齿形链传动系统振动声辐射研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿形链传动是机械传动领域应用较为广泛的动力和运动传递装置,具有效率高、噪声小、可靠性高、运动精度高等特点,主要应用于高速、重载、低噪声和大中心距的传动工况下。但在齿形链传动过程中,链条围啮链轮时形成的多边形效应激励以及链节以一定相对速度啮入链轮产生的啮合冲击激励,是齿形链传动系统产生振动和噪声的根本原因,并随着齿形链传动向着高速、重载和变速变载的方向发展,以及对传动系统传递功率的不断增加,使得齿形链传动系统的振动和噪声问题变得尤为突出。这种振动和噪声问题客观上反映了传动系统的工作状态,也影响了其工作的可靠性和稳定性,在一定程度上限制了齿形链的推广和应用。因此,研究齿形链传动系统的振动和噪声对于提高齿形链传动装置的承载能力、减小振动和噪声、提高各种性能指标都具有十分重要的工程应用意义和理论研究价值。
     本文对某轻型8×8轮式全地形车齿形链传动系统的振动和噪声进行了研究,分析齿形链与链轮啮合过程中产生振动和噪声的啮合冲击激励和多边形效应激励,建立齿形链传动系统的声学冲击模型,定量预估齿形链传动系统的冲击噪声;并进行齿形链传动系统的多体动力学动态激励仿真、有限元模态分析、实验模态分析、振动响应分析、声学边界元噪声辐射分析以及声强测试和噪声源识别等方面的研究。本文主要研究内容如下:
     (1)分析引起齿形链传动系统振动和噪声的最主要两个动态激励:啮合冲击激励和多边形效应激励。计算在齿形链传动过程中链节与链轮啮合瞬间,链板以一定的相对速度与链轮啮合产生的冲击速度,并从齿形链传动特有的多边形效应出发,分析齿形链线速度、从动链轮角速度和附加动载荷的变化规律,从而从运动学角度得出齿形链传动运行不平稳,产生振动和噪声的原因。
     (2)在分析标准齿形链和链轮的相关标准规范的基础上,从两圆柱冲击理论和声学理论的角度来进行齿形链传动系统的振动和噪声研究,建立齿形链传动系统的声学冲击模型,分析链节和链轮啮合时弹性变形产生的冲击力、冲击加速度、冲击作用时间和冲击速度的大小,推导出柱坐标下以速度势为参量小振幅声波传播的波动方程,给出链节和链轮冲击所产生的声压和声功率的计算表达式,并且进行齿形链传动系统冲击噪声实例计算。
     (3)基于多体动力学理论以及接触分析理论,建立齿形链传动系统的多刚体动力学理论模型,并在分析齿形链和链轮结构形式以及齿形链传动系统装配体结构特征基础上,建立齿形链传动系统的虚拟样机模型。通过仿真分析在啮合冲击激励和多边形效应激励影响下,齿形链和链轮的啮合接触力、链轮扭转振动以及齿形链的横向振动与纵向振动的特性,得到链轮与齿形链的啮合接触力仿真数据,为齿形链传动系统动态响应分析提供准确可靠的激励载荷。
     (4)从结构动力学和模态分析理论出发,建立齿形链传动系统装配体的有限元模型,进行齿形链传动系统自由状态的模态分析和有预应力的模态分析,分析整个齿形链传动系统的固有特性,考察预应力对系统结构的应力分布、强度、刚度以及固有频率和固有振型特性的影响。并采用敲击法进行实验模态测试分析,识别出齿形链传动系统的模态参数,验证有限元模型和模态分析计算的正确性,能否反映系统结构的固有特性。
     (5)在分析振动响应分析理论及其求解方法基础上,将齿形链传动系统啮合动态激励仿真得到的时域啮合接触力通过FFT快速傅利叶变换,转化为频域载荷,使其作为激励边界载荷进行预应力有限元振动响应特性分析。然后将振动响应分析得到的结构体网格上的位移响应节点振动信息,通过四节点插值法将其转移到声学面网格上,并将转换后的振动位移定义为边界条件进行声学间接边界元数值计算,得到其外声场场点处声学量,进而进行声场的声学特性分析。
     (6)利用声强测量技术对齿形链传动系统进行声强测量和噪声源识别。通过对声强数据的处理与分析得出声功率频谱和等声强线分布图,分析和识别出齿形链传动系统的主要噪声源,确定其噪声源的位置、主要噪声频率成分,为下一步修改齿形链传动系统结构,模型改进和降噪提供依据。
Silent chain drive, a kind of dynamic and motion transmission device which is widelyused in the field of mechanical drive, with the characteristics of high efficiency, little noise,high reliability, high kinematic accuracy and so on, is widely applied to the drivingconditions of high speed, heavy load, low noise and big center distance. As silent chain drivedevelops towards high speed, heavy load and variable speed and load, with the increasedrequirement for higher transmission power of the drive system, the vibration and noiseproblem of silent chain drive system has become especially predominant. Such vibration andnoise problem which objectively reflect the working condition of drive system and influenceits reliability and stability, to some extent, have limited the extension and application of thesilent chain. Therefore, it is extremely important to study vibration and noise of the silentchain drive system.
     In this paper, vibration and noise of a certain silent chain drive system that is light8×8wheeled all-terrain vehicle is studied, and the excitation of meshing impact and polygoneffect of vibration and noise produced in the meshing process of silent chain and sprocketare analyzed. The acoustic shock model of silent chain drive system is established, andimpulsive noise of the silent chain drive system is calculated quantitatively. The research ofdynamic incentive simulation of multibody dynamics, finite element modal analysis,experimental modal analysis, dynamic response analysis, noise radiation analysis of acousticboundary element, sound intensity testing and noise source identification of silent chaindrive system are described. The main research contents in this paper are as follows:
     (1) The two main dynamic incentives, namely, meshing impact excitation and thepolygon effect, which produce vibration and noise in silent chain drive system, are analyzed.The biggest impact speed, generated in the meshing process of sprocket and chain plate at arelative speed when chain link and sprocket mesh instantly, is calculated. And starting fromthe polygon effect of silent chain drive itself, the change law of silent chain linear velocity,driven sprocket angular speed and additional dynamic load are analyzed, thus, from theperspective of kinematics, the causes of the unstable running, vibration and noise of thesilent chain are obtained.
     (2) Based on the analysis of the relevant standards of silent chain and sprocket, from therespective of two cylindrical shock theory and acoustic theory, research on vibration andnoise of the silent chain drive system is carried out. The acoustic impact model of the silentchain drive system is established, and impact force, impact acceleration, impact time and impact velocity produced by elastic deformation when link and sprocket mesh are analyzed.The wave equation for small amplitude wave propagation with velocity potential parameterin cylindrical coordinate is deduced. The calculation expressions of sound pressure andsound power generated when link and sprocket impact are obtained, and an instance ofimpact noise of the silent chain drive system is calculated.
     (3) Based on multi-body dynamics theory and the contact analysis theory, the theoreticalmodel of multi-rigid-body dynamics of silent chain drive system is established. And basedon the analysis of the structural style of the silent chain and sprocket and the architecturalfeature of the silent chain drive system assembly, the virtual prototype model of silent chaindrive system is established. Through simulation analysis of the meshing contact force ofsilent chain and sprocket, the torsional vibration of sprockets and the characteristics oftransverse and longitudinal vibration under the influence of the meshing impact and polygoneffect, the simulation data of the meshing contact force of the silent chain is obtained, whichprovides accurate and reliable incentive load for the dynamic response analysis of the silentchain drive system.
     (4) From the structural dynamics and modal analysis theory, the finite element model ofthe silent chain drive system assembly is established. The modal analysis of the silent chaindrive system at a free state and finite element modal analysis of the prestressed assembly arecarried out. Then, the intrinsic characteristic of the silent chain drive system is analyzed, andthe effect of the prestress on the stress distribution, strength, stiffness inherent frequency andinherent vibration mode of the system are discussed. And experiment modal test and analysisis carried out by hammering method. The modal parameter of silent chain drive system isobtained. The correctness of finite element modal analysis and calculation is verified and itis discussed that whether the inherent characteristic of system structure can be reflected.
     (5) Based on the analysis of harmonic response analysis theory and its solving method,the meshing contact force obtained by mesh dynamic simulation of the silent chaintransmission system is transformed to frequency domain load by FFT(fast fourier transform).The frequency domain load is used as incentive boundary load for the prestress finiteelement harmonic response analysis. And through four node interpolation method, thevibration information of displacement response node in the grid structure obtained byharmonic response analysis is transferred into the acoustic surface mesh. And define thevibration displacement as the boundary condition to carry out the acoustic boundary elementcalculation. The acoustic quantity of field point in the outer sound field is obtained, thus, theanalysis about the acoustic characteristic of the sound field is conducted.
     (6) Sound intensity measurement technology is adopted to measure the sound intensityand identify the noise source of the silent chain drive system. Through the processing and analysis of the data of sound intensity, the distribution diagrams of the sound powerspectrum and isacoustic line are obtained. From the diagrams above, the main noise sourceof the silent chain drive system is analyzed and identified, and the location of noise sourceand the main noise frequency components are obtained, which provide a basis for modifyingthe structure of the silent chain drive system, improving the analysis model and reducing thenoise.
引文
[1]刘仙洲.中国机械工程发明史[M].科学出版社,1962.
    [2]郑志峰,王义行,柴邦衡.链传动[M].机械工业出版社,1984.
    [3]孟繁忠著.齿形链啮合原理[M].机械工业出版社,2008.
    [4] Uehara, K. and Nakajima T. On the noise of roller chain drives[C]. Proc.5th WorldCong. Theory Mach. Mech. ASME,1979,906-909.
    [5] Davis, D.n.,Owen, P.J.,and Riley, G.. Roler chain camshaft drives[J]. Proc.Mech.,inst.Of Mech. Engrs., London,1978,5:165-174.
    [6] Liu S P, Wang K W, Hayek S I, et al. A global-local integrated study of roller chainmeshing dynamics[J]. Journal of Sound and Vibration,1997,203(1):41-62.
    [7] Hayashi,K.,Kimura,S.,Walanade,H.,and Hayashida.Y. Analysis of noise in silent chaindrives[J]. SAE Paper No.871199.
    [8]杨志刚,郑志峰,何文地.滚子链传动噪声的发生过程[J].机械设计,1994,(3):22-24.
    [9] Zheng H, Wang Y Y, Quek K P et al. Investigation of meshing noise of roller chaindrives for motorcycles[J]. Noise Control Engineering Journal,2002,50(1):5-11.
    [10] Zheng H, Wang Y Y, Liu G R at al. Efficient modeling and prediction of meshingnoise from chain drives[J]. Journal of Sound and Vibration,2001,245(1):133-150.
    [11] Zheng H, Wang Y Y, Quek K P. A refined numerical simulation on dynamic behaviorof roller chain drives[J]. Shock and Vibration,2004,11(5-6):573-58.
    [12] Pan M., Shieh T. Design modification for reducing silent chain annoying noise[J].Journal of Mechanical Design,2002,124(4):822-827.
    [13] Naji M R, Marshek K M. Analysis of sprocket load distribution[J]. Mech. Mach.Theory,1983,18(5):349-356.
    [14] Naji MR, Marshek KM. Experimental determination of roller chain drives loaddistribution[J]. J. Mech, Transm. Auto. Des. Trans. ASME,1983,150:331-338.
    [15] Naji M R, Marshek K M. The effects of the pitch difference on the load distribution ofa roller chain drive[J]. Mech. Mach. Theory,1989,24(5):351-362.
    [16]张家福.链传动的动载荷分析及其改善法[J].安徽工学院学报,1995,14(3):65-68.
    [17] I Tordsson, L Vedmar. A method to determine the static load distribution in a chaindrive[J].Journal of Mechanical Design, Transactions of the ASME,1999,121:402-408.
    [18] I Tordsson, L Vedmar. A method to determine the dynamic load distribution in a chaindrive[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal ofMechanical Engineering Science,2001,215(5):569-579.
    [19] I Tordsson, L Vedmar. A dynamic analysis of the oscillations in a chain drive[J].Journal of Mechanical Design,2001,123(3):395-401.
    [20] Kurt M Marshek. On the analyses of sprocket load distribution[J]. Mechanism andMachine Theory,1979,14(2):135-139.
    [21] Stephenson, R., Fawcett, J.N, and Hale, J.M. Analysis of dynamic load measurementson high-speed timing chains[C]. SAE Technical Paper1999-04-0187,1999.
    [22] Stephenson,R.,Glennie,D.,Fawcett J.N.,Hale J.M. A method of measuring the dynamicloads in high-speed timing chains[J]. Proceedings of the Institution of MechanicalEngineers, Part D: Journal of Automobile Engineering,2000,214(2):217-226.
    [23]柴邦衡,孟繁忠.链条联轴器的设计与应用(续)[J].机械设计,1986,4:65.
    [24]孟繁忠,金昌,兰宏.汽车正时链条拉伸强度的试验研究[J].上海汽车,1994,2:30-32.
    [25] Morrison R A. Polygonal action in chain drives[J].Machine Design,1952,24:155-159.
    [26]兰兆辉.链传动的运动学实质及动力特性改善[J].机械设计,1990,4:35-38.
    [27] Mahalingam S. Polygonal action in chain drives[J]. J. Franklin Inst.,1958,265:23-28.
    [28] Turnbull S R, Fawcett J N. An approximate kinematic analysis of roller chaindrives[C]. Proc.4th World Cong. Theory Mach. Mech. London:ASME,1975:907-911.
    [29] Chen C K, Feudensten F. Towards a more exact kinematic of roller chain drives[J]. J.Mech., Transm. Auto. Des., Trans. ASME,1988,110:269-275.
    [30] Bouilln G, Tordion GV. On polygonal action roller chain drives[J]. Journal ofEngineering for Industry, Transactions of ASME,1965,87:243-250.
    [31]李淑民.链传动的等效机构模型及速比计算[J].机械设计,1998,15(9):17-18.
    [32]薛云娜,王勇,王宪伦.齿形链链轮齿形的修正与动力学仿真[J].工具技术,2006,40(2):41-44.
    [33]朱贤华.浅谈链传动多边形效应[J].涪陵师范学院学报,2003,19:145-146.
    [34]杨国欣,刘乃庆,孙裕晶.链传动多边形效应分析[J].农业与技术,1996,3:40-42.
    [35]夏先平.链传动运动特性精确模拟分析的实现[J].广西机械,1998,3:11-13.
    [36] Chintien Huang,Kuen-Chuan Lin, Leo Kosasih. Kinematic analysis of chordal actionand transmission errors of silent chains[C].SAE paper2006-01-0619,2006.
    [37]张克仁,颜景平,王寄蓉.变节距滚子链啮合过程中的节距变化规律[J].机械工程师,1990, l:6-9.
    [38]孟繁忠,董成国,冯增铭,程亚兵.新型内啮合齿形链啮合迹线及多边形效应研究[J].中国机械工程,2011,22(16):1891-1895.
    [39]孟繁忠,董成国,冯增铭.新型内-外复合啮合齿形链啮合线的求解[J].吉林大学学报(工学版),2009,39(4):970-975.
    [40]陈亚元,盖雨聆,李欣欣等.共扼啮合链传动的分析[J].农业机械学报,1997,28(2):171-175.
    [41] Wang K W. Vibration analysis of engine timing chain drives with camshaft torsionalexciations[C]. SAE Proc. Noise Vib. Conf,1991.
    [42]张广义,王义行.滚子链传动的横向振动[J].吉林工业大学学报,1983,27(1):157-163.
    [43]史文库,杨刚,孟繁忠,杨国欣.滚子链传动系统动力学特性分析[J].工程力学,1996,3(3):21-26.
    [44] Ariartnam S T, Asokanthan S F. Dynamic stability of chain drives[J]. J. Mech.,Transm. Auto. Des., Trans. ASME,1987,109:412-418.
    [45]宁兴江.基于多自由度系统模型的链传动横向振动研究[D].吉林大学硕士学位论文,2007.
    [46] Wickert J A, Mote C D. Current research on the vibration of stability of axiallymoving materials[J]. Sock Vib. Dig.,1988,4(4):2-11.
    [47]张伟.链传动中的横向振动问题的研究[J].天津理工学院学报,1997,13(1):44-49.
    [48]吴晓,汪永琳,倪斌.滚子链传动振动特性的研究[J].机械科学与技术,1997,16(1):122-125.
    [49] Liu,S.P. Impact dynamics of chain drive system[D]. Thesis for the Degree of Doctor,the Pennsylvania State University,1994.
    [50] K W Wang, S P Liu, S.I. Hayek, F.H.K. Chen. On the impact intensity of vibratingaxially moving roller chains[J]. Journal of Vibration and Acoustics,1992,114(1):397-403.
    [51] Bothwell S L. Investigation of chain dynamics with application to noise[M]. Univ.California, Davis: Univ. California,1987.
    [52] Weiming Zhang.An analysis on vibration of moving silent chain by multi-bodydynamics[C]. ASME2005International Design Engineering Technical Conferencesand Computers and Information in Engineering Conference(IDETC/CIE2005),2005,1-6.
    [53]丁海峰,任革学.链轮驱动系统的多刚体建模及分析[J].力学与实践,2005,27:14-17
    [54]冯增铭,程亚兵,韩飞飞.新型齿形链传动的接触动态特性分析[C].第五届中国CAE工程分析技术年会论文集,2009,554-557.
    [55]孔繁朝.基于刚柔混合动力学技术的齿形链接触特性研究[D].吉林大学硕士学位论文,2011.
    [56]邓强.新型Hy-Vo齿形链的刚柔耦合接触动力学分析及试验研究[D].吉林大学硕士学位论文,2012.
    [57]薛云娜,王勇,王宪伦.齿形链传动啮合冲击机理[J].机械设计,2005,(9):37-39.
    [58]张京正,王勇,薛云娜.发动机正时链波动与冲击特性[J].山东大学学报(工学版),2007,37(2):30-33.
    [59]张京正.复合齿廓齿形链链轮的啮合机理及动态分析.山东大学硕士学位论文,2007.
    [60] Liu, J., Ramnath, D., and Adhikari, R. Analytical predictions for the chain drivesystem resonance[C]. SAE Technical Paper2007-01-0112,2007.
    [61] Turnbull S R, Nichol S W, Fawcett J N. An experimental investigation of dynamicbehvior of a roller chain drives[C]. ASME,1977,2-6.
    [62] Fawcett J N, Nichol WW. Vibration of a roller chain drives operating at constant speedand load[J]. Proc. Mech., Inst., Mech Engrs,1980,194:97-101.
    [63] Yeongching Lin, ShengJiaw Hwang,Pete Pandolfi,et al. The dynamic analysis of anautomotive timing chain system[J]. Design Engineering Divison DE,1996,1-7.
    [64] Fawcett J N, Nichol S W. The influence of lubrication on tooth-roller impact in rollerchain drives[J]. Proc. Mech., Inst. London, Mech Engrs,1977,191:271-275.
    [65] J.A. Calvo, V. Diaz, J.L. San Roman, M. Ramirez. Controlling the timing chain noisein diesel engines[J]. International Journal of Vehicle Noise and Vibration,2006,2(1):75-90.
    [66]何文地,杨志刚,王殿学.滚子链链传动噪声的控制[J].机械工程师,1995,4:45-47.
    [67]李洪岩.浅谈降低链传动噪声的方法[J].佳木斯大学学报(自然科学版),2007,25(2):178-179.
    [68] Nichol SW, Fawcett JN. Reduction of noise and vibration in roller chain drives[J].Proc. Mech., Inst. London, Mech Engrs.,1977,191:363-370.
    [69] Xiaolun Liu, Wei Sun, et al. Test and analysis of bush roller chains for noisereduction[J]. Applied Mechanics and Materials,2011,52-54:430-435.
    [70] Wei Sun, Xiaolun Liu, et al. Study on noise in new roller chain drives[J]. KeyEngineering Materials,2012,522:598-601.
    [71] П.Н.УЧАЕВ,王隆基,张玉福.降低链传动噪音的途径[J].1981,6:29-30.
    [72] McCarty A M, Stevenson R. Higher load and speed limits for silent chain[J]. MachineDesign,1978,121-125.
    [73]荣长发.链传动的振动和噪声研究现状与发展[J].机械传动,2004,28(2):63-66.
    [74]冯增铭,孟繁忠,李纯涛.新型齿形链的啮合机制及仿真分析[J].上海交通大学学报,2005,39(9):1427-1430.
    [75]冯增铭.新型齿形链的啮合机理及动态特性分析[D].吉林大学博士学位论文,2006.
    [76]曲绍朋.新型齿形链的啮合机制与动力学建模及齿形链导轨的设计研究[D].吉林大学硕士学位论文,2007.
    [77]刘小光.圆形基准孔Hy-Vo齿形链啮合设计及其传动性能研究[D].吉林大学博士学位论文,2011.
    [78]董成国.汽车正时齿形链系统设计方法与仿真分析及试验研究[D].吉林大学博士学位论文,2010.
    [79]王运哲.新型Hy-Vo齿形链啮合设计及噪声分析[D].长春理工大学硕士学位论文,2009.
    [80]孟繁忠,冯增铭,李纯涛,尹德兵.新型齿形链磨损机制及其温度和速度特性的实验研究[J].摩擦学学报,2004,24(6):560-563.
    [81]付振明,金玉谟.一种变异啮合机制的新型齿形链的设计方法和试验研究[J].机械设计,2010,27(1):22-25.
    [82]薛云娜.双面啮合齿形链传动的啮合理论与应用研究[D].山东大学博士学位论文,2006.
    [83] Xue Yunna,Wang Yong,Wang Zheng. Meshing impact of dual meshing silent chaindrive[C].2010International Conference on Computer, Mechatronics, Control andElectronic Engineering (CMCE),2010,488-490.
    [84]李启海,孟繁忠,冯增铭.新型Hy-Vo齿形链的噪声试验研究[J].中国机械工程,2009,2(2):131-133.
    [85]李启海.新型Hy-Vo齿形链的啮合分析及其设计[D].吉林大学博士学位论文,2007.
    [86]张玲玲,陆天炜,吴鹿鸣,张宪文.链传动多边形效应的实验研究[J].机械工程与自动化,2010,(4):97-99.
    [87]张经源.链条传动及制造[M].浙江大学出版社,1989.
    [88]王君玲,杨玉芬,程玉来.链轮齿数对链传动动载荷的影响[J].沈阳工业大学学报,2004,26(1):17-18.
    [89] ASME B29.2M. Inverted tooth(silent) chains and sprockets[M]. The American Societyof Mechanical Engineers,2007.
    [90] GB/T10855-2003:齿形链和链轮.
    [91]张京正.复合齿廓齿形链链轮的啮合机理及动态分析[D].山东大学硕士学位论文,2007.
    [92] Y. F. WANG and Z. F. TONG. Sound radiated from the impact of two cylinders[J].Journal of sound and vibration,1992,159(2):295-303.
    [93] Morse, P.M.and Ingard, K.U. Theoretical acoustic[M].New York,st. Louis,1968.
    [94]李太宝.计算声学:声场的方程和计算方法[M].科学出版社,2005.
    [95]盛美萍.噪声与振动控制技术基础第2版[M].科学出版社,2007.
    [96]何作墉,赵玉芳.声学理论基础[M].国防工业出版社,1981.
    [97]邵忍平.机械系统动力学[M].机械工业出版社,2005.
    [98]杜功焕,朱哲民,龚秀芬.声学基础[M].南京大学出版社,2001.
    [99]韩清凯,罗忠编著.机械系统多体动力学分析、控制与仿真[M].科学出版社,2010.
    [100]陈立平,张云清,任卫群,覃刚等.机械系统动力学分析及ADAMS应用教程[M].清华大学出版社,2005.
    [101]蒲明辉,吴江.基于ADAMS的链传动多体动力学模型研究机械[J].设计与研究,2008,24(2):57-59.
    [102]郑建荣.ADAMS虚拟样机技术入门与提高[M].机械工业出版社,2007.
    [103]李三群,贾长治,武彩岗等.基于虚拟样机技术的齿轮啮合动力学仿真研究[J].系统仿真学报,2007,19(4):901-904.
    [104]自强链条样本[M].杭州东华链条集团有限公司,2006.
    [105]郑志峰.链传动设计与应用手册[M].机械工业出版社,1992.
    [106]李增刚.ADAMS入门详解与实例[M].国防工业出版社,2007.
    [107]蒲明辉,宁际恒,刘玉婷,等.基于MSC.ADAMS的链传动建模与仿真研究[J].广西大学学报(自然科学版),2007,32(1):60-64.
    [108] M.Gonzalez, D.Dopico, U.Lugris. A benchmarking system for MBS simulationsoftware:problem standardization and performance measurement[J]. Multibody Syst.Dyn,2006,16(2):179-190.
    [109] Mechanical dynamics. Inc. Road Map to ADAMS/Solver Documentation,2002.
    [110] T urnbull, S.R and Faweett, J.N. Dynamic behavior of roller chain drives[C].Proceedings of the Mechanisms,1972,29-36.
    [111] Chew. M. Inertia Effects of a Roller Chain on Impact Intensity[J]. Journal ofMechanisms Transmissions and Automation in Design,1985,107(1):123-130.
    [112]李范春.ANSYS Wokbench设计建模与虚拟仿真[M].电子工业出版.2011.
    [113]盛和太,喻海良,范训益.ANSYS有限元原理与工程应用实例大全[M].清华大学出版社,2006.
    [114]包世华.结构动力学[M].武汉理工大学出版社,2005.
    [115]刘相新,孟宪颐.ANSYS基础与应用教程[M].科学出版社,2005.
    [116]吴文光,朱如鹏.基于Workbench的斜齿轮固有特性分析[J].机械传动,2010,3(4):54-56.
    [117]齿轮手册编委会.齿轮手册(上)[M].机械工业出版社.1990.
    [118]刘辉,吴昌林,杨叔子.基于有限元法的斜齿轮体模态计算与分析[J].华中理工大学学报,1998,26(11):75-77.
    [119]俞云书.结构模态试验分析[M].中国宇航出版社,2000.
    [120]张力.模态分析与实验[M].清华大学出版社,2011.
    [121] ANSYS理论手册[M].美国ANSYS公司北京办事处.
    [122] ANSYS动力学分析指南[M].美国ANSYS公司北京办事处.
    [123] T. W. Wu. Boundary Element in acoustics: fundamental and computer codes[M].Southampton: WIT Press,2000.
    [124]杨德全,赵忠生.边界元理论及应用[M].北京理工大学出版社,2002.
    [125]李增刚,詹福良.Virtual.Lab Acoustics声学仿真计算高级应用实例[M].国防工业出版社,2010.
    [126]李增刚.SYSNOISE Rev5.6详解[M].国防工业出版社,2005.
    [127] Numberical aeoustics[M]. LMS International,2012.
    [128]郭之璜.机械工程中的噪声测试与控制[M].机械工业出版社,1993.
    [129]蒋孝煜,连小珉.声强技术及其在汽车工程中的应用[M].清华大学出版社,2001.
    [130]胡章伟,尹坚平.选择声强法用于强背景噪声下声源识别[J].应用声学,1991,10(4):31-36.
    [131] J.H.Wang,C.Chang. Identification of the number and locations of acoustic sources[J].Journal of Sound and Vibration,2005,284(2):393-420.
    [132]陈克安,曾向阳,杨有粮.声学测量[M].机械工业出版社,2010.
    [133]齐娜,孟子厚.声频声学测量技术原理[M].国防工业出版社,2008.
    [134]袁昌明,方云中,华伟进.噪声与振动控制技术[M].冶金工业出版社,2007.
    [135] Cyril M Harris. Handbook of acoustical measurements and noise control[M].Acoustical Society of America,1998.
    [136] Yang S J, Ellison A J. Machinery noise measurements[M]. Clarendon Press, Oxford,1985.
    [137]马大猷.噪声与振动控制工程手册[M].机械工业出版社,2002.
    [138]葛蕴珊,黎志勤,刘仕民.复声强与声源识别[J].吉林工业大学学报,1992,22(4):10-15.
    [139] N L Bucknor, F Freudenstein. Kinematic and static force analysis of rocket-pin jointedsilent chains with involute sprockets[J]. Journal of Mechanical Design,1994,(9):842-848.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700