伽辽金多极边界元法及其在声学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术的飞速发展,声学数值计算方法已成为交通运输、航空航天、机械、国防等诸多领域中噪声预测与噪声控制的有效手段。其中,边界元法以其降维、计算精度高、自动满足远场辐射条件等方面的优点,被广泛用于声学问题的数值计算中。但是,传统边界元法从发展之初就存在一个明显的弱点,即由边界积分方程离散生成系统线性方程组的系数矩阵为满秩矩阵。求解该类型线性方程组所需要的高计算量以及高存储量,限制了传统边界元法求解声学问题的规模。因此,在传统边界元法的基础上,发展一种可高效求解声学问题的数值方法具有重要的意义。本文在深入研究声学伽辽金边界元法以及快速多极算法的基础上,发展了一种在宽频带范围内具有较高计算效率的伽辽金多极边界元法,并对二维和三维算法实现过程中的关键问题进行了详细分析。本文主要的研究工作如下:
     (1)将快速多极算法引入伽辽金边界元法中,提出了一种求解二维声学问题的宽频带伽辽金多极边界元法。首先,在求解无限域声学问题时,使用Burton-Miller方程来保证数值结果在全频率段上的唯一性。在处理由Burton-Miller方程中引入的奇异算子时,利用Laplace方程基本解相关性质以及奇异减方法得到一类可快速求解的积分形式;其次,在分析边界积分方程基本解的分波扩展以及平面波展开形式的基础上,构造了一种适合求解宽频带声学问题的伽辽金多极边界元法,并结合快速多极边界元法求解声学问题一般步骤,给出了宽频带伽辽金多极边界元法的实现过程。同时,在构造二维四叉树结构时,使用改进的相互作用列表划分方式,以提高快速多极算法自身的计算效率。在使用广义极小残差方法求解线性方程组时,使用近似求逆方法处理系统线性方程组的系数矩阵,以加速迭代法的收敛。使用二维刚性圆柱面声散射的标准算例验证了二维宽频带伽辽金多极边界元法的计算效率和计算精度。对系统方程组采用的预处理方法,可显著减少求解方程组所需迭代步数,提高线性方程组的计算效率。最后,对含有34个刚性圆柱面的大规模多体散射模型进行数值计算,清楚的表明二维宽频带伽辽金多极边界元法在求解大规模声学问题的潜力。
     (2)基于快速多极算法中的低频和高频展开形式,结合伽辽金格式的边界积分方程,提出了一种求解三维声学问题的宽频带伽辽金多极边界元法。首先,对求解三维声学的低频和高频快速多极算法进行了详细分析,并基于Burton-Miller方程推导了三维宽频带声学伽辽金多极边界元法的相关公式。其次,在求解超奇异积分算子时,采用广义函数的正则化方法,将边界积分方程中含有基本解的两阶偏导数转化为边界未知函数的旋度,将该积分的超奇异性降为弱奇异性,以提高超奇异积分的计算效率。而后,在三维宽频带伽辽金多极边界元法中截断项的选取时,结合低频和高频算法中的选取方式,给出了适合宽频带算法的展开系数截断项的确定方法。最有,通过L形箱体,三维刚性球声辐射和声散射等多个算例验证了三维宽频带伽辽金多极边界元法的准确性与有效性。
     (3)利用半空间形式的基本解,提出了求解半空间声学问题的伽辽金多极边界元法。首先,在二维和三维全空间算法的基础上,构造半空间形式的基本解,推导了求解半空间声学问题的伽辽金多极边界元法的计算公式。与全空间镜像方法相比,半空间方法略去了由建立镜像模型带来的计算量及存储量问题;其次,结合三维树结构,推导了半空间格林函数中源点与镜像点之间局部系数的转移公式,给出了求解半空间声学问题的伽辽金多极边界元法的实现过程;最后,通过二维和三维半空间数值算例,验证了半空间伽辽金多极边界元法的准确性,高效性。
     (4)利用半空间宽频带伽辽金多极边界元法进行了三维有限长声屏障的降噪性能分析,证明了该方法的有效性。首先,建立了直立形声屏障的模型,通过与文献结果对比,验证了由半空间宽频带伽辽金多极边界元法得到的数值结果的正确性;其次,对比了不同频率时,直立形声屏障和T形声屏障的降噪效果;最后,以三维有限长T形声屏障为分析对象,对影响降噪效果的T形声屏障几何参数以及不同多孔介质材料吸声处理等因素对声屏障降噪性能进行了初步分析。相关工作为三维声屏障的设计提供了一种有效的数值预测方法。
With the rapid development of computational technology, numerical method iswidely used to solve acoustic problems in many areas of engineering, such astransportation, aerospace, mechanical and military fields. For the acoustic problems,the boundary element method (BEM) is one of the most developed and acceptednumerical methods. Since it process many advantages, for instances, reduce thedimensionalities of the problems by one, high accuracy and suitable to solveunbounded domain problems. However, one disadvantage makes the BEM falling tosolve large scale acoustic problems, that is, it leads to linear system equations withfully populated, sometime ill conditioned coefficient matrices. The storagerequirements and computational time to solve this kind of system equations arerelatively high. As a result, it is necessary to develop a new method, which inherits allthe advantages of the BEM and at the same time processes higher computationalefficiency. In this dissertation, the fast multipole method is introduced into Galerkinboundary element method, and a wideband multipole Galerkin boundary elementmethod is developed to solve large scale acoustic problems. The implementation ofthe wideband multipole Galerkin boundary element is investigated in detail. The mainresearch works and results of this dissertation are listed as follows:
     (1) The fast multipole method is introduced into the Galerkin BEM, a newwideband multipole Galerkin BEM is presented for solving two-dimensional acousticproblems. In order to remove the non-uniqueness problems associated withconventional BEM when solving exterior acoustic problems, the Burton-Millerformulation–a linear combination of the boundary integral equation and its normalderivative equation is employed. The hyper-singular integral is desingularized usingsome properties of Laplace equation and the singular subtraction approach, the newformulation of the hypersingular integral can be calculated efficiency. Based on thepartial wave expansion method and the plane wave expansion method, twoformulations of the fast method are developed for the low and high frequency acousticproblems repectively. In order to obtain overall computational efficiency in widebandfrequencies, a wideband multipole Galerkin BEM is proposed. It unifies previousexisting fast multipole method for low and high frequencies into an algorithm, which is accurate and efficient for any frequency. This wideband multipole Galerkin BEMhaving a CPU time of O(n) if low frequency computations dominate, or O(nlog2n) ifthe high frequency computations dominate. A brief procedure of this widebandmultipole Galerkin BEM is presented. During the process of construction of the quadtree, a modified definition of the interaction list, which can reduce the multipoleexpansion coefficient to local expansion coefficient translations is suitably adopted.Furthermore, an efficient preconditioning technique–spares approximate inverse pre-conditioner is employed to improve the convergence of the generalized minimalresidual (GMRES) solver. Finally, the numerical result of the rigid cylinder scatteringproblem demonstrates the accuracy and efficiency of the wideband multipole GalerkinBEM for two-dimensional acoustic problems. The sparse approximate inversepreconditioning technique dramatically reduces the iteration steps required by theGREMS solver, the total computational efficiency is further improved. A multi-bodyscattering problem with34cylinders is solved effectively. This example clearly showsthe great potential of the wideband multipole Galerkin BEM for engineeringapplications.
     (2) Based on the Burton-Miller formulation, a wideband multipole Galerkin BEMcombining with the low frequency and high frequency method is proposed to solve thethree-dimensional acoustic problems. The method evaluating the hyper-singularintegral in three dimension problem is differ from the method used in chapter two. Byusing the idea of regularization in sense of distributions, the double normalderivatives for hyper-singular integral are shifted to the boundary rotations of trialfunction and test function, then the hyper-singular integral is transformed to a weaklysingular form. To determine the number of terms in multipole and local expansions,an improved empirical formula is applied. Finally, several examples including an Lshaped box radiation problem, a sphere radiation problem and a sphere scatteringproblem are studied to investigate the accuracy and efficiency of the threedimensional wideband multipole Galerkin BEM.
     (3) The half space fundamental solution of the boundary integral equation isemployed, a new multipole Galerkin BEM for solving half space acoustic problems isproposed. Compared with full space method, a tree structure of the boundary elementsonly for the boundaries of the real domain need to be constructed. The implementationof the half space multipole Galerkin BEM is simplified, only the local expansion isdifferent from the full space method. Finally, the two-dimensional and three-dimensional examples validate the accuracy and efficiency of the half spacewideband multipole Galerkin BEM. By using the half space method, the half spaceacoustic problems can be solved with less CPU time.
     (4) The half space multipole Galerkin BEM is employed to predict the acousticperformance of three dimensional finite noise barrier, and the accuracy of the methodis validated. Firstly, a three dimensional upright noise barrier with finite length isestablished. The simulation result is coincidence with the result given in the referencebook, and the accuracy of the half space method is validated again. Secondly, underdifferent frequencies, the performance of T shape noise barrier is considered.Examination of the source and receiver location, the geometry parameters andtreatment of the T top surface is investigated. Finally, more engineering applicationsare expected to be simulated by the wideband multipole Galerkin BEM algorithm inthe future.
引文
[1]百度百科—数值计算方法,http://baike.baidu.com/view/1227974.htm.
    [2]姚振汉,王海涛.边界元法.北京:高等教育出版社,2010,4.
    [3] Banerjee P K, Butterfield R. Boundary element methods in engineering science.London: McGraw-Hill,1981.
    [4] Brebbia C A. The boundary element method for engineers. Pentech press,London,1978.
    [5] Cruse T A. Boundary element analysis in computational fracture mechanics[M].Kluwer Academic Pub,1988.
    [6] Du Q H, Yao Z H, Cen Z Z. Some applications of boundary element methods,boundary element-finite element coupling techniques in elastoplastic stressanalysis. Acta mechanica solida sinica,1990,3:327-340.
    [7] Jaswon M A, Symm G T. Integral equation methods in potential theory andelastostatics. Academic Press,1977.
    [8] Ljung P, Bachtold M, Spasojevic M. Analysis of realistic large MEMS devices.CMES-Computer Modeling in Engineering&Sciences,2000,1(1):21-30.
    [9] Mukherjee S. Boundary element methods in creep and fracture. Applied Sciencepublishes.1982.
    [10] Rizzo F J. An integral equation approach to boundary value problems ofclassical elastostatics. Quarterly Applied Mathematics,1967.
    [11] Wrobel L C. The Boundary Element Method, Applications in Thermo-Fluids andAcoustics. Wiley,2002.
    [12]杜庆华,姚振汉.边界积分方程-边界元法的基本理论及其在弹性力学方面的若干工程应用.固体力学学报,1983,3:1-22.
    [13]杜庆华,嵇醒,岑章志,楼志文等.边界积分方程-边界元法的力学基础与工程应用.北京:高等教育出版社,1989.
    [14]黄玉美,张广鹏,高峰。虚拟样机整机结构特性边界元仿真.北京:机械工业出版社,2004.
    [15]田宗若.复合材料中的边界元法及数值解.西北工业大学出版社,2006.
    [16]郑建军.边界元及其在结构分析中的应用.合肥:安徽科学技术出版社,2006.
    [17] Chen Z S, Hofstetter G, Mang H A. A symmetric Galerkin formulation of theboundary element method for acoustic radiation and scattering[J]. Journal ofComputational Acoustics,1997,5(2):219-241.
    [18] Bonnet M, Maier G, Polizzotto C. Symmetric Galerkin boundary element method.Appl. Mech. Rev.,1998,51:669-704.
    [19] Sutradhar A, Paulino G H, Gray L J. Symmetric Galerkin boundary elementmethod. Springer,2008.
    [20] Chen L H, Schweikert D G. Sound radiation from an arbitrary body. The Journalof the Acoustical society of America,1963,35:1626-1632.
    [21] Copley L G. Integral equation method for radiation from vibrating bodies. Thejournal of the acoustical society of America,1967,41:807-810.
    [22] Copley L G. Fundamental results concerning integral representations in acousticradiation. The journal of the acoustical society of America,1968,44:28-32.
    [23] Schenck H A. Improved integral formulation for acoustic radiation problems.The journal of the acoustical society of America,1968,44:41-58.
    [24] Seybert A F, Rengarajan T K. The use of CHIEF to obtain unique solutions foracoustic radiation using boundary integral equations. The journal of the acousticalsociety of America,1987,81:1299-1306.
    [25] Wu T W, Seybert A F. A weighted residual formulation for the CHIEF method inacoustics. The Journal of the Acoustical Society of America,1991,90:1608-1614.
    [26] Segalman D J, Lobitz D W. A method to overcome computational difficulties inthe exterior acoustics problem. The Journal of the Acoustical Society of America,1992,91:1855-1861.
    [27] Benthien W, Schenck A. Nonexistence and nonuniqueness problems associatedwith integral equation methods in acoustics. Computers&Structures,1997,65(3):295-305.
    [28] Chen J T, Liu L W, Hong H K. Spurious and true eigensolutions of HelmholtzBIEs and BEMs for a multiply connected problem. Proceedings of the RoyalSociety of London. Series A: Mathematical, Physical and Engineering Sciences,2003,459(2036):1891-1924.
    [29] Burton A J, Miller G F. The application of integral equation methods to thenumerical solution of some exterior boundary-value problems. Proceedings of theRoyal Society of London. A. Mathematical and Physical Sciences,1971,323(1553):201-210.
    [30] Hadamard J. Lectures on Cauchy's problem: In linear partial differentialequations. Courier Dover Publications,2003.
    [31] Chien CC, Rajiyah H, Atluri S N. An effective method for solving thehypersingular integral equations in3D acoustics. The Journal of the AcousticalSociety of America,1990,88:918-937.
    [32] Meyer W L, Bell W A, Stallybrass M P, et al. Predication of the sound fieldradiated from axisymmetric surfaces. The Journal of the Acoustical Society ofAmerica,1979,65:631-638.
    [33] Harris P J, Chen K. On efficient preconditioners for iterative solution of aGalerkin boundary element equation for the three-dimensional exterior Helmholtzproblem. Journal of computational and applied mathematics,2003,156(2):303-318.
    [34] Liu Y, Rizzo F J. A weakly singular form of the hypersingular boundary integralequation applied to3-D acoustic wave problems. Computer Methods in AppliedMechanics and Engineering,1992,96(2):271-287.
    [35] Liu Y J, Chen S H. A new form of the hypersingular boundary integral equationfor3D acoustics and its implementation with C0boundary elements. ComputerMethod in Applied Mechanics Engineering,1999,173:375-386.
    [36] Yang S A. A numerical method for scattering from acoustically soft and hard thinbodies in two dimensions. Journal of sound and vibration,2002,250(5):773-793.
    [37] Yang S A. Evaluation of2D Greed’s boundary formula and its normal derivativeusing Legendre polynomials with an application to acoustic scattering problems.International Journal for Numerical Methods in Engineering,2002,5:905-927.
    [38] Gray L J, Glaeser J M, Kaplan T. Direct evaluation of hypersingular Galerkinsurface integrals. SIAM Journal on Scientific Computing,2004,25(5):1534-1556.
    [39] Yan Z Y, Cui F S, Hung K C. Investigation on the normal derivative equation ofHelmholtz integral equation in acoustics. CMES: Computer Modeling inEngineering&Sciences,2005,7(1):97-106.
    [40] Seydou F, Duraiswami R, Seppanen T, Gumerov N A. Computation of singularand hypersingular integrals by Green identity and application to boundary valueproblems. Engineering Analysis with Boundary Elements,2009,33:1124-1137.
    [41] Yang S A. Evaluation of the Helmholtz boundary integral equation and itsnormal and tangential derivatives in two dimensions. Journal of sound andvibration,2007,301(3):864-877.
    [42] Engleder S, Steinbach O. Stabilized boundary element methods for exteriorHelmholtz problems. Numerische Mathematik,2008,110(2):145-160.
    [43] Chen K, Cheng J, Harris P J. A new study of the Burton and Miller method forthe solution of a3D Helmholtz problem. IMA Journal of Applied Mathematics,2009,74(2):163-177.
    [44] Chen Z S, Kreuzer W, Waubke H, et al. A Burton–Miller formulation of theboundary element method for baffle problems in acoustics and the BEM/FEMcoupling. Engineering Analysis with Boundary Elements,2011,35(3):279-288.
    [45]郑昌军.三维声学敏感度分析的宽频快速多极边界元法研究.中国科学技术大学:博士论文,2011.
    [46] Nedelec J C. Acoustic and electromagnetic eqauations: integral representationsfor harmonic. Springer,2011.
    [47] Ervin V J, Stephan E P. A boundary element Galerkin method for ahyper-singular integral equation on open surfaces. Mathematical Methods in theApplied Sciences,1990,13:281–289.
    [48] Li S, Mear M E, Xiao L. Symmetric weak-form integral equation method forthree-dimensional fracture analysis. Computer Methods in Applied Mechanics andEngineering,1998,151(3):435-459.
    [49] Sladek V, Sladek J. Singular integrals in the boundary element method.Computational Mechanics Publishers,1998.
    [50] Terai T. On calculation of sound fields around three dimensional objects byintegral equation methods. Journal of Sound and Vibration.1980,69:71-100.
    [51] Kress R. On the numerical solution of a hypersingular integral equation inscattering theory. Journal of Computational and Applied Mathematics.1995,61:345-360.
    [52] Granados J J, Gallego R. Regularization of nearly hypersingular integrals in theboundary element method. Engineering Analysis with Boundary Elements.2001,25:165-184.
    [53] Bonnet M, Guiggiani M. Galerkin BEM with direct evaluation of hypersingularintegrals. Electronic Journal of Boundary Elements.2003,1(2):95-111.
    [54] Giroire J, Nédélec J C. Numerical solution of an exterior Neumann problemusing a double layer potential. Mathematics of computation,1978,32(144):973-990.
    [55] Giroire J. Integral equation methods for exterior problems for the Helmholtzeqauation. Integral Equations and Operator Theory.1982,5:506-517.
    [56] Kleinman R E, Roach G F. Boundary integral equations for the three-dimensional Helmholtz equation. SIAM review,1974,16(2):214-236.
    [57] Kleinman R E. On Neumann’s method for the exterior Neumann problem for theHelmholtz equation. Journal of Mathematical Analysis and Applications.1977,57:170-202.
    [58] Kleinman R E, Roach G F. On modified Green functions in exterior problems forthe Helmholtz equation. Proceedings of the Royal Society of London. Series A,Mathematical and Physical Sciences,1982,383:313-332.
    [59] Duff I S, Erisman A M, Reid J K. Direct methods for sparse matrices. Oxford:Clarendon Press,1986.
    [60] Hestenes M R, Stiefel E. Methods of conjugate gradients for solving linearsystems. Journal of Research of the National Bureau of Standards,1952,49:409-436.
    [61] Saad Y, Schultz M H. GMRES: A generalized minimal residual algorithm forsolving nonsymmetric linear systems. SIAM Journal on scientific and statisticalcomputing,1986,7(3):856-869.
    [62] Freund R W, Nachtigal N M. QMR: a quasi-minimal residual method fornon-Hermitian linear systems. Numerische Mathematik,1991,60(1):315-339.
    [63] Amini S. An iterative method for the boundary element solution of the exterioracoustic problem. Journal of Computational and Applied Mathematics,1987,20:109-117.
    [64] Amini S, Ke C. Conjugate gradient method for second kind integralequations—applications to the exterior acoustic problem. Engineering Analysiswith Boundary Elements,1989,6(2):72-77.
    [65] Amini S, Ke C, Harris P J. Iterative solution of boundary element equations forthe exterior Helmholtz problem. ASME Transactions Journal of VibrationAcoustics,1990,112:257-262.
    [66] Marburg S, Schneider S. Performance of iterative solvers for acoustic problems.Part I. Solvers and effect of diagonal preconditioning. Engineering Analysis withBoundary Elements,2003,27(7):727-750.
    [67] Barrett R, Berry M, Chan T F, et al. Templates for the solution of linear systems:building blocks for iterative methods. Society for Industrial and AppliedMathematics,1987.
    [68] Greenbaum A. Iterative methods for solving linear systems. Society forIndustrial and Applied mathematics,1987.
    [69] Hackbusch W. Iterative solution of large sparse systems of equations.Springer-Verlag, New York1994.
    [70] Axelsson O. Iterative solution methods. Cambridge University Press,1996.
    [71] Weiss R. Parameter-Free Iterative Linear Solvers. Akademie Verlag, Berlin,1996.
    [72] Meurant G. Computer solution of large linear systems, North Holland,1999.
    [73] Young D M. Iterative solution of large linear systems. Courier DoverPublications,2003.
    [74] Saad Y. Iterative methods for sparse linear systems. Society for Industrial andApplied Mathematics,2003.
    [75] Fischer B. Polynomial based iteration methods for symmetric linear systems.Society for Industrial and Applied Mathematics,2011.
    [76] Trefethen L N, Bau III D. Numerical linear algebra. Society for Industrial andApplied Mathematics,1997.
    [77] Brandt A. Multi-level adaptive solutions to boundary-value problems.Mathematics of computation,1977,31(138):333-390.
    [78] Hackbusch W. Multi-grid methods and applications. Berlin: Springer-Verlag,1985.
    [79] Bramble J H, Pasciak J E, Xu J. Parallel multilevel preconditioners.Mathematics of Computation,1990,55(191):1-22.
    [80] Benson M W. Frequency domain behavior of a set of parallel multigridsmoothing operators. International journal of computer mathematics,1990,36(1-2):77-88.
    [81] Lee J, Zhang J, Lu C C. Incomplete LU preconditioning for large scale densecomplex linear systems from electromagnetic wave scattering problems. Journal ofComputational Physics,2003,185(1):158-175.
    [82] Benzi M, Tuma M. A comparative study of sparse approximate inversepreconditioners. Applied Numerical Mathematics,1999,30(2):305-340.
    [83] Benzi M, Meyer C D, Tuma M. A sparse approximate inverse preconditioner forthe conjugate gradient method. SIAM Journal on Scientific Computing,1996,17(5):1135-1149.
    [84] Grote M J, Huckle T. Parallel preconditioning with sparse approximate inverses.SIAM Journal on Scientific Computing,1997,18(3):838-853.
    [85] Benzi M, Tuma M. A sparse approximate inverse preconditioner fornonsymmetric linear systems. SIAM Journal on Scientific Computing,1998,19(3):968-994.
    [86] Golub G H, Greif C, Varah J M. An algebraic analysis of a block diagonalpreconditioner for saddle point systems. SIAM Journal on Matrix Analysis andApplications,2005,27(3):779-792.
    [87] Li S, Huang Q. A fast multipole boundary element method based on theimproved Burton–Miller formulation for three-dimensional acoustic problems.Engineering Analysis with Boundary Elements,2011,35(5):719-728.
    [88]吴海军,蒋伟康,刘轶军.基于Burton-Miller边界积分方程的二维声学波动问题对角形式快速多极子边界元及其应用.应用数学和力学,201132(8):920-933.
    [89] Chen K, Harris P J. Efficient preconditioners for iterative solution of theboundary element equations for the three-dimensional Helmholtz equation.Applied Numerical Mathematics,2001,36(4):475-489.
    [90] Yao Z H, Du Q H. Some aspects of the BEM research in China. ElectronicJournal of Boundary Elements,2003,1:61-67.
    [91]赵健,汪鸿振。边界元法计算已知振速封闭面的声辐射.声学学报,1989,14:250-257.
    [92]张敬东,何祚镛。有限元+边界元—修真的模态分解法预报水下旋转薄壳的振动和声辐射.声学学报,1990,15:12-19.
    [93]金朝嵩.求解三维Helmholtz方程外边值问题的一种新的边界积分方程法.重庆建筑大学学报,1995,17:74-84.
    [94]闫再友,姜楫,严明。利用边界元法计算无界声场中结构体声辐射.上海交通大学学报,2000,34:520-523.
    [95]向宇,黄玉盈.伸缩虚拟边界元法解二维Helmholtz外问题.力学学报2003,35:272-279.
    [96]赵志高,黄其柏,何锃.基于有限元边界元方法的薄板声辐射分析.噪声与振动控制,2008,1:39-43.
    [97]王雪仁,季振林.有流消声器四极参数和传递损失的边界元法预测.计算物理,2007,24:717-724.
    [98] Hackbusch W. A sparse matrix arithmetic based on H-matrices, part1:Introduction to H-matrices. Comput.1999,62:89-108.
    [99] Bebendorf M. Hierarchical Matrices: A means to efficiently solve ellipticboundary value problems. Berlin: Springer,2008.
    [100] Tsinopoulos S V, Agnantiaris J P, Polyzos D. An advanced boundaryelement/fast Fourier transform axisymmetric formulation for acoustic radiationand wave scattering problems. The Journal of the Acoustical Society of America,1999,105:1517-1526.
    [101] Beylkin G, Coifman R, Rokhlin V. Fast wavelet transforms and numericalalgorithms I. Communications on pure and applied mathematics,1991,44(2):141-183.
    [102] Bebendorf M. Approximation of boundary element matrices. NumerischeMathematik,2000,86(4):565-589.
    [103] Kurz S, Rain O, Rjasanow S. The adaptive cross-approximation technique forthe3D boundary-element method. Magnetics, IEEE Transactions on,2002,38(2):421-424.
    [104] Hackbusch W, Nowak Z P. On the fast matrix multiplication in the boundaryelement method by panel clustering. Numerische Mathematik,1989,54(4):463-491.
    [105] Aimi A, Diligenti M, Lunardini F, et al. A new application of the panelclustering method for3D SGBEM. CMES-Computer Modeling in Engineering andSciences,2003,4(1):31-49.
    [106] Rokhlin V. Rapid solution of integral equations of classical potential theory.Journal of Computational Physics,1985,60(2):187-207.
    [107] Yoshida K. Applications of fast multipole method to boundary integral equationmethod. Kyoto: Kyoto University,2001.
    [108] Liu Y J. A new fast multipole boundary element method for solving large-scaletwo-dimensional elastostatic problems. International Journal for NumericalMethods in Engineering,2006,65(6):863-881.
    [109] Chew W C, Chao H Y, Cui T J, etal. Fast integral equation solvers incomputational electromagnetics of complex structures. Engineering Analysis withBoundary Elements,2003,27(8):803-823.
    [110] Rokhlin V. Diagonal Forms of Translation Operators for the HelmholtzEquation in Three Dimensions. Applied and Computational Harmonic Analysis,1993,1(1):82-93.
    [111] Epton M A, Dembart B. Multipole translation theory for the three-dimensionalLaplace and Helmholtz equations. SIAM Journal on Scientific Computing,1995,16(4):865-897.
    [112] Sakuma T, Yasuda Y. Fast multipole boundary element method for large-scalesteady-state sound field analysis part I: Setup and validation. Acta AcousticaUnited with Acoustica,2002,89(4):29-38.
    [113] Shen L, Liu Y J. An adaptive fast multipole boundary element method forthree-dimensional acoustic wave problems based on the Burton–Miller formulation.Computational Mechanics,2007,40(3):461-472.
    [114] Board J, Schulten L. The fast multipole algorithm. Computing in Science&Engineering,2000,2(1):76-79.
    [115] Rohklin V. Rapid solution of integral equations of scattering theory in twodimensions. Journal of Computational Physics,1990,86:414-439.
    [116] Rokhlin V. Diagonal Forms of Translation Operators for the HelmholtzEquation in Three Dimensions. Applied and Computational Harmonic Analysis,1993,1(1):82-93.
    [117] Greengard L, Huang J, Rokhlin V, et al. Accelerating fast multipole methodsfor the Helmholtz equation at low frequencies. Computational Science&Engineering, IEEE,1998,5(3):32-38.
    [118] Cheng H, Crutchfield W Y, Gimbutas Z, et al. A wideband fast multipolemethod for the Helmholtz equation in three dimensions. Journal of Computa-tional Physics,2006,216(1):300-325.
    [119] Gumerov N A, Duraiswami R. Fast multipole methods for the Helmholtzequation in three dimensions. Elsevier Science,2005.
    [120] Gumerov N A, Duraiswami R. A broadband fast multipole accelerated boundaryelement method for the three dimensional Helmholtz equation. The Journal of theAcoustical Society of America,2009,125:191.
    [121] Coifman R, Rokhlin V, Wandzura S. The fast multipole method for the waveequation: A pedestrian prescription. Antennas and Propagation Magazine, IEEE,1993,35(3):7-12.
    [122] Koc S, Song J, Chew W C. Error analysis for the numerical evaluation of thediagonal forms of the scalar spherical addition theorem. SIAM Journal onNumerical Analysis,1999,36(3):906-921.
    [123] Rahola J. Diagonal forms of the translation operators in the fast multipolealgorithm for scattering problems. BIT Numerical Mathematics,1996,36(2):333-358.
    [124] Greengard L, Rokhlin V. On the efficient implementation of the fast multipolealgorithm. Yale University, Department of Computer Science,1988.
    [125] Amini S, Profit A. Analysis of the truncation errors in the fast multipolemethod for scattering problems. Journal of computational and applied mathematics,2000,115(1):23-33.
    [126] Greengard L, Rokhlin V. A fast algorithm for particle simulations. Journal ofcomputational physics,1987,73(2):325-348.
    [127] Carrier J, Greengard L, Rokhlin V. A fast adaptive multipole algorithm forparticle simulations. SIAM Journal on Scientific and Statistical Computing,1988,9(4):669-686.
    [128] Urago M, Koyama T, Takahashi K, et al. Fast multipole boundary elementmethod using the binary tree structure with tight bounds: application to acalculation of an electrostatic force for the manipulation of a metal micro particle.Engineering analysis with boundary elements,2003,27(8):835-844.
    [129] Zhang J M, Tanaka M. Adaptive spatial decomposition in fast multipole method.Journal of Computational Physics,2007,226(1):17-28.
    [130] Bapat M S, Liu Y J. A new adaptive algorithm for the fast multipole boundaryelement method. Computer Modeling in Engineering&Sciences(CMES),2010,58(2):161-184.
    [131] Yasuda Y, Sakuma T. Fast multipole boundary element method for large-scalesteady-state sound field analysis. Part II: examination of numerical items. ActaAcustica united with Acustica,2003,89(1):28-38.
    [132] Fischer M, Gauger U, Gaul L. A multipole Galerkin boundary element methodfor acoustics. Engineering Analysis with Boundary Elements,2004,28(2):155-162.
    [133] Wu C H, Wang C N, Wu T D. A study of fast multipole method on the analysisof2D barrier. Journal of Mechanics,2009,25(3):233-240.
    [134] Shen L. Adaptive fast multipole boundary element method for threedimensional potential and acoustic wave problems. Cincinnati: University ofCincinnati,2007.
    [135] Yasuda Y, Sakuma T. A technique for plane-symmetric sound field analysis inthe fast multipole boundary element method. Journal of Computational Acoustics,2005,13(01):71-85.
    [136] Bapat M S, Shen L, Liu Y J. Adaptive fast multipole boundary element methodfor three-dimensional half-space acoustic wave problems. Engineering Analysiswith Boundary Elements,2009,33(8):1113-1123.
    [137] Brunner D, Of G, Junge M, et al. A fast BE-FE coupling scheme for partlyimmersed bodies. International journal for numerical methods in engineering,2010,81(1):28-47.
    [138] Wang X R, Ji Z L. Application of FMBEM to predict silence acousticperformance. Journal of University of Science and Technology of China,2008,38:8-14.
    [139]王雪仁,季振林.快速多极子声学边界元法及其研究应用.哈尔滨工程大学学报,2007,28:2-7.
    [140]崔晓兵,季振林.消声器声学性能预测的子结构快速多极子边界元法.计算物理,2010,27:711-716.
    [141]孟文辉.求解声波散射问题的边界元快速多极算法的一种新型树结构.西北大学学报,2009,39:931-935.
    [142] Wu H, Liu Y, Jiang W. A fast multipole boundary element method for3Dmulti-domain acoustic scattering problems based on the Burton–Miller formulation.Engineering Analysis with Boundary Elements,2012,36(5):779-788.
    [143]吴海军,蒋伟康,鲁文波.三维声学多层快速多极子边界元及其应用.物理学报,2012,61(5),054301:1-7.
    [144] Li S, Huang Q. A new fast multipole boundary element method for twodimensional acoustic problems. Computer Methods in Applied Mechanics andEngineering2011,200(9):1333-1340.
    [145]李善德.大规模声学问题的快速多极边界元法研究.华中科技大学:博士论文,2011.
    [146] Barnes J, Hut P. A hierarchical O (NlogN) force-calculation algorithm. Nature,1986,324:446-449.
    [147] Liu Y J. Fast multipole boundary element method: theory and application inengineering. Cambridge: Cambridge University press,2009.
    [148] Abramowita M, Stegun I A. Handbook of mathematical function. New York:Dover,1965.
    [149] Wu H J, Jiang W K, Liu Y J. Analysis of numerical integration error forBessel integral identity in fast multipole method for2D Helmholtz equation.Journal of Shanghai Jiaotong University,2010,15(6):690-693.
    [150] Van der Vorst H A. Bi-CGSTAB: A fast and smoothly converging variant ofBi-CG for the solution of nonsymmetric linear systems. SIAM Journal onScientific and Statistical Computing,1992,13(2):631-644.
    [151] Duff I S, Erisman A M, Reid J K. Direct methods for sparse matrices. Oxford:Clarendon Press,1986.
    [152] George A, Liu J W. Computer solution of large sparse positive systems.Prentice-Hall,1981.
    [153] Messiah A. Quantum mechanics. North-Holland: Amsterdam,1962.
    [154] Schulten K, Gordon R G. Exact recursive evaluation of3j-and6j-coefficientsfor quantum-mechanical coupling of angular momenta. Journal of MathematicalPhysics,1975,16(10):1961-1970.
    [155] Morse P M, Feshbach H. Mehods of Theoretical Physics. New York:McGraw-Hill,1953.
    [156] Cho M H, Cai W. A wideband fast multipole method for the two-dimensionalcomplex Helmholtz equation. Computer Physics Communications,2010,181(12):2086-2090.
    [157] Marburg S, Schneider S. Performance of iterative solvers for acousticproblems. Part I. Solvers and effect of diagonal preconditioning. EngineeringAnalysis with Boundary Elements,2003,27(7):727-750.
    [158] Benzi M. Preconditioning techniques for large linear systems: a survey.Journal of Computational Physics,2002,182(2):418-477.
    [159] Jiang L J, Chew W C. A mixed-form fast multipole algorithm. Antennas andPropagation, IEEE Transactions on,2005,53(12):4145-4156.
    [160] Seybert A F, Soenarko B. Radiation and scattering of acoustic waves frombodies of arbitrary shape in a three-dimensional half space. Journal of VibrationAcoustics Stress and Reliability in Design,1988,110:112-117.
    [161] Scholes W E, Salvidge A C, Sargent J W. Field performance of a noise barrier.Journal of Sound and Vibration,1971,16(4):627-642.
    [162] May D N, Osman N M. Highway noise barriers: New shapes. Journal ofSound and Vibration,1980,71(1):73-101.
    [163] Maekawa Z. Noise reduction by screens. Applied acoustics,1968,1(3):157-173.
    [164] Pierce A D. Diffraction of sound around corners and over wide barriers. TheJournal of the Acoustical Society of America,1974,55:941-955.
    [165] Jonasson H G. Diffraction by wedges of finite acoustic impedance withapplications to depressed roads. Journal of Sound and Vibration,1972,25(4):577-585.
    [166] Tolstoy I. Exact, explicit solutions for diffraction by hard sound barriers andseamounts. The Journal of the Acoustical Society of America,1989,85:661-669.
    [167] L’Espérance A. The insertion loss of finite length barriers on the ground. TheJournal of the Acoustical Society of America,1989,86:179-183.
    [168] Lam Y W, Roberts S C. A simple method for accurate prediction of finitebarrier insertion loss. The Journal of the Acoustical Society of America,1993,93:1445-1460.
    [169] Terai T. On calculation of sound fields around three dimensional objects byintegral equation methods. Journal of Sound and Vibration,1980,69(1):71-100.
    [170] Hothersall D C, Chandler-Wilde S N, Hajmirzae M N. Efficiency of singlenoise barriers. Journal of Sound and Vibration,1991,146(2):303-322.
    [171] Duhamel D, Sergent P. Sound propagation over noise barriers with absorbingground. Journal of sound and vibration,1998,218(5):799-823.
    [172] Morgan P A, Hothersall D C, Chandler-Wilde S N. Influence of shape andabsorbing surface—a numerical study of railway noise barriers. Journal of soundand vibration,1998,217(3):405-417.
    [173] Jean P, Defrance J, Gabillet Y. The importance of source type on theassessment of noise barriers. Journal of Sound and Vibration,1999,226(2):201-216.
    [174] Wrobel L C. The Boundary Element Method, Applications in Thermo-Fluidsand Acoustics. Wiley,2002.
    [175] Delany M E, Bazley E N. Acoustical properties of fibrous absorbent materials.Applied acoustics,1970,3(2):105-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700