基于信鸽体表的减阻降噪功能表面耦合仿生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于工程仿生学研究的仿生改形基本方法,以仿生耦合理论和仿生非光滑理论为基础,从体表形貌、表面设计、数值模拟和试验研究等几方面,进行了仿信鸽耦合减阻降噪功能表面的研究。
     从体表生物特征出发,对信鸽的表面形貌数字特征进行了研究,量化分析了信鸽体表单元体及其分布的几何参数,采用逆向工程方法建立了信鸽胸部、背部和翅膀三个部位表面的几何模型,同时对三个部位的表面形态进行了模拟。分析了信鸽体表的分形特性,采用盒子维方法,计算了信鸽体表胸部、背部和翅膀表面的分形维数,对三个部位表面进行了量化描述。
     运用仿生耦合思想,结合信鸽体表的生物学特性,从形态、结构、材料等因素着手,对信鸽体表减阻降噪功能的实现进行了生物耦合研究,并设计出七种具有非光滑结构的耦合功能表面。
     通过对仿生耦合功能表面流场的数值模拟,对比、分析和阐述了耦合功能表面对边界层流场的影响规律,揭示了仿生耦合功能表面的减阻机理。
     设计出用于风洞试验的仿生耦合表面,以汽车冷却风扇为载体,设计加工出十三种仿生耦合风扇。通过风洞试验,测试、分析了原型风扇与仿生耦合风扇在阻力、噪声、效率以及风量等气动参数的差别,证实了仿生耦合风扇所具有的减阻降噪功能。本文将仿生耦合理论应用于汽车冷却风扇的减阻降噪研究,获得了良好的减阻增效以及降噪效果,为进行具有节能降噪、绿色环保功能风扇的进一步研究提供了新的研究思路和方向,为仿生耦合功能表面的工程应用研究奠定了一定的基础。
Supported by the National Key Grant Program of Basic(Grant No. 2002CCA01200),the National High Technology Research and Development Program of China (Grant No.2003AA305080) and the National Natural Science Foundation of China (Grant No.50635030),this paper mainly deals with bionic drag and noise reduction which are based on the biology coupling theory and non-smooth theory and whose study object is pigeon body surface.The research is mainly carried out following:original shape,the design of bionic model,the flow of the surface simulation analysis and bionic experiment.
     With the development of economy,energy crisis and environmental pollution have become two major urgent problems that need to be solved,which have caused the global attention.Bionic drag and noise reduction is the practical engineering application of coupling characteristics of the body surface of the typical biology, which possesses the function of lower drag and noise than others.Bionic drag and noise reduction is one of the green environment protection and effective methods.
     All the different function of biology in the nature can realize the optimal adaptation to the environment through different systematic characteristic coupling.The non-smooth of biology body surface is a natural phenomenon existing commonly in the biologic world.The non-smooth structure of the body surface of biology makes biology have functions of reducing adhesion,drag reduction,noise reduction and wear-resisting.The excellent performance of these functions provides explore space and biology model to bionic design.The main purpose of this research is to study coupling bionic drag and noise reduction.Based on the morphology of pigeon body surface, this paper carries out surface design of coupling bionic, which regards flying animal pigeon as research object.It undergoes numerical simulation analysis on air-solid surface of coupling surface.And the bionic drag and noise reduction functional surface experiment is done.
     First the quantified bionic information of the breast,back and wing is acquired and the morphology of these parts is studied.The stereoscopic microscope (XTJ130) is used to carry out research into the morphology of pigeon surface.The pigeon body surface presents microscopic non-smooth structure.According to the research,the lengthways shape of the pigeon non-smooth surface appears regular undulant structure,which can be considered as continuous arch ripple non-smooth surface.The surface of the feather presents non-smooth structure of riblet.The three-dimensional information of pigeon surface scanned based on 3D LASER SCANNER SYSTEM are utilized to obtain geometric model of the surface of the breast,back and wing of the pigeon using CopyCAD software.The feather is the non-smooth unit of the surface,whose different unit parameters are analyzed and so are the parameters of arrangement density of feathers and the distances between the feathers etc.The feather is proximately considered as ellipsoid coronal.The average height of the ellipsoid coronal is 0.801cm.The average values of long semiaxis and short semiaxis of the bottom projection are 1.744cm and 1.125cm.The average distance of horizontal distance between feathers of the breast and back are 0.492cm and 0.425cm.The average distance of vertical distance between feathers of the breast and back are 0.751cm and 0.827cm.The feather is the unit of body surface.The mathematical model of the unit and conjunction relationship is built.And the simulation of the surface is done using the program.
     The fractal dimension of the surface of the different parts of the body is calculated according to the three-dimensional information of the surface obtained from the laser scanner.The average values of the surfacial fractal dimension of the three parts are 2.92938,2.93604 and 2.95852.The surfaces of the back,breast and wing respectively present fractal characteristic.The fractal dimension of the surface of the different parts is calculated according to the image obtained from the stereoscopic microscope.The average values of the fractal dimension of the three parts are 1.8049,1.804686 and 1.9415.
     There is not only micro non-smooth structure on pigeon surface, but function of the surface is the result of coupling effect of some factors.The morphology,tail of tile structure , the arrange manner and the flexible material of the feather , the microstructure morphology of the surface and the microcosmic non-smoothed structure construct of coupling system structure of pigeon surface.The configuration element of the surface has greatest influence on drag reduction.Next is influence of structure element on drag reduction.Others are general coupling element.In air medium, the seven kinds of coupling functional surface models (shape and structure) are designed whose carrier is flat.
     Four kinds of representative coupling bionic surface(feather flute,ellipse convex,ellipse concave and riblet)are mainly selected.The software of FLUENT6.2 is used to make analyses on numerical simulation of the flow compared with smooth surface.The Computing Flow Dynamics analyses using the RANS equations with RSM turbulence model were performed to investigate the effect of the bionic coupling surface.The cuboid calculation domains are built.The smooth surface and the coupling surface are put on the above and undersurface respectively in the cuboid.The result of numerical simulation indicates that the coupling bionic surface can reduce the wall shear stress and Reynolds stress.The skin friction drag is reduced.When velocity of flow is 20m/s,the drag of ellipse concave surface will decrease by 8.28%,the drag of feather flute surface will decrease by 3.6%,the drag of ellipse convex surface will decrease by 8.89%,the drag of ellipse concave surface will decrease by 7.46%.In the same flow,the flow direction and motion state of the air of the coupling functional surface have some change.The speed of the flow of the coupling functional surface is less than the smooth surface.The thickness of the boundary layer is greater than the smooth surface.So the radical reason of coupling surface drag reduction lies in effectively control or amend of boundary layer.
     Layered stacking bionic coupling films,which present the structure and shape of coupling functional surface,are designed.The coupling bionic surface is used on the ABSTRACT blade of cooling fan and thirteen coupling bionic fans are designed and processed.The experiment and research show that 70% of the thirteen fans realize drag reduction in all conditions with maximum of 28%,the others realize drag reduction in some rotate speed.The average rate of torque reduction of feather flute surface,ellipse convex surface,ellipse concave surface and riblet surface is 11.8%、5.0%、5.3%、5.9% and 12.8% respectively.Only flute surface fan of all fans realize noise reduction in all conditions with most of noise reduction by 2.05dB.Multi-factor and multi-objective comprehensive evaluation is done considering drag,noise,air volume,efficiency and so on.The evaluation equation is R=b4RM+ b3RA + b2 R? + b1RV (b4=0.4,b3= 0.3,b2= b1=0.15).The evaluation result of the bionic fans is that FS08 presents optimal performance.Each performance of FS07 and FS09 is next to it. It has been found in the experiment that the materials of the blade surface influent the drag and noise performance of fan.The different distribution of coupling functional surface in blade is also one of the factors that influence the performance of fan.
     The technology of drag reducing and noise lowering is critical technology of flow mechanism design.The research into drag and noise of fan has universality and representation on drag and noise of the engineering.The study result can offer foundation of the theory and practice the design and exploitation of blade,impeller, aerofoil of the propeller-driven aircraft and so on.
     The research of coupling bionic surface lays foundation for the development of bionic drag and noise reduction,producing active influence on study bottleneck of drag reduction and noise reduction in air or other flow medium,and widening the bionic engineering research methods.The research also has broad engineering application prospects.
引文
[1]杨修义.关于公路交通噪声的分析与防治的方法的浅谈[J].交通与路政,2008(19):327-327
    [2]丁晓映,陈兴才,刘长寿.汽车普及后的能源与环境问题探究[J].能源与环境,2007(5):29-33
    [3]李燕,张玉坤.当代仿生建筑及其特质[J].城市建筑,2005(5):68-71
    [4]孙久荣,戴振东.仿生学的现状和未来[J].生物物理学报,2007,23(3):110-115
    [5]孙毅.仿生学研究的若干新进展[J].科技情报开发与经济,2006(11):23-29
    [6]路甬祥.仿生学的意义与发展[J].科学中国人,2004(4):22-24
    [7] LU Y X. Significance and progress of bionics [J].Journal of Bionics Engineering ,2004,1(1) :1-3
    [8] Ball P. Lifes lessons in design [J].Nature,2001,409:413-416
    [9] Vincent J F V.Making biological materials[J].Journal of Bionics Engineering,2005,2(4) :209-237
    [10] Benyus J M.Biomimicry:Innovation Inspired by Nature[M].New York:Willianm Morrow and Company,1998
    [11] Barthlott W,Neinhuis C:Purity of the sacred lotus,or escape from contamination inbiological surfaces[J].Planta,1997,202:1-8
    [12]戴振东,佟金,任露泉.仿生摩擦学及发展[J].科学通报,2006,51(20):2353-2359
    [13]岑海堂,汪苏,陈五一.结构仿生新进展[J].机械设计,2003,20(11):1-3
    [14]郭志军,周志立,任露泉.达乌尔黄鼠爪趾几何特性分析[J].河南科技大学学报(自然科学版),2003,24(1):1-4
    [15]郭志军,周志立,徐东等.高效节能仿生深松部件的试验[J].河南科技大学学报(自然科学版),2003,24(3):1-3
    [16]刘海洋等.蜘蛛丝研究与开发利用[J].产业用纺织品,2004(2):7-91
    [17]翁蕾蕾.蜘蛛丝的合成和应用概述[J].上海纺织科技,2004,32(2):3-41
    [18]宋起飞,刘兵勇,周宏,孙娜,任露泉.激光制备仿生耦合制动毂的摩擦磨损性能[J].吉林大学学报(工学版),2007,37(05) :1069-1073
    [19]黄有著.仿生形态与设计创新[J].发明与革新,2001(4):24-25
    [20]宗光华.关于21世纪我国仿生机械与仿生制造的若干思考[J].中国机械工程,2001,12(10):1201-1204
    [21]孙少明.风机气动噪声控制耦合仿生研究[D].长春:吉林大学,2008
    [22]许亚婷,李建桥,孙久荣,杨志强.蚯蚓体表形貌及湿润性研究[J].华中农业大学学报,2005(10):40-43
    [23] Northen M T,Turner K L.Meso-scale adhesion testing of integrated micro-and nano-scale structures[J].Sensors and Actuators(A),2006,130(31):583-587
    [24] Baumgartner W,Saxe F,Weth A,et al.The Sandfish’s Skin:Morphology,Chemistry and Reconstruction[J].Journal of Bionic Engineering,2007(4):1-10
    [25] B.N.J.Perssona.On The Mechanism of Adhesion in Biological Systems[J].Journal of Chemical Physics,2003,118(16):7151-7164
    [26] Haiying Wanga,Guowei Hea,Mengfen Xia,Fujiu Kea.Multiscale Coupling in Complex Mechanical Systems[J].Chemical Engineering Science,2004(59):1677-1686
    [27] Edison T liu.Systems Biology,Integrative Biology,Commentary Predictive Biology[J].Cell,2005(121):505-506
    [28]尚广瑞.铜-锌合金及不锈钢仿生耦合表面润湿性能研究[D].长春:吉林大学,2007
    [29]邱兆美.蝴蝶鳞片微观耦合结构及其光学性能与仿生研究[D].长春:吉林大学,2008
    [30]尚广瑞,任露泉,杨晓东,丛茜.Cu-Zn合金仿生耦合表面的疏水性能[J].吉林大学学报(工学版),2007,l37(5):1126-1131
    [31] Cong Q,Chen G H,Fang Y,Ren L Q.Super-hydrophobic characteristics of butterfly wing surface[J].Joural of Bionic Engineering,2004,1(4):249-255
    [32]任露泉,邱兆美,韩志武,关会英,邬立岩.绿带翠凤蝶翅面结构光变色机理的试验研究[J].中国科学E辑:技术科学,2007,37(7):952-957
    [33] Wu L Y,Han Z W,Qiu Z M,Guan H Y,Ren L Q.The microstrctures of butterfly wing scales in northeast of China[J].Journal of Bionics Engineering,2007,50(4):430-436
    [34]高峰.沙漠蜥蜴耐冲蚀磨损耦合特性的研究[D].长春:吉林大学,2008
    [35]李建桥.减粘降阻仿生犁壁的研究[D].长春:吉林大学,1993
    [36]任露泉,佟金,李建桥,陈秉聪.生物脱附与机械仿生-多学科交叉新技术领域[J].中国机械工程,1999,10(9):984-986
    [37]任露泉,佟金,李建桥,陈秉聪.松软地面机械仿生理论与技术[J].农业机械学报,2000,31(1):5-9
    [38]丛茜,吴连奎,任露泉,陈秉聪.非光滑表面电渗减粘脱土原理的试验研究[J].农业工程学报,1995,11(3):19-23
    [39]丛茜,任露泉,吴连奎等.几何非光滑生物体表形态的分类学研究[J].农业工程学报,1992,8(2):7-12
    [40]任露泉,丛茜,佟金.界面粘附中非光滑表面基本特征的研究[J].农业工程学报,1992,8(1):16-22
    [41]沈伟.蜻蜓翅膀结构仿生及新型伸臂空间网格[D].杭州:浙江大学,2006
    [42]周长海,任露泉,张锐,丛茜.信鸽羽毛非光滑表面形态学分析[C].中国农业机械学会学术年会论文集,2003,10: 143
    [43] Walsh, M. J.Turbulent boundary layer drag reduction using riblets[J].AIAA Paper,1982:82-0169
    [44] Reif W-E,Dinkelacker A.Hydrodynamics of the squamation in fast swimming sharks[J].Neues Jahrbuch für Geologie und Palaeontologie,Abhandlungen. E. Schweizerbart’sche Verlagsbuchhandlung,1982,164:184–187
    [45] Reif W–ES.quamation and ecology of sharks[J],Courier Forschungs–Institut Senckenberg,Frankfurt am Main.1985,No78
    [46]周长海,任露泉,张锐等.黄缘真龙虱体表结构与其水中减阻功能的关系[J].东北师范大学学报(自然科学版),2006,38(2):109-113
    [47] Miklosovic D S, Murray M M,Howle L E, Fish F E.Leading edge tubercles delay stall on humpback whale (Megaptera Novaeangliae) flippers[J].Phys. Fluids,2004(16):39-42
    [48] S.-J.Lee,S.-H.Lee,Flow field analysis of a turbulent boundary layer over a riblet surface[J].Experiments in Fluids,2001(30):153-166
    [49] Bushnell D M,Moore K J.Drag reduction in nature[J].Annu Rev Fluid Mech,1991:65-79
    [50] Anderson E J,MacGliiivray P S,and DeMont M E.Scallop shells exhibit optimization of riblet dimensions for drag reduction[J]. Biological Bulletin,1997,192:341-344
    [51]陈秉聪,任露泉,徐晓波,崔相旭等.土壤粘附仿生研究(二).典型土壤动物体表形态减粘脱土的初步研究[J].《农业工程学报》,1990,6(2):1-6
    [52]任露泉,丛茜,佟金.界面黏附中非光滑表面基本特性的研究[J].农业工程学报,1992,8(1):16-22
    [53] Bechert D W,Hoppe G.On the drag reduction of the shark skin[C]. AIAA Shear Flow Control Conference,AIAA-85-0546,1985:1-18
    [54] Bechert D W,Bruse M,Hage W.Experiments with there-dimensional ribblets as an idealized model of shark skin[J].Berlin:Springer-Verlag,2000:403-412
    [55] Choi,K.-S.Test of drag reducing riblets on a one-third scale racing yacht[J].Presented at Turbulent Drag Reduction by Passi.e Means Conf. September,London,UK.Royal Aeronautical Society.1987:15-17
    [56] Sawyer, W.G. & Winter, K. G. An investigation of the effect on turbulent skin friction of surfaces with streamwise grooves[C]. In Turbulent Drag Reduction by Passi.e Means, September, London, UK. Royal Aeronautical Society. Conf. 1987:15-17
    [57] McLean,J. D.,George-Falvy,D.N. & Sullivan,P. P. 1987 Flight-test of turbulent skin-friction reduction by riblets[C].In Turbulent Drag Reduction by Passi.e Means,September,London,UK. Royal Aeronautical Society. Conference,1987:15-17
    [58] Wilkinson,S. P.&Lazos,B. S. 1988 Direct drag and hot-wire measurements on thin-element riblet arrays[J]. In Turbulence Management and Relaminarization:IUTAM Symp.,Bangalore,India,1987 (ed. H. W. Liepmann & R. Narashimha).Springer
    [59] Walsh, M. J.,Sellers,W. L. & McGinley,C. B. Riblet drag reduction at flight conditions.J. [J].Aircraft 1989,26:570-575
    [60] Rohr,J,Anderson,G.W. & Reidy,L. W. An experimental investigation of the dragreducing effects of riblets in pipes[J]. In Drag Reduction in Fluid Flows,31 July-3August,Da.os, Switzerland (ed. R. H. J. Sellin & R. T. Moses), Ellis-Horwood. 1989:263-270
    [61] Neumann,D. & Dinkelacker,A. 1989 Drag reduction by longitudinal riblets on the surface of a streamwise aligned body of revolution[J]. In Drag Reduction in Fluid Flows,31 July-3 August 1989,Da.os,Switzerland (ed. R. H. J. Sellin & R. T. Moses),Ellis Horwood.1989:93-98
    [62] Nieuwstadt,F. T. M.,Hoeven,J. G. Th. van der,Leijdens,H. &Krishna Prasad,K. Some experiments on riblet surfaces in a towing tank[J]. In Drag Reduction in FluidFlows,31 July-3 August 1989,Da.os, Switzerland (ed. R. H. J. Sellin & R. T. Moses),Ellis Horwood. 1989:85-92
    [63] Coustols,E. & Cousteix,J.1990 Experimental investigation of turbulent boundary layers manipulated with internal devices:Riblets.In Structure of Turbulence and Drag Reduction:IUTAM Symp.,ZuX rich,1989 (ed. A Gyr):577-584.Springer.
    [64] Lee S J,Jan Y G. Control of flow around a NACA0012 airfoil with a micro-riblet film[J].Journal of Fluids and Structures,2005,20(5):659-672
    [65] Zhang Chunhua,Li Jianqiao.Bionic drag reduction by biological unsmooth surface[C].Proceedings of the 7th Asia-Pacific Conference of the International Society for Terrain_Vehicle Systems,2004(9):426-434
    [66] http://www.aerodyn.org/Drag/riblets.html
    [67]王子延,庞俊国.细薄肋型减阻沟纹湍流减阻特性的实验研究[J].西安交通大学学报,1999,33(1):35-38
    [68]丛茜,封云.三角形沟槽表面流场的数值模拟[J].船舶力学,2006,10(5):11-16
    [69]宫武旗,李新宏,黄淑娟.棱纹壁面减阻机理实验研究[J].工程热物理学报, 2002,23(5):579-582
    [70]王晋军,李亚臣.棱纹面三角翼减阻特性实验研究[J].空气动力学学报,2001,9(3):283-287
    [71] Jin-jun Wang,Shi-long Lan, Guang Chen. Experimental study on the turbulent boundary layer flow over riblets surface[J].Fluid Dynamics Research 2000,2(27):17-229
    [72]李育斌,乔志德,王志歧.运七飞机外表面沟纹膜减阻的实验研究[J].气动实验与测量控制.1995,9(3):21-26
    [73]杨弘炜,高歌.一种新型边界层控制技术应用于湍流减阻的实验研究[J] .航空学报,1997,18(4):455-457
    [74]田丽梅.空气-旋成钝体界面非光滑减阻的仿生研究[D].长春:吉林大学,2005
    [75] Hee-Chang Lim,Sang-Joon Lee.Flow control of a circular sylinder with O-rings[J]. Fluid Dynamics Research,2004,35:107-122
    [76]张成春,任露泉,王晶.旋成体仿生凹环表面减阻的试验分析及数值模拟[J].吉林大学学报(工学版),2007,37(1):100-105
    [77] Walsh MJ. Turbulent boundary layer drag reduction using riblets[J]. AIAA Paper 1982:82-0169
    [78] WalsM h J.Riblets a as viscous drag reduction technique[J].AIAA Journal, 1983,21(4):485-486
    [79] Walsh MJ,Lindemann AM,Optimization and application of riblets for turbulent drag reduction[J].AIAA Paper,1984:0347
    [80] Walsh MJ.Riblets in viscous drag reduction in boundary layers[J].Progress in Astro-nautics and Areonautics,1990,123:203-61
    [81] Park S R,Wallace J M.Flow alteration and drag reduction by riblets in a turbulent boundary layer[J].AIAA Journal,1994,32(1):31-38
    [82]石秀华,宋保维,施仲庆.条纹薄膜降低水下航行器流噪声的实验研究[J].西北工业大学学报,1997,15(3):395-398
    [83] Zheng Z C. Effects of flexble walls on radiated sound from a turbulent boundary layer[J].Fluids and Structures,2003(18):93-101
    [84]陈佐一,钟洪亮,孟繁娟,霍福鹏.叶轮机械叶片节能新技术[J].节能技术,2000(1):3-5
    [85]龙泽强,王希伯.风轮叶片翼型表面粗糙带影响的试验研究[C].第四届工业流体力学会议论文集,1995:103-106
    [86]赵俊起,赵玉屏,张培华.风机噪声与振动控制[J].电力情报,1994(04):72-76
    [87]崔兴华.轴流通风机内部空气动力噪声特性的评估[J].流体机械,1991,2(22):19-21
    [88]吕文灿.采用附加导叶的轴流风机气动噪声研究[J].华中理工大学学报,2003,增1(23):156-159
    [89] Yee-Jun Wong,Roshun Paurobally and Jie Pan.Hybrid active and passive control of fan noise[J].APPLIED ACOUSTICS,2003,9(64):885-901
    [90] Meng Wang.Computation of trailing-edge noise at low Mach number using LES and acousticanalogy[J].Center for Turbulence Research Annual Research Briefs.Stanford University.1998:91-106
    [91]张耀安,邬显光.降低微型轴流风机噪声方法的探讨[J].微特电机,1998(4):24-26
    [92]智乃刚.风机噪声控制技术[M].机械工业出版社,1985:115-141
    [93]程勒,石道中,李云龙.叶片处理对风机噪声影响的试验研究[J].风机技术,1997,3(3):93-96
    [94]沈国民,谢军龙.轴流通风机的叶片形状和安装角对噪声影响的试验研究[J].风机技术,2000(4):24-26
    [95]张耀安,邬显光.降低微型轴流风机噪声方法的探讨[J].微特电机,1998(4):24-26
    [96]东田匡史.离心式送风机的叶轮及具备该叶轮的离心式送风机:中国,02141237.5[p]
    [97]任露泉,刘庆平,梁杰等.低噪声风机叶片:中国,200510016954.2[p]
    [98]梁桂强.轴流风机降噪技术的仿生学研究[D].长春:吉林大学,2005
    [99] Bechert,D.W. 1997.Biological surfaces and their technological application laboratory and flight experiments on drag reduction and separation control[J]. AIAA Paper 97-1960.
    [100]刘得明,肖凤翔,赵福琴.飞行动物飞行机理的探索[J].生物学杂志,1997,14(76):46-48
    [101] http://pigeon.hainet.cn/
    [102]郑光美.鸟类学[M].北京:北京师范大学出版社,1995
    [103]王洪军,周大强.信鸽与玩赏鸟[M].北京:人民体育出版社,1998
    [104]王者勇,赵建民.信鸽标准化饲养新技术[M].中国农业出版社,2005
    [105]费容梅,田华秀.大鸨羽毛微观结构研究[J].东北林业大学学报,2002,30(1):40-43
    [106]黎军英,马玉.灰鹤颈羽的SEM观察[J].电子显微学报,2002,21(5):586-587
    [107]张春华,李建桥.基于分形理论的信鸽表面形貌研究[C].农业机械学会会议, 2006(12):742-744
    [108]纪小刚.逆向工程关键技术研究[J].现代制造工程,2008(7):29-33
    [109]金涛,童水光等.逆向工程技术[M].北京:机械工业出版社,2003
    [110]金涛,陈建良,童水光.逆向工程技术研究进展[J].中国机械工程, 2002,13(16):1430-1436
    [111]栗全庆,王宏等.实物反求工程的关键技术分析[J].机械设计,1999,6(6):4-6
    [112] Liang Shuh-Ren, Alan C Lin. Probe-radius compensation for 3D data points in reverse engineering[J].Computer in Industry, 2002,48(3):241-251
    [113]张海,姜羡,付伟.COPYCAD软件在逆向工程中的应用[J].华东交通大学学报,22(2):119-122
    [114] COPYCAD使用入门(issue 2.1).DELCAM(中国)公司,2000,6
    [115]张梅林,任立奎,王东明.CopyCAD在香水瓶逆向反求中的使用技巧[J].CAD/CAM与制造业信息化,2005(2):73-74
    [116]刘小君.表面形貌的分形特征研究[J].合肥工业大学学报(自然科学版),2000,23(2):236-239
    [117]张春华,李建桥,周长海.信鸽表面形貌的分形特性[J].农业机械学报, 2007,38(07):164-167
    [118] MandelbrotBB.Fractal:Form,Chance and Dimension[M].San Francisco:Freeman,1977
    [119] MandelbrotBB. The Fractal Geometry of Nature[M].San Francisco:W.H.Freeman,1983
    [120] Falconer K J.The Hausdorff dimension of self-affine fractals[J].Math Proc Camb Phil Soc,1988,103:339-350
    [121]高安秀树.分数维[M].北京:地震出版社,1989,第一版
    [122]谢和平,薛秀谦.分形应用中的数学基础与方法[M].北京:科学出版社,1998,第一版
    [123] Podsiadlo P,Stachowiak G W.Scale-invariant analysis of wear particle surface morphologyⅡ[J].Fractal dimension. Wear,2000,242:180-18
    [124]聂笃宪,曾文曲,文有为.分形维数计算方法的研究[J].微机发展,2004,14(9): 17-226.
    [125]葛世荣,索双富.表面分形维数计算方法的研究[J].摩擦学报, 1997,17(1):354-362
    [126] Martinez-Lopez F,Cabrerizo-Vilchez M A, Hidalgo-Alvarez R.A study of the different methods usually employed to compute the fractal dimension[J].Statistical Mechanics and its Applications,2002,311:411-428
    [127]齐东旭.分形及其计算机生成[M].北京:科学出版社.1994:30-45
    [128]巫兆聪.分形分析中的无标度区确定问题[J].测绘学报,2002,31(3):240-244
    [129] Alex Pentland.Part models[C].IEEE Computer Soc.Conference on Conference on Computer Vision and Pattern Recognition,1986:242-249
    [130]王东生,曹磊.混沌、分形及其应用[M].合肥中国科技大学出版社,1995
    [131]冯志刚,周宏伟.图像的分形维数计算方法及其应用[J].江苏理工大学学报(自然科学版),2001(11):92-95
    [132]韩思奇,王蕾.图像分割的阀值法综述[J].系统工程与电子技术,2002,24(6):91-94
    [133] J.Kittler and Jilling.Worth.On threshold selection using clustering criteria[J]. IEEETrans. S MC-15(5),1985:652-655
    [134] A. D. Brink.Gray-level thresholding of image using a correlation criterion[J].Pattern Recognition Letters,1989(9):335-341
    [135] T.Kurita,T.N.Otsu,N.Abdel malik.Maximum likelihood thresholding based on population mixture models [J].Pattern Recognition,1992(25):1231-1240
    [136]谷口庆治(日),朱虹,乐静,廖学成译.数字图像处理[M].北京:科学出版社, 2002
    [137]夏德深,付德胜.现代图像处理与应用[M].南京:东南大学出版社,1997
    [138]常崇艳,张正旺,陈晓端.褐马鸡羽毛超微结构探讨[J].电子显微学报,2001,20(4):495-496
    [139]任露泉.生物表面仿生工程及其应用研究进展与展望[C].第六届全国表面工程会议.2006(8):24-24
    [140]王洋.上海申得欧公司推出“荷花王”硅树脂外墙涂料[J].中国涂料,2002(6):30-30
    [141] Purslow P P,Vincent J F V.Mechanical properties of primary feathers from the pigeon[J].JExpBiol,1978,72:251-260.
    [142] Bonser R H C,Purslow P P. The young's modulus of feather keratin[J].JExpBiol,1995,198:1029-1033
    [143]郭颖杰,佟金.角蛋白材料结构与力学特性研究进展[J].农业工程学报,2004,20(3):266-270
    [144] Crenshaw D G.Design and materials of feather shafts:very light,rigid structures[J].SympSocExpBiol,1980,34:485-486
    [145]周长海,田丽梅,任露泉.信鸽羽毛非光滑表面形态学及仿生技术的研究.农业机械学报[J].2006,31(11):180-183
    [146] Barthlott W,Neinhuis C,Boil D.The lotus-effect:Non-adhesive biological and biomimetic technical surfaces[C].Bionik 2004,2004:211-214.
    [147]陈剑鸣,杨志翔.轴流风机叶片表面紊流边界层解[J].昆明理工大学学报,1997,22(3):134-136
    [148] Crighton D G.Acoustics as a branch of fluid mechanics[J].J Fluid Mech,1981,106:261-298
    [149]史里希廷著,徐燕候,徐立功,徐书轩译.边界层理论(上、下册) [M].北京:科学出版社,1979
    [150]景思芮,张鸣远.流体力学[M].西安:西安交通大学出版社,2001
    [151] John D.Andersong,JR.Computational Fluid Dynamics(the Basic with .Applications)(影印板)[M].北京:清华大学出版社,2002
    [152]傅德熏.流体力学数值模拟[M].北京:国防工业出版社,1993
    [153]王福军.计算流体动力学-CFD软件原理与应用[M].清华大学出版社,2004.
    [154]刘儒勋,舒其望.计算流体力学的若干新方法[M].北京:科学出版社,2003
    [155]李文华,苏明军.常用湍流模型及其在FLUENT软件中的应用[J].水泵技术,2006(4):39-41
    [156]李凤蔚.空气与气体动力学引论[M].西安:西北工业大学出版社,2007
    [157]刘伯林.轴流风扇噪声预测与降噪研究[D].西南交通大学.2003
    [158]吴玉林,陈庆光,刘树红.通风扇和压缩机[M].北京:清华大学出版社,2005
    [159]马源,马彪.车辆冷却风扇调速技术的现状和发展[J].车辆与动力技术, 2003,2:50-53
    [160]曹久莹.汽车冷却风扇气动特性的研究[D].南京:南京航空航天大学,2006.
    [161]唐永伟.汽车发动机冷却风扇气动性能和声学性能研究[D].长春:吉林大学,2007
    [162]钟芳源译.叶片机械风扇和压气机气动声学译文集[M].北京:机械工业出版社,1987
    [163]崔兴华.轴流通风扇内部空气动力噪声特性的评估[J].流体机械,1991,2(22):19-21
    [164]毛义军,祁大同,刘秋洪.基于非定流场的离心风扇气动噪声分析[J].西安交通大学学报,2005,9(23):889-994
    [165]钱人一.汽车发动机噪声控制[M].上海:同济大学出版社,1997
    [166]陈党民,吴海燕,张朝磊.离心式压缩机叶轮主要气动设计参数的分析研究[J].风扇技术,2006(03):1-4
    [167]李庆宜.通风扇[M].北京:机械工业出版社,1981
    [168]季伟锋.微型轴流风扇噪声机理及特性预测的研究[D].上海:上海交通大学,2003
    [169]张红辉.发动机轴流冷却风扇低噪声气动性能分析与控制研究[D].重庆:重庆大学,2002
    [170]刘立峰.大型电机冷却风扇的试验测量与模拟计算[D].上海:上海交通大学机械与动力工程学院,2007
    [171]陆晓军.轴流通风扇的近场声压分布及不同进气形式对噪声的影响[J].风扇技术. 1996(1):3-7
    [172]邓宵鹏.回归分析法在内燃机冷却风扇试验中的应用[J].淮南职业技术学院学报,2004(3):59-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700