用户名: 密码: 验证码:
中华鲟自然繁殖的非生物环境
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华鲟(Acipenser sinensis Gray,1835)是一种大型溯河洄游性鱼类,主要分布于长江干流、珠江及东亚大陆架水域。1981年葛洲坝水利工程截流阻断了其洄游通道,原来分布在金沙江下游和长江上游的所有产卵场都无法被中华鲟所利用。虽然后来证实中华鲟能够在葛洲坝坝下完成自然繁殖活动,但产卵位置却仅局限在葛洲坝坝下至古老背长约30 km的江段,并且每年都有自然繁殖活动发生的区域仅限于葛洲坝至庙咀长约4 km的江段。与此同时,由于原有产卵场的丧失、环境退化、航运和历史上的过度捕杀等诸多因素,中华鲟野生种群资源量也不断下降。1989年中华鲟被列为国家一级重点保护动物,1996年又被列为IUCN红色目录濒危物种。中华鲟性成熟晚,繁殖间隔长,资源被破坏以后自然恢复缓慢。虽然中华鲟繁殖群体数量稀少,但目前的研究却表明自然繁殖仍然是中华鲟幼鱼补充群体的主要来源,人工繁殖放流数量虽然具有一定规模,但贡献量仍不足10%。
     在此情形之下,能否为中华鲟自然繁殖活动提供适宜的非生物环境,确保和提高中华鲟自然繁殖规模和效果,就与中华鲟自然种群的保护和恢复密切相关。基于此,本文对与中华鲟自然繁殖活动密切相关的5个非生物因素(产卵场地形、河床质、流速场、自然繁殖活动发生期间水文状况和气象状况)进行了深入研究,并探讨了它们与自然繁殖活动之间的相互关系,以期能为中华鲟现有产卵场和产卵条件的改良或将来人工模拟建造中华鲟产卵场提供科学依据。本研究采用的主要研究方法及获得的主要结果如下:
     1.通过获取大比例尺河床地形图、航道图和原型观测的方法,获得了5处历史产卵场和2处现存产卵场详细的河床地形数据。采用ArcGIS 9.2软件对此7处产卵场河床形态的分析结果表明,产卵场江段以顺直微弯河型为主(5处历史产卵场平均转折角为31.2°),河宽和水深变化幅度较大(5处历史产卵场平均值分别为167.6 m和16.8 m),位于产卵场下段的负坡的长度和坡度呈现出一定程度的负相关关系(y=-1892.6×Ln(x)+1986.4,R~2=0.625,n=7),并且具有适宜坡长和坡度的产卵场往往具有较好的繁殖效果。葛洲坝下2处现存产卵场与5处历史产卵场相比,其最显著的差异是河宽要比历史产卵场的大得多。现存唯一已知每年都有自然繁殖活动发生的产卵场(葛洲坝坝下产卵场)内“上产卵区”和“下产卵区”的地形结构较为相似,并且“下产卵区”的地形结构与历史产卵场相比更为相似。
     结合中华鲟自然繁殖的规模和效果(基于产卵场亲鱼的尾数、胚胎和仔鱼数量以及繁殖活动发生频率等),理想状态下中华鲟产卵场的地形应该具备如下特征:产卵场长度(S)为3013m,最大河宽(B)为369m,河道转折角(α)为33.2°,曲折率(S/L)为1.06,B/S值为0.14,B与最小河宽之差为161.2 m,负坡高度差为18.1 m,负坡长度和坡度分别为1337.3 m和1.47%。虎牙滩产卵场的河床地形与理想产卵场的相似度较差,这可能就是中华鲟为何不能每年在此产卵的重要原因。葛洲坝下河势调整工程使得坝下现存产卵场的地形发生了较大改变,在短期内这可能会对中华鲟自然繁殖前期的栖息有利,而对受精卵的散播和孵化产生一定程度的不利影响,其长期影响还有待于进一步的研究。
     2.采用研究区域河床质相关文献调查、科学回声仪探测(2004~2008年)、水下视频观测(2007~2008年)和现场取样(2007~2008年)的方法对葛洲坝截流以来(1981~2008年期间)坝下宜昌江段河床质的变迁进行了深入调查,利用底质分析专用软件Visual Bottom Typer 1.9提供的首次回波划分(First Echo Division)的方法分析了河床质的超声波回波特性(硬度E1′和粗糙度E1)。
     文献分析结果表明,葛洲坝水库运行初期,坝下河床冲刷较明显,粗化较快,1984年常年回水区达到冲淤平衡,粗化基本完成,1992年变动回水区达到冲淤平衡,坝下河床质随来水来沙条件而变,发生粗化或细化。但由于推移质过坝量明显减小,坝下整体呈现粗化,原沙质河床转变为沙夹卵石或卵石夹沙河床。
     2007年中华鲟自然繁殖季节(10~11月)葛洲坝至卢家河浅滩江段(80 km)河床质E1′和E1值的分布范围为0~0.08和0~0.12。从总体上看,一般主流河槽E1′较大,沿岸侧河槽E1′较小,E1的分布也有相似的规律。结合2004~2006年和2008年的分析结果可知,E1′和E1值的空间分布在大范围江段内变化并不明显。
     现场取样调查表明,二江下槽卵石的平均粒径(95.6 mm)要明显大于庙咀(22.3mm)和大江船闸航道处(65.6 mm)。水下视频观察结果表明葛洲坝至庙咀江段表层河床质主要是由卵圆、扁圆形卵石及沙粒组成。其中卵石长径范围为20~50 cm的约占50%,卵石长径范围为10~20 cm的约占30%,卵石长径范围在10 cm以下的约占20%。卵石之间相互以立方体或四面体方式排列堆叠,形成了许多空隙、隙缝以及卵石夹缝等。卵石间隙冲刷洁净的河床区域是中华鲟受精卵的主要散播位置,受精卵以成团或颗粒形式分布于卵石间隙中。
     2004~2008年中华鲟自然繁殖季节葛洲坝至庙咀江段河床E1′和E1值的空间分布呈现出逐年渐变的趋势,从总体上看,2004~2007年E1′和E1值高值分布区值逐渐增加,分布范围也逐渐扩大,而2008年较之2007年则有相对缩减的趋势。据E1′和E1值分布特征将葛洲坝至庙咀江段卵石夹沙河床质细分为19小类的分析表明,河床质以1、2、3、5和6小类居多,并且2006~2008年中华鲟自然繁殖活动发生期间,除导流堤尾部区域外,河床质类型的空间分布没有发生明显的变化。
     3.采用River 2D模型计算(有限元法)和声学多普勒流速剖面仪(ADCP)原型观测的方法,对1996~2008年中华鲟自然繁殖活动发生期间的流速场特征进行了分析,并提出8个流速梯度指标对2005年12月2~10日葛洲坝至红花套江段285个测流断面的流速梯度特性进行了量化分析。
     对1996~2003年14次自然繁殖活动发生期间典型流量(最小流量、中值流量和最大流量)状态下流速场的计算结果表明,各批次产卵活动产卵场流速值变化幅度较大,“下产卵区”范围内流速变化尤其明显。采用ADCP对2004~2008年产卵活动发生起始日或产卵发生后2~3日内流速场的现场观测结果表明,各年度的流速场从大尺度范围来看具有一定的相似性,但从小的空间尺度来看,也具有一定程度的差异。2005~2008年的流速场较之河势调整工程进行以前(2004年以前),流速场结构有较大的变化,主要表现为导流堤周围形成了一个流速较缓的区域,V区中部的流速值减小而沿岸两侧的流速值增加。
     ADCP原型观测结果表明断面流速分布与断面形态密切相关,即与纵方向上的河床形态有紧密关系,但总体上看,一般表层流速高于底层流速,河槽中部的流速高于河槽两侧的流速。2004~2005年中华鲟自然繁殖期间3次流速场测量结果表明,20个断面平均流速变化范围为72.99~175.23 cm/s,平均值为128.89±26.28 cm/s;产卵区内3、4和11号断面的垂向平均流速值较其他断面约高2.10 cm/s;从1至30号断面,各断面的平均流向大约从225.91°下降至164.39°,并且产卵区内3、4和11号断面的流向变幅较大,变异系数比其他断面约高18.4%。2004~2006三个年份中华鲟产卵起始日下产卵区内底层流速值范围为108.74 cm/s~129.30 cm/s,这可能就是中华鲟产卵所需要的最适流速。
     垂线流速测量结果表明,从表层到底层各水层流速梯度随垂线水深值增大而减小,但各测流垂线时均垂线流速分布均可用指数函数和对数函数来描述。从整体上来看,流速脉动强度和相对脉动强度从表层到底层都是先降低后升高,垂向流速分量脉动强度的变化与流速的具有相似的规律,但垂向流速分量相对脉动强度的变化没有呈现出明显的规律,其值在不同水层深度之间并没有明显的差异,并且其值比流速相对脉动强度要大很多。
     采用所提出的8个流速梯度指标对庙咀处一断面重复测量9次的统计分析结果表明,所有指标变幅均小于15%,说明用这些流速梯度指标对具有紊动特性的水流进行分析是合适的。基于断面平均流速和8个流速梯度指标共9个参数采用k均值分类法将285个测流断面聚成8类的分析结果表明,整个江段以第7类、第8类和第2类区域占主要优势,这3类区域面积共占葛洲坝至红花套江段面积的88.66%,葛洲坝至庙咀江段为整个研究江段各类区域相间分布最多样化的江段。采用R型聚类方法分析表明,断面平均流速与断面8个流速梯度指标之间没有显著的相关性,即具有相同流速的区域不一定具有相似的流速梯度特征,有必要用这些流速梯度指标描绘水流的特性。
     4.对三峡水库运行前(1983~2002年)后(2003~2005年)葛洲坝下中华鲟产卵场产卵季节(10~11月)的水文状况进行了比较分析,结果表明,2003年三峡水库运行以来中华鲟产卵场产卵季节的水文状况发生了显著变化,产卵季节平均水温上升了1.48℃,含沙量降低到0.032 kg/m~3(仅为运行前的8.2%)。
     采用适合度模型的方法对三峡水库运行前(1983~1986年)后(2003~2005年)8个年份产卵季节水文状况对于中华鲟产卵的适合度逐日进行了分析。平均适合度模型的分析结果表明,虽然整个产卵季节水文状况对于产卵的综合适合度呈现出先上升后下降的趋势,但整个产卵季节水文状况的适合度都比较高,并且中华鲟的产卵活动并不总是发生在水文状况适合度最佳(即平均适合度波峰值)的时候,这说明水文状况并不是决定产卵时间的唯一因素。含沙量在产卵前的变动趋势由三峡水库运行前的稳中下降转变为运行后的稳中上升,说明含沙量的剧烈下降对中华鲟自然繁殖活动的影响可能较为复杂。
     5.对中华鲟历史(1963~1965年,1970~1975年)及现存(1983~2006年)产卵场共55次自然繁殖活动发生起始日的天气类型和气象要素(包括风、降水量、气温、气压、日照时数、湿度和云)状况及其变化进行了统计分析。结果表明:中华鲟自然繁殖行为的发生对阴雨天具有一定的选择性,而对多云天气则具有一定的回避性;产卵起始日前后天气类型的剧烈变化是诱导中华鲟自然繁殖行为发生的一个有利因素,现存产卵场内连续晴天天气也较容易诱发中华鲟自然繁殖行为的发生;除现存产卵场产卵起始日平均气温在第1批和第2批产卵活动之间表现出极显著差异外,产卵起始日其余气象要素在第1批产卵活动、第2批产卵活动和产卵起始日时间窗(最早和最晚产卵起始日的时间跨度范围)范围内三者之间并没有表现出显著的差异:第1批和第2批产卵活动产卵起始日的气压变动呈现出一定程度的相反趋势;与历史产卵场不同,现存产卵场产卵起始日的日照时数与水位和含沙量之间并不具有相互制约和补充的关系。表明气象状况也是影响中华鲟自然繁殖行为发生的重要因素。
     以上研究结果表明,河床地形、河床质、流速场、自然繁殖季节的水文状况和气象状况与中华鲟的自然繁殖活动都有一定的关系。河床形态在很大程度上决定了河床质和流速场的空间分布特性,而河床质和流速场则与中华鲟的自然繁殖活动直接相关。河床地形、河床质和流速场三者之间相互影响,三者共同形成了中华鲟发生自然繁殖活动所需要的特定空间。水文状况的变化虽然与中华鲟自然繁殖活动发生的具体时间有一定的关系,但并不显著,适宜的水文条件只是决定了一个大致的产卵时间范围。另外,气象状况对中华鲟自然繁殖活动发生的具体时间也有一定的影响。
     在中华鲟自然繁殖群体数量逐渐减少的情况下,如果能够提供充足的自然繁殖空问和创造有利于自然繁殖发生的条件,确保和提高中华鲟自然繁殖规模和效果,对于大规模提高幼鱼补充群体的数量具有重要意义。而幼鱼补充数量的增加对于中华鲟野生种群的保护和恢复则具有十分重要的意义。在现有的条件下,参照本研究所得出的结果对葛洲坝下现存产卵场的产卵环境进行改良,对三峡大坝和葛洲坝进行生态调度以创造适宜的产卵条件,是现实可行的保护方案。此外,本研究的结果还为以后人工建造中华鲟产卵场提供了理论依据。
The Chinese sturgeon(Acipenser sinensis Gray,1835),a large anadromous species, mainly distributes in the mainstem of Yangtze River,the Pearl River and the continental shelf of East Asian.The migration routeway of A.sinensis was cut down by the construction of Gezhouba Dam(GD) in 1981.All spawning areas of A.sinensis located in the lower Jinsha and the upper Yangtze River were no longer accessible.It was proved that A.sinensis was able to accomplish the natural reproduction below GD.But it spawned only within a 30 km river reach from the downstream of GD to Gulaobei. Futhermore,the natural reproduction of A.sinensis took place every year only within a 4 km river reach from GD to Miaozui.Meanwhile,a drastic decline in the wild population of A.sinensis went with due to the disappearance of original spawning areas, environment degeneration,navigation and historical overfishing.The species was listed as a First Class Protected Animal by the national government in 1989 and Endangered species in the IUCN red list in 1996.The restoration of A.sinensis natural population was extremely difficult because of the late sexual maturity and long reproductive cycle. Present studies indicated that most recruitment individuals of A.sinensis juveniles were originated from the natural breeding in spite of the scarcity of the mature population.The contribution of artificial enhancement and releasing was less than 10%even though the enhancement has a certain scale.
     In this case,the appropriate abiotic environmnet for the A.sinensis reproduction in nature was essential to ensure and enhance the scale and efficiency of the species natural reproduction,which was closely related to the conservation and restoration of natural population of A.sinensis.Based on this point,five factors of the abiotic environment (topography of spawning area,riverbed substrate,velocity field,hydrological conditions and meterological conditions during the peroid of natural reproduction) strongly associated with natural reproduction of A.sinensis and these relationships with spawning activities were studied thoroughly in this paper.Our purpose was to provide scientific bases for the melioration of spawning area and spawning conditions,and even building of artificial spawning areas of A.sinensis.The main study methods and results in this study are showed as follows.
     1.The bedform morphology data of five historic and two present spawning areas were acquired by on-site surveys and utilization of large-scale relief map and navigation channel chart related to the spawning reaches.ArcGIS 9.2 software was used to analyze the bedform morphology of the seven spawning areas.It was showed that the main river pattern in the spawning reaches was straight with a little turning angle(the average value of turning angle in the five historic spawning areas was 31.2°).Large variations were occurred in the river width and water depth(the average values in the five historic spawning areas were 167.6 m and 16.8 m,respectively).There was a negative relationship between the length and gradient of the adverse slope in the lower part of spawning areas(y=-1892.6×Ln(x)+1986.4,R~2=0.625,n=7).Moreover,the reproduction efficiency was higher in the spawning area with adverse slope having moderate slope length and gradient.The river width of two present spawning areas was significantly larger than five historic spawning areas.At the spawning area below GD(the only one at present where the natural reproduction of A.sinensis took place every year),the topographic structure of the upstream mating site and the downstream mating site were very similar.Moreover,the topographic structure of the downstream mating site was more similar to that of the historic spawning areas.
     Combined with the natural reproduction scale and efficiency of A.sinensis(based on the reproduction frequency,population of brood fish,embryo numbers and emergent larvae in the spawning area),the perfect spawning area should have topographic characteristics as follows.The length of spawning area(S) was 3 013 m.The largest river width(B) was 369 m.The turning angle of fiver channel(α) was 33.2°.The meander ratio(S/L) was 1.06.The value of B/S was 0.14.The difference between B and the smallest river width was 161.2 m.The altitude difference of adverse slope was 18.1 m. The length and gradient of the adverse slope were 1 337.3 m and 1.47%,respectively. The riverbed topography of Huyatan spawning area was very different from the perfect spawning area.Maybe it was one of important reasons why A.sinensis did not spawn there every year.The topography of the present spawning area below GD had been changed because of the River Regime Regulating Project under the Dam.In a short time, it was advantageous to the inhabitation of A.sinensis before natural reproduction. However,that was adverse to the dispersal and incubation of fertilized eggs.And the long-term effects need further study.
     2.The evolution of riverbed substrate of Yichang reach(below GD) since the dam closure(the year of 1998-2008) was thoroughly investigated by several methods as follows.It included analysis and summary of related literatures with regard to riverbed substrate in the study area,detection of the Digital Scientific Echosounders(the year of 2004-2008),underwater video observation(the year of 2007-2008) and on-site samplings(the year of 2007-2008).The ultrasonic echo characteristics of riverbed substrate were analyzed by the method of First Echo Division from the special software of Visual Bottom Typer 1.9.The hardness and roughness values of the echo were expressed as El' and El,respectively.
     The result showed that the riverbed substrate below GD coarsended quickly because of the scour process at the initial operation stage of the Dam reservoir.In the year of 1984,the permanent backwater region of the reservior achieved fluvial equilibrium and the coarsening process in the downstream area basically completed.In the year of 1992, the fluctuating backwater area achieved fluvial equilibrium and the riverbed substrate below GD fined or coarsened with the incoming water and sediment.However,on the whole,because the bed load over the Dam reduced obviously,the sandy riverbed had been turned into sand and gravel riverbed.
     In A.sinensis spawning season(October-November) of 2007,in the river reach between GD and Lujiahe riffle(80 km),the range of the riverbed substrate El' and El values were 0-0.08 and 0-0.12,respectively.As a whole,the El' value of mainstream channal was large,and the El' value of coastal channel was small.The spatial distribution of El value was similar to El'.Based on the analysis in the year of 2004-2006 and 2008,no obvious varaiations were found in the spatial distribution of El' and El value when considered in large spatial scale.
     The on-site samplings showed that the average diameter of gravel in the main channel of Erjiang(95.6 mm) was obviously larger than that in Miaozui(22.3 mm) and the ship way of Dajiang lock(65.6 mm).The elliptical gravels,oblate gravels and sand were the major components of riverbed substrate in the river reach between GD and Miaozui.The gravels with long diameter 20-50 cm occupied about 50%.The gravels with long diameter 10-20 cm occupied about 30%.And about 20%of gravels with long diameter less than 10 cm.The spatial structure of the gravels was commonly cube or tetrahedron,and among them much interstice,rift and crack.The main sites for the distribution of A.sinensis fertilized eggs were located in the area where the rift was scoured cleanly.The fertilized eggs distributed in the gravel interstice in the form of agglomerate or granule.
     In the A.sinensis spawning season of 2004-2008,the spatial distribution of riverbed El' and El values changed by the years in the river reach between GD and Miaozui.As a whole,in the year of 2004-2007,the El' and El values in high value areas raised by the year,and the distribution ranges of El' and El values enlarged.But the trend of variation held down in 2008 than that in 2007.According to the distribution characteristics of El' and El values,the gravel-sand riverbed substrate between GD and Miaozui can be divided into nineteen types.It showed that the river substrate of type 1,2,3,5 and 6 were in the majority.Moreover,in A.sinensis spawning season of 2006-2008,the spatial distribution of river substrate types did not change obviously,except in the tail area of the current dike.
     3.By the model calculation of River 2D(the finite element hydrodynamic model) and the on-stie surveys of Acoustic Doppler Current Profiler(ADCP),we analyzed the characteristics of velocity field in A.sinensis spawning seasons of 1996-2008.In addition,eight metrics for quantifying spatial velocity gradient along horizontal or vertical directions were put forward to quantitate the characteristics of 285 transects in the river reach from GD to Honghuatao during December 2-10,2005.
     For the 14 natural reproductive activities from the year 1996 to 2003,we calculated the velocity field in the typical flow conditions(minimum,intermediate and maximum discharge).The result showed that variation range of current velocities was very large while the spawning action happened.Especially the current velocities changed obviously in the downstream mating site.The on-site surveys on the initial spawning day or 2-3 days after spawning were conducted by the ADCP in the year of 2004-2008.It indicated that the structure of velocity fields were similar in different years in large spatial scale. However,it showed some differences in small spatial scale.Compared to the period before the River Regime Regulating Project(before the year of 2004),the velocity field strcuture had been changed greatly in the year of 2005-2008.It mainly introduced a slow velocity area around the current dike.The velocity in central area V decreased and velocity in two-sides increased.
     According to the on-site observation by ADCP,the spatial distribution of velocity in transect was closely correlated with the shape of transect,that was to say,with the riverbed topography in streamwise.However,as a whole,the surface velocity was higher than bottom velocity,and the velocity in the central channel was higher than that near the side.According to the three on-site surveys on velocity field during the spawning activities in 2004-2005,the variation range of mean transet velocity of 20 transects was 72.99-175.23 cm/s,and the average value was 128.89±26.28 cm/s.The vertical velocity component of transect 3,4 and 11 in mating sites were 2.10 cm/s higher than other transects.From transect 1 to 30,the average flow direction decreased from 225.91°to 164.39°.The variation ranges of flow direction in transect 3,4 and 11 were large, which the coefficient of variations were 18.4%higher than others.On A.sinensis initial spawning days of the year 2004-2006,the range of bottom velocity in the downstream mating site was 108.74 cm/s-129.30 cm/s.Maybe it was the optimal current velocity for A.sinensis spawning.
     According to the on-site surveys on vertical velocity distributon,the velocity gradient of vertical lines from surface to bottom was negatively related with the water depths of the lines.The exponential function and logarithmic function both can be used to describe the time-averaged vertical velocity distribution.On the whole,the velocity turbulence intensity and relative turbulence intensity both decreased at first and then increased from the surface to the bottom.The variation of turbulence intensity of vertical velocity was similar to that of velocity.However,the variation of relative turbulence intensity of vertical velocity did not show obvious law,the values in different water depth did not indicate significant difference.And the relative turbulence intensity of vertical velocity was much larger than that of velocity.
     A transect in Miaozui were measured repeatedly for nine times to test the eight proposed velocity gradient metrics.It showed that the variation ranges of all metrics were less than 15%.That was to say,these velocity gradient metrics were suitable to describe the water flow with turbulance charateristics.K-Means algorithm was conducted based on transect-averaged velocity and eight metrics,the results showed that No.7,No.8 and No.2 predominate over the other,together taking 88.66%area in the whole reach.The reach between GD and Miaozui has the most diversified hydraulic environment.R-type cluster showed that the metrics have no close pertinence with the average velocity magnitude of transect.It means that the eight metrics are useful to differentiate areas with similar current magnitudes but different spatial gradients,it necessary to use these metrics to portray the natural of current velocity.
     4.In the spawning area of A.sinensis below GD,the hydrological conditions in spawning seasons(October-November) before and after(in the year of 1983-2002 and 2003-2005) the operation of the Three Gorges Dam(TGD) were analyzed.It showed that the hydrological conditions during the spawning seasons changed obviously since the operation of TGD reservoir in the year of 2003.The average water temperature in the spawning season increased by 1.48℃.And the silt content decreased to 0.032 kg/m~3 (only for 8.2%before operation).
     A suitability model based on hydrological conditions was proposed to evaluate the suitability of daily hydrological condition for spawning during the spawning seasons before(1983-1986) and after(2003-2005) the operation of the TGD.The average suitablity model showed that spawning suitablity for spawning increased at first and then decreased in the whole spawning season.However,the spawning suitablity was comparatively high in the whole spawning season.The spawning activities of A.sinensis did not always take place in the situation when the suitablity of hydrological condition was the highest.That was to say,the hydrological condition was not the only factor to determine the spawning time.The variation trend of silt content before spawning used to steady and decrease before the TGD reservoir operation,however,the trend was steady and increase after the reservoir operation.It suggested that sharply decrease of silt content may bring on complex effects on the natural reproduction of A.sinensis.
     5.A total of 7 meteorological elements(including wind,rainfall,temperature,air pressure,sunshine hours,humidity and cloud) in the initial spawning day of 55 spawning activities within the years(1963-1965,1970-1975,historic;1983-2006,present) in respective spawning areas were studied.The results show that the commencement of spawning activities of A.sinensis has some selectivity for the rainy day,but shies away from the cloudy day.The dramatic variation of weather type around the initial spawning day may be an inducement to the commencement of spawning activities,and consecutive sunny days in the present spawning area also have the same effect to the commencement of spawning activities.While the average temperature on the initial spawning day in the first and second spawning periods within the present spawning area shows a significant variation,other meteorological elements on the initial spawning day within both historic and present spawning areas do not differ significantly among the first spawning period, the second spawning period and the variation range(extent of date between the early and the late initial spawning days) of the initial spawning days.The variation trend of average air pressure on the initial spawning days in the first and second spawning periods is in the other diection to a certain extent.The sunshine hours,water level and silt content in the present spawning area do not have mutual relationship between each other as those in the historic spawning areas.Meteorological conditions may be an important factor for the commencement of the natural spawning behavior of A.sinensis.
     Based on above results,it can be concluded that topography of spawning area, riverbed substrate,velocity field,hydrological conditions and meterological conditions were associated with the natural reproduction of A.sinensis.The spatial distribution characteristics of riverbed substrate and velocity field were determined by the bedform morphology in a great extent,and the former two had direct influence on the spawning activities.However,the bedform morphology,riverbed substrate and velocity field influenced each other.They determined the special space for natural reproduction of A. sinensis together.The commencement of spawning activities showed a certain relationship with the variation of hydrological condition,however,it did not obviously. The appropriate hydrological condition only determined the approximate time range of spawning.In addition,the meteorological conditon also had a certain influence on the commencement of the spawning activities.
     To offer enough space and create advantageous spawning conditions for natural reproduction of A.sinensis is very important especially when the natural population of broodfish decreased gradually.Good measures will ensure and enhance the scale and efficiency of A.sinensis natural reproduction.It is very important when the recruitment data are considered.It is no doubt that the increase of recruitment is very important for conserving and rehabilitating the wild population of A.sinensis.According to the results concluded in this paper,an enhancement project can be conducted in present spawning area below GD,or carry on some ecological regulations on operation of TGD and GD so as to provide better spawning conditions.It is feasible at present.Furthermore,the conclusions in this paper also provided a theoretical basis for building the artifical spawning areas of A.sinensis in the future.
引文
1.班璇,李大美.葛洲坝枢纽工程对中华鲟产卵场的生态水文学影响研究.水电2006国际研讨会,2006,昆明,936-943
    2.班璇,李大美.大型水利工程对中华鲟生态水文学特征的影响.武汉大学学报(工学版),2007a,40(3):10-13
    3.班璇,李大美.葛洲坝下游中华鲟产卵场的多参数生态水文学模型.中国农村水利水电,2007b,(6):8-12,15
    4.蔡玉鹏,夏自强,于国荣,余文公.中华鲟产卵区水流特征分析及二维数值模拟.人民长江,2006,37(11):79-81,114
    5.柴毅,谢从新,危起伟,李罗新.不同水深和光照强度对中华鲟受精卵孵化率的影响.水利渔业,2008,28(3):32-33
    6.常剑波,黄真理,曹文宣.葛洲坝工程救鱼问题的争论及启示.见:黄真理,傅伯杰,杨志峰主编,21世纪长江大型水利工程中的生态与环境保护:中国科协第十九次“青年科学家论坛”论文集.“青年科学家论坛”第19次活动,北京,1997,北京:中国环境科学出版社,1998,186-198
    7.常剑波.长江中华鲟繁殖群体结构特征和数量变动趋势研究.[博士学位论文].武汉:中国科学院水生生物研究所,1999
    8.常剑波,曹文宣.中华鲟物种保护的历史与前景.水生生物学报,1999,23(6):712-720
    9.长江流域刀鲚资源调查协作组.长江流域刀鲚资源调查报告.1977:52-53
    10.长江水产资源调查协作组.长江鲥鱼调查研究.1977:15
    11.陈细华,杨德国,危起伟,罗刚,刘筠.葛洲坝下中华鲟自然产卵胚胎正常发育的证据.淡水渔业,2004,34(2):3-5
    12.陈细华.鲟形目鱼类生物学与资源现状.北京:海洋出版社,2007,1-41
    13.陈永柏.三峡水库运行影响中华鲟繁殖的生态水文学机制及其保护对策研究.[博士学位论文].武汉:中国科学院水生生物研究所,2007
    14.程金成,高健,刘健.中华鲟资源现状及其保护对策探讨.渔业现代化,2005,(3):3-4
    15.戴会超,何文社,袁杰,曹叔尤.葛洲坝水利枢纽运行后泥沙冲淤变化分析.水科学进展,2005,16(5):691-695
    16.邓中粦,余志堂,许蕴玕,周春生.中华鲟年龄鉴别和繁殖群体结构的研究.水生生物学报,1985,9(2):99-110
    17.杜浩,张辉,陈细华,刘志刚,危起伟,MIYAZAKI N.葛洲坝下中华鲟产卵场初次水下视频观察.科技导报,2008,26(17):49-54
    18.范永祥,霍秀英,高庆美.对虾各生育期与气象条件的关系.气象,1993,19(3):37-40
    19.傅朝君,刘宪亭,鲁大椿,何裕康,贺昌辉,邹武,秦元祥,谢明汉,田应培,谢大敬,柯熏陶,张昌方.葛洲坝下中华鲟人工繁殖.淡水渔业,1985a,15(1):1-5
    20.傅朝君,鲁大椿,陈松林,何裕康,贺昌辉,程高潮,秦元祥.利用(LRH-A)催情中华鲟试验.淡水渔业,1985b,15(6):37-38
    21.付小莉,李大美,陈永柏.葛洲坝下游中华鲟产卵河段的流场计算与分析.水科学进展,2006a,17(5):700-704
    22.付小莉,李大美,金国裕.葛洲坝下游中华鲟产卵场流场计算和分析.华中科技大学学报(自然科学版),2006b,34(9):111-113
    23.顾孝连,庄平,章龙珍,张涛,石小涛,赵峰,刘健.长江口中华鲟幼鱼对底质的选择.生态学杂志,2008,27(2):213-217
    24.国家水产总局鲟鱼克流试验组.中华鲟克服流速试验报告.南京:长江水产研究所,1979,1-12
    25.郭清.三峡水库对下游水力学要素的影响.东北水利水电,2008,26(9):43-45,55,72
    26.湖北省水生生物研究所鱼类研究室.长江鱼类.北京:科学出版社,1976,1-278
    27.胡德高,柯福恩,张国良.葛洲坝下中华鲟产卵情况初步调查及探讨.淡水渔业,1983,13(3):15-18
    28.胡德高,柯福恩,张国良,罗俊德,龚明华.葛洲坝下中华鲟产卵场的第二次调查.淡水渔业,1985,15(3):22-24,33
    29.胡德高,柯福恩,张国良,罗俊德,龚明华.葛洲坝下中华鲟产卵场的调查研究.淡水渔业,1992,22(5):6-10
    30.霍树梅.声学多普勒测流技术进展评述.气象水文海洋仪器,1998,(4):6-8
    31.姜礼燔.环境污染对中华鲟鳃、味蕾及肝脏的毒理组织学研究.水产科学,1988,7(2):1-5
    32.姜礼燔,曹萃禾.中华鲟肝脏癌变的环境污染诱因初探.水产科技情报,1988,15(4):7-8
    33.姜礼燔,曹萃禾,鲁生业.癌症高发区江段中华鲟肝癌发病情况调查.华中科技大学学报(医学版),1989,18(6):419-421
    34.姜礼燔.环境污染对中华鲟Acipenser sinensis Gray影响的研究.现代渔业信息,1996,11(7):1-7
    35.金国裕,李大美,付小莉.葛洲坝下游中华鲟产卵场流场模拟和分析.水电2006国际研讨会,2006,昆明,944-950
    36.柯福恩,胡德高,张国良.葛洲坝水利枢纽对中华鲟的影响-数量变动调查报告.淡水渔业,1984,14(3):16-19
    37.柯福恩,胡德高,张国良,罗俊德.葛洲坝下中华鲟产卵群体性腺退化的观察.淡水渔业,1985,15(4):38-42
    38.柯福恩,胡德高,张国良,罗俊德,危起伟.葛洲坝下中华鲟产卵规模大小的调查研究.见:中国水产学会编,江河湖泊水库渔业增殖养殖学术讨论会论文集.中国水产学会江、湖、水库渔业专业委员会及鄂、湘、赣、皖、粤、桂、苏、浙八省大水面增养殖学术讨论会,湖北汉川,1986,北京:学术期刊出版 社,1987,285-292
    39.柯福恩,危起伟,张国良,胡德高,罗俊德,庄平.中华鲟产卵洄游群体结构和资源量估算的研究.淡水渔业,1992,22(4):7-11
    40.柯福恩,危起伟,罗俊德,庄平,杨文华.论长江珍稀水生野生动物的保护与补救.见:李渤生,詹志勇主编,绿满东亚-第一届东亚地区国家公园与保护区会议暨CNPPA/IUCN第41届工作会议文集.第一届东亚地区国家公园与保护区会议暨CNPPA/IUCN第41届工作会议,北京,1993,北京:中国环境科学出版社,1994,780-785
    41.冷永智.对中华鲟繁殖、发育及洄游问题的研讨.见:四川省长江水产资源调查组编,长江鲟鱼类生物学及人工繁殖研究.成都:四川科学技术出版社,1988,268-281
    42.李翀,廖文根,彭静,叶柏生.宜昌站1900-2004年生态水文特征变化.长江流域资源与环境,2007,16(1):76-80
    43.李发政,杨伟,戴会超.三峡水利枢纽工程非恒定流通航影响研究Ⅲ:葛洲坝下游宜昌河段.水力发电学报,2006,25(1):56-60
    44.李荣,甘金华,徐进,危起伟.长江宜昌江段铜鱼和中华鲟体内HCH DDT的残留水平.农业环境科学学报,2008,27(6):2434-2439
    45.李志林,朱庆.数字高程模型.武汉:武汉测绘科技大学出版社,2000,1-248
    46.林永兵.非繁殖季节中华鲟繁殖群体在长江中分布与降海洄游初步研究.[硕士学位论文].武汉:华中农业大学,2008
    47.刘鉴毅,张晓雁,危起伟,张辉,杨道明,朱永久,陈细华,杨德国.野生中华鲟水族馆驯养观察.动物学杂志,2006,41(3):48-53
    48.刘鉴毅,危起伟,陈细华,杨德国,杜浩,朱永久,郑卫东,甘芳.葛洲坝下中华鲟繁殖生物学特性及其人工繁殖效果.应用生态学报,2007,18(6):1397-1402
    49.柳凌,危起伟,鲁大椿,郭峰,刘宪亭,章龙珍.中华鲟精子低温保存的相关因子.水产学报,1999,23(增刊):86-89
    50.刘万利,段文忠,赵连白.葛洲坝三江下引航道通航水深分析及治理措施初步研究.武汉水利电力大学学报,1998,31(4):38-42
    51.鲁大椿,傅朝君,刘宪亭,章龙珍,陈松林,方建萍,苏奔明.中华鲟胚胎发育的研究.淡水渔业,1986,16(4):2-5
    52.鲁大椿,柳凌,方建萍,章龙珍.中华鲟精液的生物学特性和精浆的氨基酸成分.淡水渔业,1998,28(6):18-20
    53.卢峰本,黄滢,周启强,许文龙.海水养殖的气象风险分析及预报.气象,2006,32(11):113-117
    54.卢金友,徐海涛,姚仕明.天然河道水流紊动特性分析.水利学报,2005,36(9):1029-1034
    55.马颖,李琼芳,邹振华,郭瑾.三峡水库对葛洲坝下游中华鲟产卵场水力学要素影响分析.见任意良,陈喜,章树安主编,环境变化与水安全.第五届中国 水论坛,南京,2007,北京:中国水利水电出版社,2008,454-458
    56.孟庆闻,苏锦祥,缪学祖.鱼类分类学.北京:中国农业出版社,1995,117-120
    57.潘国富.声学方法进行海底沉积物遥测分类:综述.海洋技术,1997,16(1):14-19
    58.乔云波.三峡库区宜昌至泄滩段水质污染现状及对策.氨基酸和生物资源,2006,28(2):72-75
    59.三峡总公司枢纽管理部.葛洲坝水利枢纽下游河势调整工程施工情况简介.2007,1-4
    60.石国钰,许全喜,陈泽方.长江中下游河道冲淤与河床自动调整作用分析.山地学报,2002,20(3):257-265
    61.师哲,龙超平.葛洲坝枢纽下游河段河床演变分析.长江科学院院报,2000,17(1):13-16
    62.四川省重庆市长寿湖渔场水产研究所.金沙江鲟鱼产卵场调查和增殖措施的初步研究.重庆市科学技术局,1973,1-16
    63.四川省长江水产资源调查组.长江鲟鱼类生物学及人工繁殖研究.成都:四川科学技术出版社,1988,1-284
    64.唐从胜,宋世杰,王维国,胡春平.葛洲坝枢纽运行对下游河段影响的监测研究.人民长江,2001,32(11):11-13,56
    65.汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程.北京:科学出版社,2006,1-480
    66.唐国盘,刘鉴毅,危起伟,陈细华,杨德国,朱永久,杜浩.中华鲟胚胎的耗氧率.动物学杂志,2004,39(5):30-34
    67.陶春辉,金翔龙,许枫,顾春华,何拥华.海底声学底质分类技术的研究现状与前景.东海海洋,2004,22(3):28-33
    68.田淳,刘少华.声学多普勒测流原理及其应用.郑州:黄河水利出版社,2003,1-12
    69.王炳和,李宏昌.声纳技术的应用及其最新进展.物理,2001,30(8):491-495
    70.王程,徐刚,向友国.长江葛洲坝水利枢纽下游河势调整工程.湖北水力发电,2006,(3):36-39
    71.王改会,马虹.葛洲坝下游河势调整方案设计及其作用.水利水电快报,2006,27(2):4-6
    72.王润田.海底声学探测与底质识别技术的新进展.声学技术,2002,21(1-2):96-98
    73.王远坤,夏自强,蔡玉鹏.葛洲坝下游中华鲟产卵场流场模拟与分析.水电能源科学,2007,25(5):54-47,72
    74.王远坤,夏自强,王桂华,杨宇.中华鲟产卵场平面平均涡量计算与分析.生态学报,2009,29(1):538-544
    75.韦尔科姆 R L.江河渔业.北京:中国农业科技出版社,1988,1-58
    76.危起伟,柯福恩,庄平,罗俊德,杨文华,周瑞琼.论长江口中华鲟幼鱼的保护.见:李渤生,詹志勇主编,绿满东亚-第一届东亚地区国家公园与保护区会议暨CNPPA/IUCN第41届工作会议文集.第一届东亚地区国家公园与保护区会议暨CNPPA/IUCN第41届工作会议,北京,1993,北京:中国环境科学出版社,1994,786-793
    77.危起伟,杨德国,柯福恩.长江鲟鱼类的保护对策.见:黄真理,傅伯杰,杨志峰主编,21世纪长江大型水利工程中的生态与环境保护:中国科协第十九次“青年科学家论坛”论文集.“青年科学家论坛”第19次活动,北京,1997,北京:中国环境科学出版社,1998a,208-217
    78.危起伟,杨德国,柯福恩,Kynard B,Kieffer M.长江中华鲟超声波遥测技术.水产学报,1998b,22(3):211-217
    79.危起伟.中华鲟繁殖行为生态学与资源评估.[博士学位论文].武汉:中国科学院水生生物研究所,2003
    80.危起伟,陈细华,杨德国,刘鉴毅,朱永久,郑卫东.葛洲坝截流24年来中华鲟产卵群体结构的变化.中国水产科学,2005,12(4):452-457
    81.危起伟,班璇,李大美.葛洲坝下游中华鲟产卵场的水文学模型.湖北水力发电,2007,(2):4-6
    82.吴凤燕,付小莉.葛洲坝下游中华鲟产卵场三维流场的数值模拟.水力发电学报,2007,26(2):114-118
    83.吴秀芹,丛万滋,野庆民,宋景德.气象要素与池鱼泛塘关系研究.齐鲁渔业,1999,16(1):23-26
    84.吴自银,郑玉龙,初凤友,陶春辉,高金耀.海底浅表层信息声探测技术研究现状及发展.地球科学进展,2005,20(11):1210-1217
    85.肖慧,李淑芳.一龄中华鲟生长特征研究.淡水渔业,1994,24(5):6-9
    86.肖慧.葛洲坝水利枢纽与珍稀鱼类保护的实践.见:黄真理,傅伯杰,杨志峰主编,21世纪长江大型水利工程中的生态与环境保护:中国科协第十九次“青年科学家论坛”论文集.“青年科学家论坛”第19次活动,北京,1997,北京:中国环境科学出版社,1998,199-207
    87.肖慧,常剑波,刘勇.中华鲟人工繁殖放流现状评价.水生生物学报,1999,23(6):572-576
    88.杨德国,危起伟,王凯,陈细华,朱永久.人工标志放流中华鲟幼鱼的降河洄游.水生生物学报,2005,29(1):26-30
    89.杨丰,杨俊青.多普勒法测流技术简介.水文,2004,24(2):58-59
    90.杨宇.中华鲟葛洲坝栖息地水力特性研究.[博士学位论文].南京:河海大学,2007
    91.杨宇,谭细畅,常剑波,严忠民.三维水动力学数值模拟获得中华鲟偏好流速曲线.水利学报,2007a,增刊:531-534,541
    92.杨宇,严忠民,常剑波.中华鲟产卵场断面平均涡量计算及分析.水科学进展,2007b,18(5):701-705
    93.姚仕明,卢金友,徐海涛.黄陵庙水文断面垂线流速分布特性研究.长江科学院院报,2005,22(4):8-11
    94.易继舫,江新,万建义,田家元.中华鲟蓄养中的活动与性腺发育初步研究.水利渔业,1988,(5):33-36
    95.易继舫.长江中华鲟幼鲟资源调查.葛洲坝水电,1994,(1):53-58
    96.易继舫,常剑波,唐大明,刘灯红,郭伯福.长江中华鲟繁殖群体资源现状的初步研究.水生生物学报,1999,23(6):554-559
    97.易雨君,王兆印,陆永军.长江中华鲟栖息地适合度模型研究.水科学进展,2007,18(4):538-543
    98.易雨君,王兆印,姚仕明.栖息地适合度模型在中华鲟产卵场适合度中的应用.清华大学学报(自然科学版),2008,48(3):340-343
    99.虞功亮,许蕴玕,谭细畅,邓中粦,常剑波.葛洲坝水利枢纽下游宜昌江段渔业资源现状.水生生物学报,1999,23(6):662-669
    100.余国安,王兆印,谢小平.长江口水质空间分布现状评价.人民长江,2007,38(1):81-83
    101.余文畴.长江中下游河道平面形态指标分析.长江科学院院报,1994,11(1):48-55
    102.余文畴.长江河道演变与治理.北京:中国水利水电出版社,2005,1-89
    103.余文公,夏自强,蔡玉鹏,于国荣.三峡水库蓄水前后下泄水温变化及其影响研究.人民长江,2007a,38(1):20-22
    104.余文公,夏自强,于国荣,蔡玉鹏.三峡水库水温变化及其对中华鲟繁殖的影响.河海大学学报(自然科学版),2007b,35(1):92-95
    105.余志堂,周春生,邓中粦,许蕴玕,向阳.葛洲坝枢纽下游中华鲟自然繁殖的调查.水库渔业,1983,(2):2-4
    106.余志堂,许蕴玕,邓中粦,周春生,向阳.葛洲坝水利枢纽下游中华鲟繁殖生态的研究.见:中国鱼类学会编辑,鱼类学论文集(第五辑).中国海洋湖沼学会第四届会员代表大会及有关二级学会的学术年会,青岛,1984,北京:科学出版社,1986,1-14
    107.乐佩琦,陈宜瑜.中国濒危动物红皮书:鱼类.北京:科学出版社,1998,13-16
    108.张辉,危起伟,杨德国.ADCP在水域生态研究中的应用.水利渔业,2008,28(1):1-4
    109.张慧杰.长江宜昌和宜宾江段鱼类资源的水声学初步调查.[硕士学位论文].武汉:华中农业大学,2007
    110.张慧杰,杨德国,危起伟,杜浩,张辉,陈细华.葛洲坝至古老背江段鱼类的水声学调查.长江流域资源与环境,2007,16(1):86-91
    111.张民楷.中华鲟及其保护意见.科学养鱼,1994,(6):29
    112.张瑞瑾.河流泥沙动力学(第二版).北京:中国水利水电出版社,2005,1-230
    113.张世光.西江中华鲟调查初报.广西水产科技,1984,(2):18-21
    114.张世光.中华鲟在西江的分布及产卵场调查.动物学杂志,1987,22(5):50-52
    115.张有平.长江江苏段船舶定线制航路示意图.大连:大连海事大学出版社,2003,12-13
    116.赵燕,黄琇,余志堂.中华鲟幼鱼现状调查.水利渔业,1986,(6):38-41
    117.郑跃平,刘鉴毅,谢从新,危起伟,杨德国,陈细华.温度对中华鲟精子、卵子短期保存的影响.吉林农业大学学报,2006,28(6):682-686
    118.中国科学院环境评价部,长江水资源保护科学研究所.长江三峡水利枢纽环境影响报告书(简写本).北京:科学出版社,1996,1-64
    119.中华鲟研究所.葛洲坝水利枢纽下游河势调整工程对中华鲟自然保护区影响补偿补救措施项目:中华鲟误伤应急救护专题汇报.2008
    120.周春生,许蕴开,邓中粦,余志堂.长江葛洲坝枢纽坝下江段中华鲟成鱼性腺的观察.水生生物学报,1985,9(2):164-170
    121.周显青,牛翠娟,李庆芬.光照对鱼类生理活动影响的研究进展.生态学杂志,1999,18(6):59-61
    122.庄平.鲟科鱼类个体发育行为学及其在进化与实践上的意义.[博士学位论文].武汉:中国科学院水生生物研究所,1999
    123.Aadland L.Lake sturgeon passage and habitat restoration.Proceedings of the Second Great Lakes Lake Sturgeon Coordination Meeting,2004,Sault Ste.Marie,Michigan,USA
    124.Allan J D,Castillo M M.Stream Ecology:Structure and Function of Running Waters(Second Edition).Dordrecht,Netherlands:Springer,2007,13-103
    125.Allen T C,Phelps Q E,Davinroy R D,Lamm D M.A laboratory examination of substrate,water depth,and light use at two water velocity levels by individual juvenile pallid(Scaphirhynchus albus) and shovelnose(Scaphirhynchus platorynchus) sturgeon.J Appl Ichthyol,2007,23(4):375-381
    126.Altuf'yev Y V,Romanov A A,Sheveleva N N.Histology of the striated muscle tissue and liver in the Caspian Sea sturgeons.J Ichthyol,1992,32:100-115
    127.Altuf'yev Y V.Morphofunctional condition of muscle tissue and liver of juvenile Russian sturgeon and beluga with chronic intoxication.J Ichthyol,1994,34:134-138
    128.Arndt G,Gessner J,Bartel R.Characteristics and availability of spawning habitat for Baltic sturgeon in the Odra River and its tributaries.J Appl Ichthyol,2006,22(Supplement 1):172-181
    129.Auer N A.Response of spawning lake sturgeons to change in hydroelectric facility operation.Trans Am Fish Soc,1996,125(1):66-77
    130.Barnes P W,Fleischer G W,Gardner J V,Lee K M.Using laser technology to characterize substrate morphology of lake trout spawning habitat in Northern Lake Michigan.Symposium on Effects of Fishing Activities on Benthic Habitats:Linking Geology,Biology,Socioeconomics,and Management,2002,Tampa, Florida,USA
    131.Baxter C V,Hauer F R.Geomorphology,hyporheic exchange,and selection of spawning habitat by bull trout(Salvelinus confluentus).Can J Fish Aquat Sci,2000,57(7):1470-1481
    132.Beamesderfer R C P,Farr R A.Alternatives for the protection and restoration of sturgeons and their habitat.Environ Biol Fish,1997,48:407-417
    133.Bemis W E,Kynard B.Sturgeon rivers:an introduction to acipenseriform biogeography and life history.Environ Biol Fish,1997,48:167-183
    134.Bemis W E,Birstein V J,Waldman J R.Sturgeon biodiversity and conservation:an introduction.Environ Biol Fish,1997a,48:13-14
    135.Bemis W E,Findeis E K,Grande L.An overview of Acipenseriformes.Environ Biol Fish,1997b,48:25-71
    136.Bennett W R,Edmondson G,Lane E D,Morgan J.Juvenile white sturgeon (Acipenser transmontanus) habitat and distribution in the Lower Fraser River,downstream of Hope,BC,Canada.J Appl Ichthyol,2005,21:375-380
    137.Bennett W R,Edmondson G,Williamson K,Gelley J.An investigation of the substrate preference of white sturgeon(Acipenser transmontanus)eleutheroembryos.J Appl Ichthyol,2007,23:539-542
    138.Bevelhimer M S.A bioenergetics model for white sturgeon Acipenser transmontanus:assessing differences in growth and reproduction among Snake River reaches.J Appl Ichthyol,2002,18:550-556
    139.Billard R,Lecointre G.Biology and conservation of sturgeon and paddlefish.Rev Fish Biol Fisheries,2001,10:355-392
    140.BioSonics,Inc.Guide to Using VBT-Seabed Classifier(Version 1.9b).http://www.biosonicsinc.com
    141.Birstein V J.Sturgeons and paddlefishes:Threatened fishes in need of conservation.Cons Biol,1993,7(4):773-787
    142.Birstein V J,Bemis W E.How many species are there within the genus Acipenser?Environ Biol Fish,1997,48:157-163
    143.Birstein V J,Bemis W E,Waldman,J R.The threatened status of acipenseriform species:a summary.Environ Biol Fish,1997,48:427-435
    144.Brabrand(?),Hansen B R,Koestler A G.Creation of artificial upwelling areas for brown trout,Salmo trutta,spawning in still water bodies.Fisheries Man Ecol,2006,13(5):293-298
    145.Bramblett R G.Habitats and movements of pallid and shovelnose sturgeon in the Yellowstone and Missouri Rivers,Montana and North Dakota.(Ph D dissertation).Bozeman:Montana State University,1996
    146.Bramblett R G,White R G.Habitat use and movements of pallid and shovelnose sturgeon in the Yellowstone and Missouri Rivers in Montana and North Dakota.Trans Am Fish Soc,2001,130(6):1006-1025
    147. Brown J R, Beckenbach A T, Smith M J. Influence of pleistocene glaciations and human intervention upon mitochondrial DNA diversity in white sturgeon (Acipenser transmontanus) populations. Can J Fish Aquat Sci, 1992, 49(2): 358-367
    
    148. Bruch R M, Binkowski F P. Spawning behavior of lake sturgeon (Acipenser fulvescens). J Appl Ichthyol, 2002, 18: 570-579
    
    149. Buckley J, Kynard B. Habitat use and behavior of pre-spawning and spawning shortnose sturgeon, Acipenser brevirostrum, in the Connecticut River. In: Binkowski F P, Doroshov S I eds., North American Sturgeons: Biology and Aquaculture Potential (Developments in Environmental Biology of Fishes, Vol. 6). Dordrecht, Netherlands: Dr W Junk Publishers, 1985, 111-117
    
    150. Carls M G, Rice S D, Marty G D, Naydan D K. Pink salmon spawning habitat is recovering a decade after the Exxon Valdez oil spill. Trans Am Fish Soc, 2004, 133(4): 834-844
    
    151. Chen Z, Chen D, Xu K, Zhao Y, Wei T, Chen J, Li L, Watanabe M. Acoustic Doppler current profiler surveys along the Yangtze River. Geomorphology, 2007, 85: 155-165
    
    152. Cholwek G, Yule D, Eitrem M, Quinlan H, Doolittle T. Mapping Potential Lake Sturgeon Habitat in the Lower Bad River Complex. U.S. Geological Survey, 2005
    
    153. Choudhury A, Dick T A. The historical biogeography of sturgeons (Osteichthyes: Acipenseridae): a synthesis of phylogenetics, palaeontology and palaeogeography. J Biogeogr, 1998, 25: 623-640
    
    154. Cohen A. Sturgeon poaching and black market caviar: a case study. Environ Biol Fish, 1997,48:423-426
    
    155. Connor W P, Piston C E, Garcia A P. Temperature during incubation as one factor affecting the distribution of Snake River fall Chinook salmon spawning areas. Trans Am Fish Soc, 2003, 132(6): 1236-1243
    
    156. Cooke D W, Leach S D. Implications of a migration impediment on shortnose sturgeon spawning. N Am J Fish Manag, 2004, 24(4): 1460-1468
    
    157. Coulombe-Pontbriand M, Lapointe M. Geomorphic controls, riffle substrate quality, and spawning site selection in two semi-alluvial salmon rivers in the Gaspe Peninsula, Canada. River Res Appl, 2004,20(5): 577-590
    
    158. Coutant C C. A riparian habitat hypothesis for successful reproduction of white sturgeon. Rev Fish Sci, 2004, 12(1): 23-73
    
    159. Cowx I G, Welcomme R L. Rehabilitation of Rivers for Fish. Oxford: Alden Press, 1998,45-60
    
    160. Crowder D W, Diplas P. Evaluating spatially explicit metrics of stream energy gradients using hydrodynamic model simulations. Can J Fish Aquat Sci, 2000a, 57(7): 1497-1507
    
    161. Crowder D W, Diplas P. Using two-dimensional hydrodynamic models at scales of ecological importance. J Hydrol, 2000b, 230(3): 172-191
    
    162. Crowder D W. Reproducing and quantifying spatial flow patterns of ecological importance with two-dimensional hydraulic models. Blacksburg: Virginia Polytechnic Institute and State University, 2002,4-27
    
    163. Crowder D W, Diplas P. Vorticity and circulation: spatial metrics for evaluating flow complexity in stream habitats. Can J Fish Aquat Sci, 2002, 59(4): 633-645
    
    164. Curry R A, Gehrels J, Noakes D L G, Swainson R. Effects of river flow fluctuations on groundwater discharge through brook trout, Salvelinus fontinalis, spawning and incubation habitats. Hydrobiologia, 1994, 277(2): 121-134
    
    165. Curry R A, Devito K. Hydrogeology of brook trout (Salvelinus fontinalis) spawning and incubation habitats: implications for forestry and land use development. Can J For Res, 1996,26: 767-772
    
    166. Daugherty D J, Sutton T M. Assessment of potential lake sturgeon habitat availability in Lake Michigan tributaries: Applications to the restoration process. Proceedings of the Second Great Lakes Lake Sturgeon Coordination Meeting, 2004, Sault Ste. Marie, Michigan, USA
    
    167. Davey C, Lapointe M. Sedimentary links and the spatial organization of Atlantic salmon (Salmo salar) spawning habitat in a Canadian Shield river. Geomorphology, 2007, 83(1-2): 82-96
    
    168. Delia Vinas M, Negri R M, Ramirez F C, Hernandez D. Zooplankton assemblages and hydrography in the spawning area of anchovy (Engraulis anchoita) off Rio de la Plata estuary (Argentina-Uruguay). Mar Freshw Res, 2002, 53(6): 1031 -1043
    
    169. Deng X, Deng Z L, Cai M Y. Spawning population characteristics of Acipenser sinensis in Yangtze River just below Gezhouba Dam. In: Williot P ed., Aciperseridae. Paris, France: Cemagref-Dicova Publ, 1991,235-242
    
    170. Deng X, Deng Z L. Progress in the conservation biology of Chinese sturgeon. Zool Res, 1997,18(1): 113-120
    
    171. Deng Z L, Xu Y G, Zhao Y. Analysis on Acipenser sinensis spawning ground and spawning scales below Gezhouba Hydroelectric Dam by means of examining the digestive contents of benthic fishes. In: Williot P ed., Acipenseridae. Paris, France: Cemagref-Dicova Publ, 1991, 243-250
    
    172. Dettlaff T A, Ginsburg A S, Schmalhausen O I. Sturgeon Fishes: Developmental Biology and Aquaculture. Berlin: Springer-Verlag, 1993, 197-198
    
    173. Dryer M P, Sandvol A J. Recovery Plan for the Pallid Sturgeon (Scaphirhynchus albus). U.S. Fish and Wildlife Service, 1993
    
    174. Duncan M S, Isely J J, Cooke D W. Evaluation of shortnose sturgeon spawning in the Pinopolis Dam tailrace, South Carolina. N Am J Fish Manag, 2004, 24(3): 932-938
    
    175. Eastwood P D, Meaden G J, Grioche A. Modelling spatial variations in spawning habitat suitability for the sole Solea solea using regression quantiles and GIS procedures. Mar Ecol Progr, 2001, 224: 251-266
    
    176. Erickson D L, North J A, Hightower J E, Weber J, Lauck L. Movement and habitat use of green sturgeon Acipenser medirostris in the Rogue River, Oregon, USA. J Appl Ichthyol, 2002, 18(4-6): 565-569
    
    177. Fan X, Wei Q, Chang J, Rosenthal H, He J, Chen D, Shen L, Du H, Yang D. A review on conservation issues in the upper Yangtze River - a last chance for a big challenge: Can Chinese paddlefish (Psephurus gladius), Dabry's sturgeon, (Acipenser dabryanus) and other fish species still be saved? J Appl Ichthyol, 2006, 22(Suppl.1):32-39
    
    178. Firehammer J A, Scarnecchia D L. The influence of discharge on duration, ascent distance, and fidelity of the spawning migration for paddlefish of the Yellowstone-Sakakawea stock, Montana and North Dakota, USA. Environ Biol Fish, 2007, 78(1): 23-36
    
    179. Foust J C, Haynes J M. Failure of walleye recruitment in a lake with little suitable spawning habitat is probably exacerbated by restricted home ranges. J Freshw Ecol, 2007, 22(2): 297-304
    
    180. Fox D A, Hightower J E, Parauka F M. Gulf sturgeon spawning migration and habitat in the Choctawhatchee River system, Alabama-Florida. Trans Am Fish Soc, 2000, 129(3): 811-826
    
    181. Friday M. Spawning habitat enhancement through flow manipulation. Proceedings of the Second Great Lakes Lake Sturgeon Coordination Meeting, 2004, Sault Ste. Marie, Michigan, USA
    
    182. Fu X L, Li D M, Jin G Y. Calculation of flow field and analysis of spawning sites for Chinese sturgeon in the downstream of Gezhouba dam. J Hydrod, 2007, 19(1): 78-83
    
    183. Gard M. Techinque for adjusting spawning depth habitat utilization curves for availability. Rivers, 1997, 6(2): 94-102
    
    184. Geddes C, Rutherford E. Classification and visualization of lake sturgeon habitat suitability using the Great Lakes GIS. Proceedings of the Second Great Lakes Lake Sturgeon Coordination Meeting, 2004, Sault Ste. Marie, Michigan, USA
    
    185. Geiling W D, Kelso J RM, Iwachewski E. Benefits from incremental additions to walleye spawning habitat in the Current River, with reference to habitat modification as a walleye management tool in Ontario. Can J Fish Aquat Sci, 1996,53(S1): 79-87
    
    186. Geist D R, Dauble D D. Redd site selection and spawning habitat use by fall Chinook salmon: The importance of geomorphic features in large rivers. Environ Manage, 1998, 22(5): 655-669
    
    187. Geist D R. Hyporheic discharge of river water into fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas in the Hanford Reach, Columbia River. Can J Fish Aquat Sci, 2000, 57(8): 1647-1656
    
    188. Geist D R, Jones J, Murray C J, Dauble D D. Suitability criteria analyzed at the spatial scale of redd clusters improved estimates of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat use in the Hanford Reach, Columbia River. Can J Fish Aquat Sci, 2000, 57(8): 1636-1646
    
    189. Gertsev V I, Gertseva V V. A model of sturgeon distribution under a dam of a hydro-electric power plant. Ecol Model, 1999,119(1): 21-28
    
    190. Gessner J, Bartel R. Sturgeon spawning grounds in the Odra River tributaries: A first assessment. Bol Inst Esp Oceanogr, 2000,16(1-4): 127-137
    
    191. Gessner J, Arndt G, Tiedemann R, Bartel R, Kirschbaum F. Remediation measures for the Baltic sturgeon: status review and perspectives. J Appl Ichthyol, 2006, 22(Suppl.1):23-31
    
    192. Gillenwater D, Granata T, Zika U. GIS-based modeling of spawning habitat suitability for walleye in the Sandusky River, Ohio, and implications for dam removal and river restoration. Ecol Engineer, 2006,28(3): 311-323
    
    193. Goncharov B F, Polupan I S. Stress affects the physiological state of sturgeon ovarian follicles and female reproductive potential. J Appl Ichthyol, 2007, 15(4-5):341
    
    194. Goncharov B F, Skoblina M N, Trubnikova O B, Chebanov M S. Influence of temperature on the sterlet (Acipenser ruthenus L.) ovarian follicles state. In: Carmona R, Domezain A, Garcia-Gallego M, Hernando J A, Rodriguez F, Ruiz-Rejon M eds., Biology, Conservation and Sustainable Development of Sturgeons (Fish & Fisheries Series 29). Netherlands: Springer, 2009, 205-214
    
    195. Groves P A, Chandler J A. Habitat quality of historic Snake River fall Chinook salmon spawning locations and implications for incubation survival. Part 2. Intra-gravel water quality. River Res Appl, 2005,21(5): 469-483
    
    196. Gutierrez-Rodriguez C, Williamson C E. Influence of solar ultraviolet radiation on early life-history stages of the bluegill sunfish, Lepomis macrochirus. Environ Biol Fish, 1999, 55(3): 307-319
    
    197. Hanrahan T P, Geist D R, Arntzen E V, Abernethy C S. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas. Pacific Northwest National Laboratory (PNNL), Richland, WA (US), PNNL-14850,2004
    
    198. Hanrahan T P, Geist D R, Arntzen E V. Habitat quality of historic Snake River fall Chinook salmon spawning locations and implications for incubation survival. Part 1. Substrate quality. River Res Appl, 2005,21(5): 455-467
    
    199. Hanrahan T P. Large-scale spatial variability of riverbed temperature gradients in Snake River fall Chinook salmon spawning areas. River Res Appl, 2007a, 23(3): 323-341
    
    200. Hanrahan T P. Bedform morphology of salmon spawning areas in a large gravel-bed river. Geomorphology, 2007b, 86(3-4): 529-536
    
    201. Harper D, Everard M. Why should the habitat-level approach underpin holistic river survey and management? Aquat Conserv: Mar Freshw Ecol, 1998, 8(4): 395-413
    
    202. Hatfield T, McAdam S, Nelson T. Impacts to Abundance and Distribution of Fraser River White Sturgeon. Fraser River Sturgeon Conservation Society, Fraser River White Sturgeon Working Group, 2004, http://www.frasersturgeon.com/pdf/ 3_IssuesConfrontingFraserRiverWhiteSturgeon_F.pdf
    
    203. Hatin D, Fortin R, Caron F. Movements and aggregation areas of adult Atlantic sturgeon (Acipemer oxyrinchus) in the St Lawrence River estuary, Quebec, Canada. J Appl Ichthyol, 2002, 18(4-6): 586-594
    
    204. Hauer C, Unfer G, Schmutz S, Habersack H. The importance of morphodynamic processes at riffles used as spawning grounds during the incubation time of nase (Chondrostoma nasus). Hydrobiologia, 2007, 579(1): 15-27
    
    205. Haxton T, William J. Spatial application of a habitat suitability index model for lake sturgeon. Proceedings of the Second Great Lakes Lake Sturgeon Coordination Meeting, 2004, Sault Ste. Marie, Michigan, USA
    
    206. Heise R J, Slack W T, Ross S T, Dugo M A. Gulf sturgeon summer habitat use and fall migration in the Pascagoula River, Mississippi, USA. J Appl Ichthyol, 2005, 21(6): 461-468
    
    207. Hightower J E, Zehfuss K P, Fox D A, Parauka F M. Summer habitat use by Gulf sturgeon in the Choctawhatchee River, Florida. J Appl Ichthyol, 2002,18: 595-600
    
    208. Hochleithner M, Gessner J. The Sturgeons and Paddlefishes of the World: Biology and Aquaculture. Kitzbuhel, Austria: AquaTech Publications, 2001, 1-207
    
    209. Holcik J. The Freshwater Fishes of Europe: General Introduction to Fishes: Acipenseriformes. Wiesbaden: AULA-Verlag, 1989,1-469
    
    210. Jackson R, Brooking T, Van De Valk T. Lake sturgeon restoration in Oneida Lake, New York: stocking, habitat use, and life in the fast lane. Proceedings of the Second Great Lakes Lake Sturgeon Coordination Meeting, 2004, Sault Ste. Marie, Michigan, USA
    
    211. Jacobson R B, Laustrup M S. Habitat Assessment for Pallid Sturgeon Overwintering Surveys, Lower Missouri River. U.S. Geological Survey, 2000
    
    212. Jeffries M, Mills D. Freshwater Biology: Principles and Applications. New York: Belhaven Press, 1990,44-45
    
    213. Johnson J H, Lapan S R, Klindt R M, Schiavone A. Lake sturgeon spawning on artificial habitat in the St Lawrence River. J Appl Ichthyol, 2006, 22: 465-470
    
    214. Ke F E, Wei Q W, Hu D G, Zhang G L, Luo J D, Zhuang P. Investigations of ecological effects of Gezhouba Hydroelectric Project on Chinese sturgeon. The International Symposium on Sturgeons and Paddlefishes, 1992, Chongqing, China
    
    215. Keckeis H. Influence of river morphology and current velocity conditions on spawning site selection of Chondrostoma nasus (L.). Archivfur Hydro Suppl Large River, 2001, 12(2-4): 341-356
    
    216. Kennedy G. Evaluation of underwater remote sensing technologies to survey potential lake sturgeon spawning habitat in large river systems in the Great Lakes. Proceedings of the Second Great Lakes Lake Sturgeon Coordination Meeting, 2004, Sault Ste. Marie, Michigan, USA
    
    217. Khodorevskaya R P, Dovgopol G F, Zhuravleva O L, Vlasenko A D. Present status of commercial stocks of sturgeons in the Caspian Sea basin. Environ Biol Fish, 1997,48:209-219
    
    218. Kieffer M C, Kynard B. Spawning of the shortnose sturgeon in the Merrimack River, Massachusetts. Trans Am Fish Soc, 1996, 125(2): 179-186
    
    219. Kieffer M, Kynard B. Pre-spawning Migration and Spawning of Connecticut River Shortnose Sturgeon. U.S. Geological Survey, 2004
    
    220. Knaepkens G, Bruyndoncx L, Coeck J, Eens M. Spawning habitat enhancement in the European bullhead (Cottus gobio), an endangered freshwater fish in degraded lowland rivers. Biodiv Conserv, 2004, 13(13): 2443-2452
    
    221. Knapp R A, Vredenburg V T, Matthews K R. Effects of stream channel morphology on golden trout spawning habitat and recruitment. Ecol Appl, 1998, 8(4): 1104-1117
    
    222. Kolman R, Zarkua Z. Environmental conditions of common sturgeon (Acipenser sturio L.) spawning in River Rioni (Georgia). E J P A U, 2002, 5(2): http://www.ejpau.media.pl/volume5/issue2/fisheries/art-01 .html
    
    223. Kondolf G M, Vick J C, Ramirez T M. Salmon spawning habitat rehabilitation on the Merced River, California: An evaluation of project planning and performance. Trans Am Fish Soc, 1996, 125(6): 899-912
    
    224. Koubbi P, Ibanez F, Duhamel G. Environmental influences on spatio-temporal oceanic distribution of ichthyoplankton around the Kerguelen Islands (Southern Ocean). Mar Ecol Prog Ser, 1991, 72: 225-238
    
    225. Kynard B, Wei Q W, Ke F E. Use of ultrasonic telemetry to locate the spawning area of Chinese sturgeons. Chin Sci Bull, 1995,40(8): 668-671
    
    226. Kynard B, Suciu R, Horgan M. Migration and habitats of diadromous Danube River sturgeons in Romania 1998-2000. J Appl Ichthyol, 2002,18(4-6): 529-535
    
    227. LaHaye M, Branchaud A, Gendron M, Verdon R, Fortin R. Reproduction, early life history, and characteristics of the spawning grounds of the lake sturgeon (Acipenser fulvescens) in Des Prairies and L'Assomption rivers, near Montreal, Quebec. Can J Zool, 1992, 70(9): 1681-1689
    
    228. Lamouroux N, Olivier J M, Persat H, PouilLy M, Souchon Y, Statzner B. Predicting community characteristics from habitat conditions: fluvial fish and hydraulics. Freshw Biol, 1999,42(2): 275-299
    
    229. LeBreton G T O, Beamish F W H, McKinley R S. Sturgeons and Paddlefish of North America. Dordrecht: Kluwer Academic Publishers, 2004, 1-323
    
    230. Leman V N. Spawning sites of chum salmon Oncorhynchus keta: microhydrological regime and viability of progeny in redds (Kamchatka river basin). J Ichthyol, 1993,33(2): 104-117
    
    231. Lowie C E, Haynes J M, Walter R P. Comparison of walleye habitat suitability index (HSI) information with habitat features of a walleye spawning stream. J Freshw Ecol, 2001, 16(4): 621-631
    
    232. Mangan M T, Brown M L, St. Sauver T R. Yellow perch use of introduced spawning habitat. J Freshw Ecol, 2005, 20(2): 381-388
    
    233. Manny B A, Kennedy G W. Known lake sturgeon (Acipenser fulvescens) spawning habitat in the channel between lakes Huron and Erie in the Laurentian Great Lakes. J Appl Ichthyol, 2002, 18: 486-490
    
    234. Manny B, Kennedy G, Allen J, McClain J. Classification of lake sturgeon spawning habitat in the Detroit River. Proceedings of the Second Great Lakes Lake Sturgeon Coordination Meeting, 2004, Sault Ste. Marie, Michigan, USA
    
    235. Marchant S R, Shutters M K. Artificial substrates collect gulf sturgeon eggs. N Am J Fish Manag, 1996, 16(2): 445-447
    
    236. Marsden J E, Perkins D L, Krueger C C. Recognition of spawning areas by lake trout: deposition and survival of eggs on small, man-made rock piles. J Great Lakes Res, 1995, 21(supl): 330-336
    
    237. McAdam S O, Walters C J, Nistor C. Linkages between white sturgeon recruitment and altered bed substrates in the Nechako River, Canada. Trans Am Fish Soc, 2005, 134(6): 1448-1456
    
    238. McCabe G T, Beckman L G. Use of an artificial substrate to collect white sturgeon eggs. Calif Fish Game, 1990, 76(4): 248-250
    
    239. McCabe G T Jr, Tracy C A. Spawning and early life history of white sturgeon, Acipenser transmontanus, in the lower Columbia River. Fish Bull, 1994, 92(4):760-772
    
    240. McDowall R M. On amphidromy, a distinct form of diadromy in aquatic organisms. Fish Fisheries, 2007, 8(1): 1-13
    
    241. McKinley S, Van Der Kraak G, Power G. Seasonal migrations and reproductive patterns in the lake sturgeon, Acipenser fulvescens, in the vicinity of hydroelectric stations in northern Ontario. Environ Biol Fish, 1998, 51(3): 245-256
    
    242. Mchugh P, Budy P. Patterns of spawning habitat selection and suitability for two populations of spring Chinook salmon, with an evaluation of generic versus site-specific suitability criteria. Trans Am Fish Soc, 2004,133(1): 89-97
    
    243. Merz J E, Setka J D. Evaluation of a spawning habitat enhancement site for Chinook salmon in a regulated California river. N Am J Fish Manag, 2004, 24(2): 397-407
    
    244. Merz J E, Setka J D, Pasternack G B, Wheaton J M. Predicting benefits of spawning-habitat rehabilitation to salmonid (Oncorhynchus spp.) fry production in a regulated California river. Can J Fish Aquat Sci, 2004, 61(8): 1433-1446
    
    245. Merz J E, Pasternack G B, Wheaton J M. Sediment budget for salmonid spawning habitat rehabilitation in a regulated river. Geomorphology, 2006,76(1-2): 207-228
    
    246. Meulenaer T D, Raymakers C. Sturgeons of the Caspian Sea and the International Trade in Caviar. Cambridge, U.K.: TRAFFIC International, 1996,1-71
    
    247. Moir H J, Soulsby C, Youngson A. Hydraulic and sedimentary characteristics of habitat utilized by Atlantic salmon for spawning in the Girnock Burn, Scotland. Fisheries Man Ecol, 1998, 5(3): 241-254
    
    248. Moir H J, Gibbins C N, Soulsby C, Webb J H. Discharge and hydraulic interactions in contrasting channel morphologies and their influence on site utilization by spawning Atlantic salmon (Salmo salar). Can J Fish Aquat Sci, 2000, 63(11): 2567-2585
    
    249. Moir H J, Gibbins C N, Soulsby C, Youngson A F. PHABSIM modelling of Atlantic salmon spawning habitat in an upland stream: Testing the influence of habitat suitability indices on model output. River Res Appl, 2005, 21(9): 1021-1034
    
    250. MUller B, Berg M, Yao Z P, Zhang X F, Wang D, Pfluger A. How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam. Sci Total Environ, 2008,402(2-3): 232-247
    
    251. Murphy M L, Heintz R A, Short J W, Larsen M L, Rice S D. Recovery of pink salmon spawning areas after the Exxon Valdez oil spill. Trans Am Fish Soc, 1999, 128(5): 909-918
    
    252. Muthiga N A. The reproductive biology of a new species of sea cucumber, Holothuria (Mertensiothuria) arenacava in a Kenyan marine protected area: the possible role of light and temperature on gametogenesis and spawning. Mar Biol,2006,149(3): 585-593
    
    253. Napier I R. The organic carbon content of gravel bed herring spawning grounds and the impact of herring spawn deposition. J Mar Biol Assoc UK, 1993, 73(4): 863-870
    
    254. Nykanen M, Huusko A. Suitability criteria for spawning habitat of riverine European grayling. J Fish Biol, 2005, 60(5): 1351-1354
    
    255. O'Keefe D M, O'Keefe J C, Jackson D C. Factors influencing paddlefish spawning in the Tombigbee watershed. Southe Nat, 2007, 6(2): 321-332
    
    256. Palm D, Brannas E, Lepori F, Nilsson K, Stridsman S. The influence of spawning habitat restoration on juvenile brown trout (Salmo trutta) density. Can J Fish Aquat Sci, 2007, 64(3): 509-515
    
    257. Paragamian V L, Kruse G, Wakkinen V. Spawning habitat of Kootenai River white sturgeon, Post-Libby Dam. N Am J Fish Manag, 2001,21(1): 22-33
    
    258. Paragamian V L, Wakkinen V D. Temporal distribution of Kootenai River white sturgeon spawning events and the effect of flow and temperature. J Appl Ichthyol, 2002, 18: 542-549
    
    259. Paragamian V L, Wakkinen V D, Kruse G. Spawning locations and movement of Kootenai River white sturgeon. J Appl Ichthyol, 2002, 18: 608-616
    
    260. Parsley M J, Beckman L G, Mccabe G T. Spawning and rearing habitat use by white sturgeons in the Columbia River downstream from McNary Dam. Trans Am Fish Soc, 1993, 122(2): 217-227
    
    261. Parsley M J, Beckman L G. White sturgeon spawning and rearing habitat in the lower Columbia River. N Am J Fish Manag, 1994, 14(4): 812-827
    
    262. Parsley M J, Kappenman K M. White sturgeon spawning areas in the lower Snake River. Northw Sci, 2000, 74(3): 192-201
    
    263. Parsley M J, Anders P J, Miller A I, Beckman L G, McCabe Jr G T. Recovery of white sturgeon populations through natural production: Understanding the influence of abiotic and biotic factors on spawning and subsequent Recruitment. In: Winkle W V, Anders P J, Secor D H, Dixon D A eds., Biology, Management, and Protection of North American Sturgeon. American Fisheries Society, Symposium 28, Bethesda, Maryland, 2002, 55-66
    
    264. Payne B A, Lapointe M F. Channel morphology and lateral stability: effects on distribution of spawning and rearing habitat for Atlantic salmon in a wandering cobble-bed river. Can J Fish Aquat Sci, 1997, 54(11): 2627-2636
    
    265. Perrin C J, Rempel L L, Rosenau M L. White sturgeon spawning habitat in an unregulated river: Fraser River, Canada. Trans Am Fish Soc, 2003, 132(1): 154-165
    
    266. Petticrew E L, Rex J F. The importance of temporal changes in gravel-stored fine sediment on habitat conditions in a salmon spawning stream. Sed Dyna Hydro Flu Sys, 2006, 306: 434-441
    
    267. Pikitch E K, Doukakis P, Lauck L, Chakrabarty P, Erickson D L. Status, trends and management of sturgeon and paddlefish fisheries. Fish Fisheries, 2005, 6: 233-265
    
    268. Qiao Y, Tang X, Brosse S, Chang J. Chinese Sturgeon (Acipenser sinensis) in the Yangtze River: a hydroacoustic assessment of fish location and abundance on the last spawning ground. J Appl Ichthyol, 2006, 22(Suppl. 1): 140-144
    
    269. Raymaker C, Hoover C. Acipenseriformes: CITES implementation from Range States to consumer countries. J Appl Ichthyol, 2002, 18(4-6): 629-638
    
    270. RD Instruments. Acoustic Doppler Current Profiler Principles of Operation-A Practical Primer. P/N 951-6069-00, 1996
    
    271. RD Instruments. WinRiver User's Guide (International Version). P/N 957-6171-00, 2003
    
    272. Rhoads B L, Schwartz J S, Porter S. Stream geomorphology, bank vegetation, and three-dimensional habitat hydraulics for fish in midwestern agricultural streams. Water Resour Res, 2003, 39(8): 1218-1230
    
    273. Rigby J R. Developing a methodology to characterize aquatic habitat at the reach scale through use of acoustic Doppler technology. Mississippi: University of Mississippi, 2003
    274. Rowe D K, Shankar U, James M, Waugh B. Use of GIS to predict effects of water level on the spawning area for smelt, Retropinna retropinna, in Lake Taupo, New Zealand. Fisheries Man Ecol, 2002, 9(4): 205-216
    
    275. Royer F, Fromentin J M. Environmental noise in spawning areas: the case of Atlantic Bluefin Tuna (Thunnus thynnus). Fisheries Oceanog, 2007, 16(2): 202-206
    
    276. Rubin J F, Glimsater C, Jarvi T. Characteristics and rehabilitation of the spawning habitats of the sea trout, Salmo trutta, in Gotland (Sweden). Fisheries Man Ecol,2004,11(1): 15-22
    
    277. Schaffter R G. White sturgeon spawning migrations and location of spawning habitat in the Sacramento River, California. Calif Fish Game, 1997, 83(1): 1-20
    
    278. Secor D H, Arefjev V, Nikolaev A, Sharov A. Restoration of sturgeons: lessons from the Caspian Sea Sturgeon Ranching Programme. Fish Fisheries, 2000, 1(3): 215-230
    
    279. Shields Jr F D, Knight S S, Testa S, Cooper C M. Use of acoustic Doppler current profilers to describe velocity distributions at the reach scale. J Am Water Res Assoc, 2003, 39(6): 1397-1408
    
    280. Shields Jr F D, Rigby J R. River habitat quality from river velocities measured using acoustic Doppler current profiler. Environ Manage, 2005, 36(4): 565-575
    
    281. Shirotori Y, Yamaguchi M, Ikuta K, Murakami M, Hakoyama H. Spawning habitat selection and suitability for Japanese dace, Tribolodon hakonensis. J Ethol, 2006, 24(3): 285-289
    
    282. Sly P G, Evans D O. Suitability of habitat for spawning lake trout. J Aquat Ecol Stress Rec, 1996, 5(3): 153-175
    
    283. Smith T I J. The fishery, biology, and management of Atlantic sturgeon, Acipener oxyrhynchus, in North America. Environ Biol Fish, 1985,14(1): 61-72
    
    284. Soulsby C, Youngson A F, Moir H J, Malcolm I A. Fine sediment influence on salmonid spawning habitat in a lowland agricultural stream: a preliminary assessment. Sci Total Environ, 2001,265(1): 295-307
    
    285. Sowden T K, Power G. Prediction of rainbow trout embryo survival in relation to groundwater seepage and particle size of spawning substrates. Trans Am Fish Soc, 1985,114(6): 804-812
    
    286. Sulak K J, Edwards R E, Hill G W, Randall M T. Why do sturgeons jump? Insights from acoustic investigations of the Gulf sturgeon in the Suwannee River, Florida, USA. J Appl Ichthyol, 2002,18: 617-620
    
    287. Taubert B D. Reproduction of shortnose sturgeon (Acipenser brevirostrum) in Holyoke Pool, Connecticut River, Massachusetts. Copeia, 1980, (1): 114-117
    
    288. Thomas R H, Blakemore F B. Elements of a cost-benefit analysis for improving salmonid spawning habitat in the River wye. J Environ Manage, 2007, 82(4): 471-480
    289. Van Der Leeuw B K, Parsley M J, Wright C D, Kofoot E E. Validation of a Critical Assumption of the Riparian Habitat Hypothesis for White Sturgeon. U.S. Geological Survey Scientific Investigations Report 2006-5225, 2006
    
    290. Van Eenennaam J P, Linares-Casenave J, Deng X, Doroshov S I. Effect of incubation temperature on green sturgeon embryos, Acipenser medirostris. Environ Biol Fish, 2005, 72(2): 145-154
    
    291. Vassilev M. Spawning sites of Beluga sturgeon (Huso huso L.) located along the Bulgarian-Romanian Danube River stretch. Acta Zoolog Bulg, 2003, 55(2): 91-94
    
    292. Vecsei P, Charette R, Hochleithner M, Trukshin I, Maliepaard T, Lafleur Y. CITES Identification Guide - Sturgeons and Paddlefish. Geneva, Switzerland: TRAFFIC Europe, 2001,40-41
    
    293. Veshchev P V. Influence of principal factors on the efficiency of natural reproduction of the Volga stellate sturgeon Acipenser stellatus. Russ J Ecol, 1998, 29(4): 270-275
    
    294. Veshchev P V. Assessment of present-day reproduction efficiency in stellate sturgeon Acipenser stellatus in different spawning zones of the lower Volga. Russ J Ecol, 2002, 33(5): 315-320
    
    295. Wan Y, Wei Q, Hu J, Jin X, Zhang Z, Zhen H, Liu J. Levels, tissue distribution, and age-related accumulation of synthetic musk fragrances in Chinese sturgeon (Acipenser sinensis): comparison to organochlorines. Environ Sci Technol, 2007, 41:424-430
    
    296. Watanabe Y, Wei Q, Yang D, Chen X, Du H, Yang J, Sato K, Naito Y, Miyazaki N. Swimming behavior in relation to buoyancy in an open swimbladder fish, the Chinese sturgeon. J Zool, 2008, 275: 381-390
    
    297. Webb M A H, Van Eenennaam J P, Doroshov S I, Moberg G P. Preliminary observations on the effects of holding temperature on reproductive performance of female white sturgeon, Acipenser transmontanus Richardson. Aquaculture, 1999, 176(3-4): 315-329
    
    298. Wei Q, Ke F, Zhang J, Zhuang P, Luo J, Zhou R, Yang W. Biology, fisheries, and conservation of sturgeons and paddlefish in China. Environ Biol Fish, 1997, 48: 241-255
    
    299. Wei Q W, Kynard B. Spawning of Chinese sturgeon in the Yangtze River. American Fisheries Society 128th Annual Meeting, 1998, Hartford, Connecticut
    
    300. Wei Q W, Yang D G, Wang K. The current status of sturgeon farming in China and its prospect. World Aquaculture 2002: International Aquaculture Conference and Exposition, 2002a, Beijing, China
    
    301. Wei Q W, Yang D G, Zhu Y J, Wang K, Zheng W D. Stock enhancement of Chinese sturgeon, Acipenser sinensis, in the Yangtze River: Preliminary evaluation of stocking effectiveness using CWT. World Aquaculture 2002: International Aquaculture Conference and Exposition, 2002b, Beijing, China
    
    302. Wei Q, He J, Yang D, Zheng W, Li L. Status of sturgeon aquaculture and sturgeon trade in China: a review based on two recent nationwide surveys. J Appl Ichthyol, 2004,20:321-332
    
    303. Wei Q, Watanabe Y, Du H, Yang D, Chen X, Yang J, Naito Y, Miyazaki N. Significance of findings with Acipenser sinensis by data Loggers. Japan-China Bio-logging Science Symposium, 2007, Wuhan, China
    
    304. Wei Q, Watanabe Y, Du H, Chen X, Yang J, Sato K, Naito Y, Kamori H, Miyazaki N. Swimming behavior of the Chinese sturgeon (Acipenser sinensis) and its conservation. 5th World Fisheries Congress, 2008, Yokohama, Japan
    
    305. Wheaton J M, Pasternack G B, Merz J E. Spawning habitat rehabilitation - I. Conceptual approach and methods. Intl J River Basin Manag, 2004a, 2(1): 3-20
    
    306. Wheaton J M, Pasternack G B, Merz J E. Spawning habitat rehabilitation - II. Using hypothesis development and testing in design, Mokelumne River, California, U.S.A. IntlJ River Basin Manag, 2004b, 2(1): 21-37
    
    307. Williamson C E, Metzgar S L, Lovera P A, Moeller R E. Solar ultraviolet radiation and the spawning habitat of yellow perch, Perca flavescens. Ecol Appl, 1997, 7(3): 1017-1023
    
    308. Wirgin I I, Stabile J E, Waldman J R. Molecular analysis in the conservation of sturgeons and paddlefish. Environ Biol Fish, 1997,48: 385-398
    
    309. Wissmar R C, Craig S D. Factors affecting habitat selection by a small spawning charr population, bull trout, Salvelinus confluentus: implications for recovery of an endangered species. Fisheries Man Ecol, 2004,11(1): 23-31
    
    310. Xiao H, Liu D, Tang D, Guo B. Structural and quality changes in the spawning stock of the Chinese sturgeon Acipenser sinensis below the Gezhouba Dam (Yangtze River). JAppl Ichthyol, 2006, 22(Suppl. 1): 111-115
    
    311. Yang D, Kynard B, Wei Q, Chen X, Zheng W, Du H. Distribution and movement of Chinese sturgeon, Acipenser sinensis, on the spawning ground located below the Gezhouba Dam during spawning seasons. J Appl Ichthyol, 2006, 22(Suppl. 1):145-151
    
    312. Yang D G, Wei Q W, Chen X H, Liu J Y, Zhu Y J, Wang K. Hydrological status of the spawning ground of Acipenser sinensis underneath the Gezhouba Dam and its relationship with the spawning runs. Acta Ecol Sin, 2007,27(3): 862-869
    
    313. Yang Y, Yan Z M, Chang J B. Hydrodynamic characteristics of Chinese sturgeon spawning ground in Yangtze River. J Hydrod, 2008, 20(2): 225-230
    
    314. Zeh M, Donni W. Restoration of spawning grounds for trout and grayling in the river High-Rhine. Aquat Sci, 1994, 56(1): 59-69
    
    315. Zhang J. Geochemistry of trace metals from Chinese river/estuary systems: an overview. Estuar Coast Shelf Sci, 1995,41(6): 631-658
    
    316. Zhang J F, Bai Y P, Yu J L, Pang H L, Deng W J, Li H J, Wu D S, Zhao X, Chen H J, Jiang Y J. Forecast of red tide in the South China Sea by using the variation trend of hydrological and meteorological factors. Mar Sci Bul, 2006, 8(2): 60-74
    317. Zhang S M, Wang D Q, Zhang Y P. Mitochondrial DNA variation, effective female population size and population history of the endangered Chinese sturgeon, Acipenser sinensis. Conserv Genetic, 2003,4(6): 673-683
    
    318. Zhu B, Zhou F, Cao H, Shao Z, Zhao N, May B, Chang J. Analysis of genetic variation in the Chinese sturgeon, Acipenser sinensis: estimating the contribution of artificially produced larvae in a wild population. J Appl Ichthyol, 2002, 18: 301-306
    
    319. Zhuang P, Kynard B, Zhang L, Zhang T, Cao W. Ontogenetic behavior and migration of Chinese sturgeon, Acipenser sinensis. Environ Biol Fish, 2002, 65: 83-97
    
    320. Zimmermann A E, Lapointe M. Sediment infiltration traps: their use to monitor salmonid spawning habitat in headwater tributaries of the Cascapedia River, Quebec. Hydrol Process, 2005, 19(20): 4161-4177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700