材料基本声学参数的测量及其在食品安全中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的基本声学参数包括声速、声衰减系数、非线性声参量B/A等,它们在无损检测中的缺陷定位,仿组织材料的超声特性检测,以及医学成像中都有重要意义。本文对乙醇的声速、声衰减系数及非线性声参量B/A的测量及其在食品安全中的应用进行了研究,主要工作有:
     1、分别对声速、声衰减系数的测量方法进行比较,利用插入取代法测量了以上两个参数,并对其进行衍射修正以及不确定度分析。
     2、利用有限振幅插入取代法对非线性声参量B/A进行测量,修正及不确定度分析,并研究了温度、声强以及频率对非线性声参量B/A的影响。结果表明随着温度的升高,B/A值呈现出线性增长,声强对B/A值的影响不大,随着频率的增大B/A值线性减小。
     3、将声速、声衰减系数应用于掺杂有三聚氰胺的牛奶检测中,结果表明,声速随着牛奶中掺杂三聚氰胺浓度的增大而呈现线性下降的趋势。而声衰减系数对三聚氰胺的浓度变化不敏感,呈现出轻微下降的趋势。将非线性声参量B/A用来监测牛奶的变质过程,结果显示随着牛奶存放时间的增长,B/A值有明显的变化。
The basic acoustic parameters of material include the velocity, attenuation coefficient and acoustic nonlinear parameter B/A, etc. They all play important roles in the non-destructive test, ultrasonic tissue-mimicking materials properties testing and medical imaging. In this paper the three parameters and their applications in food safety had been studied, the main work is as follows:
     1. Compare the measuring methods of velocity and attenuation coefficient. Use the insert substitution method to measure the two parameters, do the diffraction correction and the analysis of the uncertainty.
     2. Use the finite amplitude insert substitution method to measure the acoustic nonlinear parameter B/A, and do the correction and the uncertainty analysis. Studied the influencing effects of temperature, sound intensity and frequency on the acoustic nonlinear parameter B/A. The results show that the B/A value increases linearly with the temperature increase, the sound intensity has little effect on B/A, and B/A value decreases linearly with the increase of frequency.
     3. Applying the velocity and the attenuation coefficient to the detection of melamine in milk, the results show:As the melamine concentration in milk increases, the speed of sound shows a linearly downward trend, and the attenuation coefficient shows only a little slight downward trend. Using the acoustic nonlinear parameter B/A to monitor the deterioration process of milk, the result shows:With the growth of storage time, the B/A values are significantly changed.
引文
[1]Ernest L. Madsen, Gary R.Frank, Paul L.Carson. Interlaboratory comparison of Ultrasonic attenuation and speed measurements[J]. J Ultrasound Med.1986,5:569-576
    [2]Bajram Zeqiri, Werner Scholl and Stephen P Robinson. Measurement and testing of the acoustic properties of materials:a review[]. Metrologia.2010,47:S156-171
    [3]Bajram Zeqiri. Validation of a diffraction correction model for through-tramsmission substitution measurements of ultrasonic absorption and phase velocity[J]. J.Acoust.Soc.Am.1996,99(2): 996-1001
    [4]Bajram Zeqiri. Errors in attenuation measurements due to nonlinear propagation effects[J]. J.Acoust.Soc.Am.1992,91(5):2585-1593
    [5]W.K.Law, L. A. Frizzell, F. Dunn. Comparison of thermodynamic and finite amplitude methods of B/A measurement in biological materials[J]. J.Acoust.Soc.Am.1983,74(4):1295-1297
    [6]Gong Xiufen, Zhu Zhemin, Shi tao, Huang Jianhong. Determination of the acoustic nonlinearity parameter in biological media using FAIS and ITD methods[J]. J.Acoust.Soc.Am.1989, 86(1):1-5
    [7]Gong Xiufen, Feng Ruo, Zhu Chengya, Shi Tao. Ultrasonic investigation of the nonlinearity parameter B/A in biological media[J]. J.Acoust.Soc.Am.1986,76(3):949-950
    [8]Fang Dong, Ernest L.Madsen, Michael C. MacDonald, James A. Zagzebski. Nonlinearity parameter for tissue-mimicking materials[J]. Ultrasound in Med.&Biol.1999,25(5):831-838
    [9]邵泽波.无损检测技术[M].北京:化学工业出版社.2002,61-64
    [10]曹玉雯.超声TOFD的缺陷检测与定量研究[D].北京:北京化工大学,2010
    [11]黄承孝,超声医学影像诊断学[M].成都:四川科学技术出版社.1996:6-69
    [12]周天福.工程物探[M].北京:中国水利水电出版社.1996:148-159
    [13]冯若.超声手册[M].南京:南京大学出版社.1999:1000-1014
    [14]Jonathan J.Kaufman, Wei Xu, Alessandro E.Chiabrera, and Robert S.Siffert. Diffraction Effects in Insertion Mode Estimation of Ultrasonic Group Velocity[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.1995,42(2):232-242
    [15]R.C.Chivers,L.Bosselaar, P.R.Filmore. Effective area to be used in diffraction correction[J]. J. Acoust. Soc. Am.1980,68(1):80-84
    [16]A.S.Khimunin. Ultrasonic Propagation Parameter Measurements Incorporating Exact Diffraction Corrections[J]. Acustica.1978,39:87-95
    [17]孙永臣,董彦武.非线性声参量测量中的衍射修正[J].陕西师大学报.1987,1:30-36
    [18]GB/T 15611-1995声学-高频水听器校准[S].1995
    [19]YY/T0163-2005.医用超声测量水听器特性和校准[S].2005
    [20]JJF1059-1999.测量不确定度评定与表示[S].1999
    [21]胡国良.2008,三聚氰胺引发的食品安全风暴[J].决策探索.2008,11:6-9
    [22]Luis Elvira, Jaime Rodri guez. Sound speed and density characterization of milk adulterated with melamine [J/OL]. J.Acoust.Am.2009,125(5):177-182
    [23]田旭.超声仿人体组织材料声学参数测量研究[D].北京:北京化工大学.2006
    [24]G Leveque, E Rosenkrantz, D Laux. Correction of diffraction effects in sound velocity and absorption measurements[J/OL]. IOP Publishing Ltd.2007:3458-3462
    [25]A.S.Khimunin. Numerical Calculation of the Diffraction Corrections for the Precise Measurement of Ultrasound Absorption[J].1972,27:173-181
    [26]Wei Xu, Jonathan J.Kaufman. Diffraction Correction Methods for Insertion Ultrasound Attenuation[J], Estimation. IEEE Transactions on Biomedical Engineering.1993,40(6):563-570
    [27]刘晓宙,龚秀芬,芮斌等.非线性声参量对病变生物组织的超声定征[J].中国生物医学工程学报.1997,16(2):181-185
    [28]毛峰,董彦武,仝杰等.猪软组织的非线性声参量B/A和声速C研究[J].生物医学工程学报.1994,13(1):24-28
    [29]龚秀芬.医学超声中的声学非线性研究[J].物理学进展.1996,16(3,4):286-298
    [30]颜永生,龚秀芬,章东,樊斌.非线性声参量B/A的参量阵成像实验研究C].中国声学学会2001年青年学术会议论文集.2001:18-20
    [31]鲁志劬,龚秀芬,王石泉.蛋白质的分子结构对非线性声参量B/A的影响[J].声学学报.1996,21(5):783-789
    [32]王军,王寅观.液体非线性声参量与分子结构的关系研究[J].同济大学学报(自然科学版).2006,34(9):1260-1263
    [33]马蓉.利用超声非线性参数测量介质温度的研究[D].北京:北京工业大学.2000
    [34]W.K.Law, L. A. Frizzell, F. Dunn. Ultrasonic determination of the nonlinearity parameter B/A for biological media[J]. J.Acoust.Soc.Am.1981,69(4):1210-1212
    [35]冯绍松,章瑞铨.非线性声学简介与在医学诊断中的应用[J].声学技术.2006,23(3):3-6
    [36]杜功焕,朱哲民.声学基础[M].南京:南京大学出版社,2001.475-492
    [37]Gong Xiufen, Feng Ruo, Zhu Chengya, Shi Tao. Ultrasonic investigation of the nonlinearity parameter B/A in biological media[J]. J.Acoust.Soc.Am.1986,76(3):949-950
    [38]冯若,龚秀芬,朱正亚,石涛.生物媒质中非线性声学参量B/A的研究[J].物理学报,1984,33(9):1282-1286
    [39]石涛,龚秀芬.有限振幅法研究损耗媒质的非线性声参量[J].声学学报.1989,14(2):103-109
    [40]Gong Xiufen, Zhu Zhemin, Shi tao, Huang Jianhong. Determination of the acoustic nonlinearity parameter in biological media using FAIS and ITD methods[J]. J.Acoust.Soc.Am.1989, 86(1):1-5
    [41]黄文梅,熊桂林,杨勇.信号分析与处理-MATLAB语言及应用[M].长沙:国防科技大学出版社,1999:125-153
    [42]王凤文,舒冬梅,赵宏才.数字信号处理[M].北京:北京邮电大学出版社,2007.229-232
    [43]卢莹,刘晓宙,龚秀芬,章东.生物组织中的非线性声参量的温度特性[J].声学技术,2004,(Z2):27-28
    [44]张为合,古玥.物理学[M].北京:化学工业出版社,1985.408-409
    [45]董彦武,仝杰,尚志远.不同元系媒质的声速与非线性声参量.陕西师大学报(自然科学版)[J].1994,22(3):20-24
    [46]钱祖文.非线性声学[M].北京:科学出版社,2009.255-262
    [47]F. Dunn, W.K.Law, and L.A.Frizzell. Nonlinear Ultrasonic Wave Propagation in Biological Materials[J]. Ultrasonic Symposium.1981,527-532

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700