电成像测井处理及解释方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电成像测井以其高分辨率和图像直观性的特点,在复杂油气藏的勘探以及非均质性储层评价等方面得到广泛应用,而电成像测井数据的预处理方法和图像的处理技术关系着电成像测井地质解释的精度和准确性,同时对典型的地质现象建立成像图像模板库并进行自动匹配识别、地质参数的自动定量计算、电成像测井识别地层周期等方面的研究,随着电成像测井在地质解释上的应用深入,越来越受到人们关注。
     本论文首先以ERMI所测量的数据为研究对象,进行预处理校正和图像生成与显示方法的研究:着重研究了基于遇卡识别的改进Kalman滤波器模型-加速度校正方法,消除了井下仪器复杂运动引起的图像压缩拉伸和锯齿现象;首次考虑分别从极板内和极板间相结合进行电成像测井数据的均衡化处理,更好地消除了图像上出现的竖条纹和黑色条带现象;针对ERMI测量数据范围较大的问题,提出了基于Guass分布的最佳概率分布函数对成像图像进行直方图规定增强处理,有效地解决了图像上出现的亮带和暗带现象,最终生成的电成像测井图像取得了与斯伦贝谢处理结果相媲美的效果。
     在此基础上,研究了从电成像测井图像上自动识别孔洞、裂缝和定量计算相关地质参数的方法:在自动识别孔洞方面,采用最大类间方差法对图像进行自动分割,然后利用Freeman 8-链码存储自动拾取的孔洞轮廓,提高了孔洞参数的计算速度和精度;裂缝识别评价方面,采用了改进的Hough变换与人机交互相结合的方法识别裂缝和定量计算裂缝参数。为了给地质解释提供参照和指导,将典型的成像图像特征与地质现象建立了相对应的解释模板库,利用特征曲线相关性匹配和BP神经网络模板匹配识别方法,自动给出相似度最高的模板,提高了电成像测井解释的可靠性和效率;同时,首次提出利用Blackman-Tukey、MC-CLEAN信号分析方法对电成像测井数据进行频谱分析识别地层周期,比利用常规测井曲线识别的地层周期更为详尽,取得了与米兰科维奇周期匹配一致的结果,为高分辨率地层层序的分析提供了一种新的方法和思路;最后在微软的.NET平台上自主开发了一套电成像测井处理与解释方法软件,成功挂接到中海油田服务公司的测井处理和解释平台上,对现场实测资料进行处理验证,并将处理结果与国内外同类商业软件对比分析,取得了较好的一致效果。
Electrical imaging log with the feature of high resolution and intuitive image has been widely used in the terms of complex reservoir exploration and heterogeneous reservoir evaluation, while the electrical imaging logging data and image processing technology influenced the accuracy and precision of the geological interpretation. Meanwhile the research in these regions-the establishment of imaging template library for typical geological phenomena and automatically matching identification, automatically quantitative calculation of geological parameters, identification the formation cycle through electrical imaging log-have been increasingly paid attention with the further application of electrical imaging log in geological interpretation.
     This paper firstly takes the data measured by ERMI as the research object, studying the preprocessing correction as well as the image generation and display method: focusing on improved Kalman filter model-acceleration correction based on stuck identification, eliminating the image compression tension and sawtooth originating from the complex movement of the tools; firstly considerring the equalization process on the electrical imaging log data from the plates and the gap between them, better getting rid of the vertical strips and black bands on the images; for the large range of the ERMI data, putting forward the best probability distribution function, based on Gauss distribution, enhancing the histogram of the image, effectively solving the phenomenon of bright and dark bands on the images and finally generating new images which can compare to the effects fo the Schlumberger results.
     Based on these, studying the methods to identify pore, cave and fracture from the electrical imaging data and quantitatively calculate the relevant geological parameters: In the field of automatical identification of pore space, making use of Maximum Interclass Variance to automatically segmenting the images and then automatically picking up the pore space profile by Freeman 8-chain storage which can increase the speed and the accuracy of the calculation. In the field of identification of fracture, introducing the method combinating the improved Hough transform with Human Computer Interaction to identify the fracture and calculate the fracture parameters. In order to provide reference and guid for the geological interpretation, building the interpretation library linking the typical imaging features to the geological phenomena which can improve the efficiency and reliablity of the electrical imaging log interpretation through automatically giving the highest similarity template by using Bp neural network identification method; Meanwhile, proposing Black-Turkey, MC-CLEAN signal analysis method to deal with the electrical imaging log data to identify formation cycle by spectrum analysis, which can provide more detailed stratigraphic cycles than the use of conventional logging data, obtain the results consistent with the Milankovitch cycle and offer a new approach and ideas for the analysis of high resolution sequence stratigraphy; Finally independently developing a set of electrical imaging processing and interpretation software in the platform of .NET successfully attached to the logging processing and interpretation platform in China Ocean Oilfield Services company and achieving the good results by processing and verifying the measured data on-site and comparing the results with these of domestic and foreign similar commercial software so that it can be applied in oilfields.
引文
[1] Luthi SM. Geological well logs: Their use in reservoir modeling [M]. New York: Springer-Verlag, 2001: 98-118.
    [2]张守谦,顾纯学,曹广华.成象测井技术及应用[M].北京:石油工业出版社, 1997: 1.
    [3]尤证,杜旭东,侯会军等.成像测井解释模式探讨[J].测井技术, 2000, 24(5): 393 -398.
    [4]耿会聚,王贵文,李军.成像测井图像解释模式及典型解释图板研究[J].江汉石油学院学报, 2002, 24(1): 26-29.
    [5] Emery D, Myers KJ. Sequence Stratigraphy [M]. London: Blackwell Publishing, 1996: 297.
    [6] Van Wagoner JC, et al. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: Concepts for high-resolution correlation of time and facies [M]. Tulsa, OK (USA): American Association of Petroleum Geologists, 1990: 55.
    [7] Lloyd PM, Dahan C, Hutin R. Formation imaging with microelectrical scanning arrays– a new generation of high resolution dipmeter tool [C]. Trans 10th Europ Form Eval Symp Soc Prof Well log Anaysts, 1986: Paper L.
    [8] Ekstrom MP, et al. Formation imaging with microelectrical scanning arrays [J]. Log Analyst 28, 1987: 294-306.
    [9] Safinya KA, et al. Improved formation imaging with extended microelectrical arrays [C]. 66th Ann Conf Soc Petrol Eng, 1991: Paper 22726.
    [10]贾文玉,田素月,孙耀庭.成像测井技术与应用[M].北京:石油工业出版社, 2000: 41-46.
    [11]江有宏. WDS微电阻扫描成像测井仪器数据采集与数据成像处理方法的完善[D].西安:西北工业大学, 2002.
    [12] Schlumberger information Solutions. Geoframe Dip & Image Processing and Interpreta- tion: Training and Exercise Guide [Z]. Schlumberger, 2001: 1-56.
    [13] Baker Atlas, Western Atlas International, Inc. STARGEOM, eXpress Reference Mannual [Z]. Baker Atlas, 1999: 1-40.
    [14] Halliburton Energy Services. Geoload Users Guide [Z]. HALLIBURTON, 2002.
    [15]乔德新.成像测井资料定量计算方法研究及软件开发[D].北京:中国地质大学(北京), 2005.
    [16]彭吴生,丁院平,施振飞等. Logview声电成像解释成果图的绘图技巧[J].西部探矿工程, 2006, 128(12): 146-147.
    [17]金勇,唐文清,陈福利等.石油测井地质综合应用网络平台Forward.NET [J].石油勘探与开发, 2004, 31(3): 92-96.
    [18]唐为清,金勇,张世刚等. FORWARD成像测井资料处理软件应用与效果分析[J].天然气地球科学, 2004, 15(5): 549-552
    [19]朱涵斌,魏海云,李国军等. LEAD平台中的电声成像测井处理方法[J].测井技术, 2007, 31(2): 149-152.
    [20] Luthi SM. Sedimentary structures of clatic rocks identified from electrical borehole images [C]. In: Hurst A, Lovell MA, Morton A (eds) Geological Applications of Wireline logs. Geol Soc Spec Publ 48, 1990: 3-10.
    [21] Bourke L. Sedimentological borehole image analysis in clastic rocks: a systematic approach to interpretation [C]. In: Hurst A, Griffiths CM, Worthington PF (eds) Geological Applications of Wireline logs II. Geol Soc Spec Publ 65, 1992: 31-42.
    [22] Slatt RM, Jordan DM, Davis RJ. Interpreting Formation Microscanner log images of Gulf of Mexico Pliocene turbidites by comparison with Pennsylvanian turbidite outcrops, Arkansas [C]. In: Weimer P, Bouma AH, Perkins BF (eds) Submarine Fans and turbidite systems. Proc 15th Gulf Coast Section Soc Sedimentary Geol, 1998: 335-348.
    [23] Galli MT, Gonfalini M, Mele M, et al. Resistivity Modeling of Array Laterolog Tools: An Application in An Offshore Norway Clastic Reservoir [C]. SPE Annual Technical Conference and Exhibition Held in San Antonio, Texas, SPE 77714, 2002: 1-10.
    [24] Jean PL, Delhaye PV, Zaugg P, et al. FMI Based Sedimentary Facies Modeling, Surmont Lease [C]. The 75th Anniversary of CSPG Convention, Canadian Society of Petroleum Geologists, 2002: 1-10.
    [25] Gonfalini M, Anxionnaz H. A complete use of structural information from borehole imaging techniques (FMS); a case history for a deep carbonate reservoir [C]. Trans 31st Symp Soc Prof Well Log Analysts, 1991: Paper J.
    [26] Lovell JR, Rosthal RA, Arceneaux CL, et al. Structural interpretation of resistivity at the bit images [C]. Trans 36th Symp Soc Prof Well Log Analysts, 1995: paper TT.
    [27]吴文圣,陈钢花,王中文等.用地层微电阻率扫描成像测井识别沉积构造特征[J].测井技术, 2000, 24(1): 60-63.
    [28]钟广法,马在田.利用高分辨率成像测井技术识别沉积构造[J].同济大学学报, 2001, 29(5): 576-580.
    [29]冯斌,田波,韩德辉等.成像测井技术在胜利油田桩海地区微裂隙构造分析中的应用[J].浙江大学学报(工学版), 2003, 37(2): 254-257.
    [30] Delhomme JP. A quantitative characterization of formation heterogeneities based on borehole image analysis [C]. Trans 33rd Symp Soc Prof Well Log Analysts, 1992: Paper T.
    [31] Rivest JF, Beucher S, Delhomme JP. Marker-controlled segmentation: an application to electrical borehole imaging [J]. J Electron Imaging, 1992, 1(2): 136-142.
    [32] Sovich JP, Newberry B. Quantitative applications of borehole imaging [C]. Trans 34th Symp Soc Prof Well Log Analysts, 1993: Paper FFF.
    [33] Standen E, Nurmi R, El-Wazeer F, et al. Quantitative applications of wellbore images to reservoir analysis [C]. 34th Symp Soc Prof Well Log Analysts, 1993: Paper EEE.
    [34]曹毅民,章成广,杨维英等.裂缝性储层电成像测井孔隙度定量评价方法研究[J].测井技术, 2006, 30(3): 237-239.
    [35] Lehne KA. Fracture detection from logs in the North Sea chalk [C]. In: Hurst A, Lovell MA, Morton A (eds) Geological Applications of Wireline Logs. Geol Soc Spec Publ 48, 1990: 263-271
    [36] Hornby BE, Luthi SM. An integrated interpretation of fracture apertures computed from electrical borehole scans and reflected Stoneley waves [C]. In: Hurst A, Griffiths CM, Worthington PF (eds) Geological Applications of Wireline logs II. Geol Soc Spec Publ 65, 1992: 185-198.
    [37] Haller D, Porturas F. How to characterize fratures in reservoirs using borehole and core images: case studies [C]. In: Harvey PK, Lovell MA (eds) Core-Log Integration. Geol Soc Spec Publ 136, 1998: 249-259.
    [38] Ricky AW, Wisnu H, Parada DS, et al. Using Borehole Image Data for Identification of Fractures and Reservoir Characterization of Gas Carbonate Reservoir at Merbau Field, South Palembang Basin, Sumatra, Indonesia [C]. The 23rd World Gas Conference Held in Amsterdam, 2006:1-24.
    [39] Martin B, et al. Stress Orientation on the Norwegian Continental Shelf Derived from Borehole Failures Observed in High-resolution Borehole Imaging Logs [J]. Techonophysics, 2001: 65-84.
    [40] David C, Phil R, Kirsty J. The Legendre Field Development and Geomechanical Program: From Exploration to Drilling to Production [C]. SPE Asia Pacific Drilling Technology Held in Jakarta, Indonesia, 2002:1-15.
    [41] Chai H, Li N, Xiao CW, et al. Automatic discrimination of sedimentary facies and lithologies in reef-bank reservoirs using borehole image logs [J]. Applied Geophysics, 2009,6(1): 17-29.
    [42] Antoine JN, Delhomme JP. A method to derive dips from bed boundaries in borehole images [C]. 65th Ann Conf Soc Petrol Eng, 1990: Paper 20540.
    [43] Kass M, Witkin A. Analyzing oriented patterns [J]. Computer Vision Graphical Models and Image Processing, 1987, 37: 362-385.
    [44] Wong SA, Startzman RA, Kuo TB. Enhancing borehole image data on a high resolution PC [C]. Petroleum Computer Conference, Soc Petr Eng, 1989: Paper 19124.
    [45] A new approach to determining dip and strike using borehole images [C]. Trans 31st Symp Soc Prof Well Log Analysts, 1990: Paper K.
    [46] Hall J, Ponzi M, Gonfalini M, et al. Automatic extraction and characterization of geological features and textures from borehole images and core photographs [C]. Trans 37th Symp Soc Prof Well Log Analysts, 1996: Paper CCC.
    [47]陆敬安,伍忠良,关晓春等.成像测井中的裂缝自动识别方法[J].测井技术, 2004, 28(2): 115-117.
    [48] Meyer F, Beucher S. Morphological segmentation [J]. J Vis Comm and Image Represen -tation, 1990, 1: 21-46.
    [49]李雪英,蔺景龙,文慧俭.复杂地质背景下的多裂缝识别[J].大庆石油学院学报, 2006, 30(6): 16-19.
    [50]张丽莉,刘瑞林.两种图象分割算法在FMI成像资料中的应用[J].江汉石油学院学报, 1999, 21(4): 88 -93.
    [51]周云才,刘瑞林.图像识别方法在FMI图像处理中的应用[J].江汉石油学院学报, 2003, 25(增刊): 50-53.
    [52] Shackleton NJ, Berger A, Peltier WR. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677 [J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1990: vol. 81, pp. 251-261.
    [53]郭少斌,陈成龙.利用米兰科维奇旋回划分柴达木盆地第四系层序地层[J].地质科技情报, 2007, 26(4): 27-30.
    [54] Edward WB, et al. A wavelet analysis of Plio-Pleistocene climate indicators: A new view of periodicity evolution [J]. Geophysical research letters, 1995: vol. 22, no. 20, pp. 2753-2756
    [55] Prokoph A and Barthelmes F. Detection of nonstationarities in geological time series: Wavelet transform of chaotic and cyclic sequences [J]. Computers & Geosciences, 1996: Vol. 22, Issue 10, pp. 1097-1108.
    [56]余继峰,李增学,王明镇.鲁西-济阳C-P陆表海沉积测井层序对比分析[J].中国矿业大学学报, 2007, 36(1): 85-90.
    [57]李霞,范宜仁,邓少贵.自动划分层序单元的测井多尺度数据融合方法[J].石油勘探与开发, 2009, 36(2): 221-227.
    [58]王志坤,王多云,宋广涛,等.测井信号小波分析在高分辨率层序地层划分中的应用[J].大庆石油学院学报,2005,29(6):17-20.
    [59]徐敬领,刘洛夫,王贵文等.应用测井资料的“三瞬”属性进行地层划分及对比研究[J].地球科学进展, 2010, 25(4): 408-416.
    [60] Blackman RB, Tukey JW. The measurement of power spectra from the point of view of communication engineering [M]. New York: Dover Publications, 1958: 190 pp.
    [61] Roberts DH, et al. Time Series Analysis with CLEAN. I. Derivation of a spectrum [J]. The Astronomical Journal, 1987, 93(4): 968-989.
    [62] Bourke LT. Recognizing artefact images of the Formation MicroScanner [C]. SPWLA 13th Annual Logging Symposium Transactions, 1989: Paper WW.
    [63] Lofts JC, Bedford J, Boulton H, et al. Feature recognition and the interpretation of images acquired from horizontal wellbores [C]. In: Lovell MA & Harvey PK (eds) Developments in Petrophysics, Geological Society Special Publication, 1997, 122: 345-365.
    [64] Farmer P, Miller D, Pieprzak A, et al. Exploring and Subsalt [J]. Oilfield Review, 1996, 8(1): 50-64.
    [65] Cheung P, Hayman A, Laronga R, et al. A clear picture in oil-base muds [J]. Oilfield Review, 2001: 1-25.
    [66] Frisinger R, Gyllensten A. Fracture detection in North Sea reservoirs [C]. Transactions of the Tenth European Formation Evaluation Symposium, SPWLA, 1986.
    [67] Lofts JC, Bourke LT. The recognition of artefacts from acoustic and resistivity borehole imaging devices [C]. In: Lovell MA, Williamson G, Harvey PK (eds) Borehote Imaging: applications and case histories, Geological Society, London, Special Publications, 1999, 159: 59-76.
    [68] Belougne V, Faivre O, Jammes L, et al. Real time speed correction of logging data [C]. SPWLA 37th Annual Logging Symposium, 1996: 16-19.
    [69]毛志强.现代地层倾角测井速度校正方法[J].江汉石油学院学报, 1991, 13(1): 38-43.
    [70]肖加奇,陈文荣,王哲然.用递推最小二乘法对微电阻率扫描测井进行速度与加速度校正[J].测井技术, 1994, 18(3): 204-211.
    [71] Chan DSK. Method and Apparatus for Measuring the Depth of a Tool in a Borehole [P]. US patent 4,545,242: 1985.
    [72] Howard AQ. Depth Determination System Using Parameter Estimation for a Downhole Well Logging Apparatus [P]. US patent 5,019,978: 1991.
    [73] Robert WS. Speed correction using cable tension [P]. US patent 6,618,675: 2003.
    [74]王敏,孙建孟,赖富强等.全井眼地层微成像仪测井图像失真的恢复技术[J].中国石油大学学报(自然科学版), 2010, 34(2): 47-51.
    [75] Kalman RE. A new approach to linear filtering and prediction problems [J]. Journal of Basic Engineering, 1960, 82(1): 35–45.
    [76] Kalman RE, Bucy RS. New Results in Linear Filtering and Prediction Theory [J]. Journal of Basic Engineering, 1961, 83: 95-107.
    [77]陈爱新,钟兴水.卡尔曼滤波在电阻率测井数据处理中的应用[J],物探化探计算技术, 1999, 20(2): 97-101.
    [78]崔乃刚,林晓辉,郭会娟等.卡尔曼滤波方法在测井资料处理中的应用[J],哈尔滨工业大学学报, 1995, 27(6): 34-37.
    [79]蒋志凯.数字滤波与卡尔曼滤波[M].北京:中国科学技术出版社,1993: 15-32.
    [80] Gelb A. Applied optimal estimation [M]. Cambridge, MA: M.I.T. Press, 1974: 50-55.
    [81] Anderson BDO, Moore JB. Optimal filtering [M]. Englewood Cliffs, NJ: Prentice-Hall, 1979: 170-175.
    [82] Akima H. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures [J]. J.ACM, 1970, 17(4): 589-602.
    [83]邵才瑞.井筒数据的Akima插值重采样方法[J].测井技术, 2004, 28(2): 112-114.
    [84]洪有密.测井原理与综合解释[M].北京:石油大学出版社, 2004: 103-127.
    [85] Trouiller JC, Delhomme JP, Carlin S, et al. Thin-Bed Reservoir Analysis From Borehole Electrical Images [C], SPE, 1989: paper 19578.
    [86]李敏,丁友东.图像Morphing过程中的控制[J].中国图像图形学报, 2003, 8(A), Spec:1-4.
    [87]闫建平,首祥云,邵在平.成像测井图像的动态增强及Morphing方法[J].测井技术, 2006, 30(4): 364-366.
    [88] Zhou SQ, Zhao DZ. Neural Network Method for Colorimetry Calibration of VideoCameras [J]. Journal of Beijing Institute of Technology, 2000, No.1: 256-258.
    [89]李春贵,温鑫.基于HIS颜色空间颜色对的图像检索系统[J].广西工学院学报, 2009, 20(1): 1-4.
    [90]王爱玲,叶明生.图象处理技术与应用[M].北京:电子工业出版社, 2007: 15-26.
    [91]肖斌,王璇,毕秀丽等.一种基于高斯函数的直方图规定化算法[J].铁道学报, 2006, 28(4): 119-122.
    [92]陈书海,傅录祥.实用数字图像处理(第一版) [M].北京:科学出版社, 2006:235-244.
    [93] Haller D, Porturas F. How to characterize fractures in reservoirs using borehole and core images: case studies [C]. In: Harvey PK, Lovell MA. (eds) Core-Log Integration, Geological Society, London, Special Publications, 1998, 136: 249-259.
    [94] Goodall TM, Moller NK, Ronningsland TM. The integration of electrical image logs 237 with core data for improved sedimentological interpretation [C]. In: HARVEY PK, LOVELL, MA (eds) Core-Log Integration, Geological Society, London, Special Publications, 1998, 136: 237-248.
    [95]司马立强.碳酸盐岩缝-洞性储层测井综合评价方法及应用研究[D].成都:西南石油大学, 2005: 1-3.
    [96]赵军,祁兴中,刘瑞林等.基于图像分割的成像测井资料目标拾取与计算[J].地球物理学进展, 2007, 22(5): 1502-1509.
    [97] OTSU NA. Threshold selection method from gray-level histogram [J]. IEEE trans System Man Cybernetic, 1979, 9(1): 62-66.
    [98]张同艳.基于图像处理技术的玻璃缺陷识别方法研究[D].郑州:郑州大学, 2007.
    [99]吴元敏.基于Freeman链码的图像中多个区域面积的计算方法[J].计算机工程与应用,2008,44(15):199-201.
    [100] Tang GY. A Discrete Version of Green’s Theorem [J]. IEEE Trans.on Pattern Anal, 1982, 4(3): 242-249.
    [101]杨万扣,任明武,杨静宇.数字图像中基于链码的目标面积计算方法[J].计算机工程, 2008, 34(1): 30-33.
    [102]胡建国.岔管过渡曲面计算机辅助几何设计: [D].武汉:武汉大学, 2001: 30-35.
    [103]王省富.样条函数及其应用[M].上海科学技术出版社, 1982: 20-37.
    [104] Hough PC. Method and means for recognizing complex patterns [P].US Patent, 1962, (1): 235-238.
    [105]赖富强.应用声电成像测井进行裂缝检测与评价研究[D].东营:中国石油大学(华东), 2007: 60-61.
    [106] Heslop D, Dekkers MJ. Spectral analysis of unevenly spaced climatic time series using CLEAN: signal recovery and derivation of significance levels using a Monte Carlo simulation [J]. Physics of the Earth and Planetary Interiors, 2002, 130: 103-116.
    [107] Priestley MB. Non-linear and Non-stationary Time Series Analyis [M]. London: Academic Press, 1988: 218.
    [108] Dennis W. Ricker. Echo Signal processing [M]. Noerwell: Kluwer Academic Publishers, 2003: 16.
    [109] Ghil M, Taricco C. Advanced spectral analysis methods. In Past and Present Variability of the Solar-Terrestrial System: Measurement, Data Analysis and Theoretical Models [M]. Amsterdam: SocietàItaliana di Fisica, Bologna, & IOS Press, in press, 1997: 1-2.
    [110] Kay SM. Modern spectral estimation (theory and application) [M]. Englewood Cliffs: Prentice-Hall, 1988: 543.
    [111] Baisch S, Bokelmann GHR. Spectral analysis with incomplete time series: an example from seismology [J]. Computers & Geosciences, 1999, 25: 739-750.
    [112] Mann ME, Lees JM. Robust estimation of the solar system: a numerical estimate of the size of the chaotic zones [J]. Icarus, 1996, 88: 266-291. [ 113 ] Paulissen WE and Luthi SM. Integrating magnetostratigraphy, biostratigraphy, cyclo-stratigraphy and seismic data to obtain a high resolution stratigraphic record: a case study from the Vienna Basin [J]. First break, 2010, 28: 35-41.
    [114] Paulissen WE, et al. Evaluating the relative contributions of tectonics and eustacy from a high-resolution stratigraphic record retrieved from a borehole: a case study from the central Paratethyan Vienna Basin [C]. AAPG in New Orleans, 2010: poster.
    [115] Berger A. Milankovitch theory and climate [J]. Reviews of geophysics, 1988, 26(4): 624-657.
    [116] Paulissen, WE, Luthi, SM, Grunert,et al. Integrated high-resolution stratigraphy of a Middle to Late Miocene sedimentary sequence in the central part of the Vienna Basin [J]. Geologica Carpathica, 2010: (in press).
    [117] Ruddiman WE. Earth’s climate: past and future [M]. New York: W.H. Freeman and Company, 2001: 174-192.
    [118] Chai H, Li N, Xiao CW, et al. Automatic discrimination of sedimentary facies and lithologies in reef-bank reservoirs using borehole image logs [J]. Applied Geophysics, 2009, 6(1): 17-29.
    [119]杨伦标,高英仪.模糊数学原理及应用.广州:华南理工大学出版社, 1995: 94-122.
    [120] Zeidenberg, Matthew. Neural Networks in Artificial Intelligence [M]. USA, NJ: Ellis Horwood Limited, 1990: 25-26.
    [121]申辉林,高松洋.基于BP神经网络进行裂缝识别研究[J].断块油气田, 2007, 14(2): 60-62.
    [122]汪忠德等. BP人工神经网络法(ANNS)在塔中地区碳酸盐岩测井评价中的应用[J].石油天然气学报, 2008, 30(2): 253-255.
    [123]刘传平,郑建东,杨景强.徐深气田深层火山岩测井岩性识别方法[J].石油学报, 2006, 27(增刊): 62-65.
    [124]杨明合,夏宏南.正态分布在基于BP人工神经网络识别火山岩岩性中的应用[J].石油天然气学报, 2009, 31(5): 99-101.
    [125]孙鲁平,首皓,赵晓龙等.基于微电阻率扫描成像测井的沉积微相识别[J].测井技术, 2009, 33(4): 379-383.
    [126]杨忠平,卢文喜,龙玉桥.改进BP算法在城市土壤环境质量评价模型的应用[J].重庆大学学报, 2010, 33(2): 98-103.
    [127] Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application [J]. Journal of Microbiological Methods, 2000, 43(1): 3-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700