。南京:东南大学出版社,2005。
    邓艾东,赵力,包永强等。噪声环境下基于小波熵的声发射识别[J]。东南大学学报,2009,6:1151-1155。
    丁康,李巍华,朱小勇。齿轮及齿轮箱故障诊断实用技术[M]。北京:机械工业出版社,2005。
    丁圣彦。生态学-面向人类生存环境的科学价值观[M]。北京:科学出版社,2004。
    董连科。分形理论及其应用[M]。沈阳:辽宁科学技术出版社,1994。
    丰田利夫。设备现场诊断的开展方法。北京:机械工业出版社,1985,1-10。
    封洲燕。应用小波熵分析大鼠脑电信号的动态变化特性[J]。生物物理学报,2002,3:325-330。
    工善永。汽轮发电机组状态监测、信号分析与故障诊断理论及技术应用研究[D]。南京,东南大学,2000。
    何国威,夏蒙棼,柯孚久,等。多尺度耦合现象:挑战和机遇[J]。自然科学进展,2004,14(2):121-124。
    何清波。多元统计分析在设备状态监测诊断中的应用研究[D]。合肥:中国科学技术大学,2007。
    何田,刘献栋,李其汉。噪声背景下检测突变信息的奇异值分解技术[J]。振动工程学报,2006,19(3):399-403。
    何文平。动力学结构突变检测方法的研究及其应用[D]。兰州:兰州大学,2008。
    何正嘉,訾艳阳,张西宁。现代信号处理及工程应用[M]。西安:西安交通大学。2007
    何正友,蔡玉梅,钱清泉。小波熵理论及其在电力系统故障检测中的应用研究[J]。中国电机 工程学报,2005,25(5):3847。
    何正友,刘志刚,钱清泉。小波熵理论及其在电力系统中应用的可行性探讨[J]。电网技术,2004,28(21):17-21。
    黑格尔。逻辑学[M]。北京:人民出版社,2002。
    胡海波,王林。幂律分布研究简史[J]。物理,2005,34:889-893。
    黄海英。分形理论在圆盘裂纹故障诊断中的应用研究[D]。沈阳:东北大学,2001年。
    黄润生。混沌及其应用[M]。武汉:武汉大学出版社,2000。
    黄文虎。夏松波不断总结经验,将我国设备监测与诊断技术提高到新的水平[J]。中国设备管理,1998,11:3-5。
    贾继德。往复机械非平稳信号的特征提取及诊断研究[D]。合肥:中国科学技术大学,2004。
    康沫狂。贝氏体相变理论研究工作的主要回顾[J]。金属热处理学报,2000,2:2-8。
    李富才。小波变换域滤波法理论和应用研究[D]。西安:西安交通大学,2003。
    李建平,唐远炎。小波分析方法的应用[M]。重庆:重庆大学出版社,1999。
    李力,彭忠笑,彭书志。去趋势波动分析在齿轮故障诊断中的应用研究[J].中国机械工程,2009,20(19):2311-2314。
    李志民,李卫星,李勃龙。熵原理及其在电力系统可靠性中的应用[J]。电力系统及其自动化学报,2001,13(3):37-39。
    林京,屈梁生。基于连续小波变换的信号检测技术与故障诊断[J]。机械工程学报,2000,12:95-100。
    刘瑞扬,王毓民。铁路货车滚动轴承早期故障轨边声学诊断系统(TADS)原理及应用[M].北京:中国铁道出版社,2008.
    刘瑞扬。北美铁路车辆安全轨边检测系统的现状及思考[J]。中国铁路,2004.,4:57-60。
    刘永斌,龙潜,冯志华等。一种非平稳、非线性振动信号检测方法的研究[J]。振动与冲击2007,12:131-134。
    刘永斌。基于非线性信号分析的滚动轴承状态监测诊断研究[D]。合肥:中国科学技术大学,2011。
    卢方元。中国股市收益率的多重分形分析[J]。系统工程理论与实践,2004,6:50-54。
    卢新城,龚沈光,周骏。基于Morlet小波的高分辨率信号频谱估计[J]。武汉理工大学学报,2002,26(5):622-624
    罗继伟等。滚动轴承分析计算与应用[M],北京:机械工业出版社,2009。
    欧阳乾,谷爱昱。基于小波熵的电机故障诊断[J]。电脑知识与技术,2009,7:5322-5323。
    彭富强。多尺度线调频基稀疏信号分解及其在齿轮箱故障诊断中的应用[D]。长沙:湖南大学,2010。
    秦前清,杨宗凯。实用小波分析[M]。西安:西安电子科技大学出版社,1994。
    任宜春,邓寿昌,仇一颗。基于小波分析的系统识别研究[J].湘潭大学自然科学学报,2004,26(2):56-59
    盛骤等。概率论与数理统计[M]。北京:高等教育出版社。1996。
    石博强,申焱华。机械故障诊断的分形方法[M]。北京:冶金工业出版社,2002。
    孙增寿,任伟新。基于小波熵指标的结构损伤检测[J]。振动、测试与诊断,2008,28(3):233-237。
    陶新民,孙丽华,杜宝祥等。基于小波方差谱熵的轴承故障诊断方法[J]。振动与冲击,2009,28(3):18-22。
    王大凯,彭进业。小波分析及其在信号处理中的应用[M]。北京:电子工业出版社,2006。
    王东生,曹磊。混沌、分形及其应用[M]。合肥:中国科学技术大学出版社,1995。
    王松伟。时间序列的多尺度分析方法研究[D]。开封:河南大学,2006。
    王伟。基于多尺度分析的电站故障诊断方法研究。哈尔滨:哈尔滨工业大学,2008。
    王子煜。基于数学形态学的高分辨率遥感影像分割方法研究[D]。北京:北京大学,2005。
    温熙森,胡笃庆,邱静。模式识别与状态监控[M]。长沙:国防科技大学出版社,1997。
    文成林,周东华。多尺度估计理论及其应用[M]。北京:清华大学出版社,2002。
    吴今培。智能故障诊断与专家系统[M]。北京:科学出版社,1997。
    肖余粮,和卫星,陈晓平等。小波变换和小波熵在睡眠脑电信号变化特性研究中的应用价值[J]。中国临床康复,2006,25:118-120。
    辛厚文。分形理论及其应用[M]。合肥:中国科技大学出版社,1999年。
    胥永刚,李凌均。近似熵及其在机械设备故障诊断中的应用[J]。信息与控制。2002,6:547-551。
    胥永刚。机电设备监测诊断时域新方法的应用研究[D]。西安:西安交通大学,2003。
    徐敏。欧美大型旋转机械监测诊断技术发展近况与评述[C]。第四届全国机械设备故障诊断学术会议论文集,1994,1:35-39。
    徐敏等。设备故障诊断手册:机械设备状态监测和故障诊断[M]。西安西安交通出版社,1998。
    徐亚兰,陈建军,胡太彬。系统模态参数辨识的小波变换方法[J].西安电子科技大学学报(自然科学版),2004,31(2):281-285。
    徐兆宇,王凯等。基于分形理论的汽车发动机故障诊断技术[J]。林业机械与木工设备,1998,26(4):33-35。
    杨江天,陈家骥等。基于高阶谱的旋转机械故障征兆提取[J]。振动工程学报,2001,1:13-18。
    杨杰,林良明。基于分形理论的信号特征提取及应用[J]。武汉交通科技大学学报,1999,23(1):47-50。
    杨叔子,吴雅等。时间序列分析的工程应用[M]。武汉:华中科技大学出版社,1991。
    杨卫东。熵原理在电力系统中的应用前景[J]。电工技术,2000(4):4-6。
    杨文献,姜节胜。机械信号奇异熵研究[J].机械工程学报,2000,36(12):9-13。
    俞悟周,王晨,毛东兴等.高速铁路动车组列车的噪声特性[J]。环境污染与防治,2009,31(1):74-77。
    郁洪强,赵欣,詹启生等。基于小波熵的网络成瘾脑电复杂性分析[J]。天津大学学报,2008,6:751-756。
    曾庆虎。机械传动系统关键零部件故障预测技术研究[D]。长沙:国防科技的大学,2010。
    张国华,张文娟,薛鹏翔。小波分析与应用基础[M]。西安:西北工业大学出版社,2006。
    张贤达。时间序列分析—高阶统计量方法[M]。清华大学出版社,1996。
    张贤达,保铮。非平稳信号分析与处理[M]。北京:国防工业出版社,1998。
    张正松,傅尚新,冯冠平等。旋转机械振动监测及故障诊断[M]。北京:机械工业出版社,1991。
    赵纪元。基于小波理论、神经网络的实用诊断技术研究[D]。西安西安交通大学,1997。
    钟秉林,黄仁等。机械故障诊断学[M]。北京:机械业出版社,2002。
    朱忠奎,孔凡让,王建平,等。信号瞬变成分检测与提取及其在故障诊断中的应用[J]。中国科学技术大学学报,2004,34(1):105-110。
    邹甲军,冯志华。基于小波脊的MDOF系统的模态参数识别[J].苏州大学学报(自然科学版),2004,20(3):35-39。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700