明渠液位声学测量及嵌入式DSP实现方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了超声波明渠液位的测量方法。设计并实现了基于嵌入式DSP的软件和硬件系统。鉴于目前明渠液位测量的的特点和不足之处,本文研究了利用超声波信号对明渠液位进行非接触式测量的方法。通过声阻抗变换的方法提高超声波在空气介质中的传播效率,并利用匹配滤波的方法提高远距离液面反射回波的信噪比,在增加声波作用距离的同时提高了回波时间的测量精度。
     本论文主要有以下三个方面:
     1.论文详细介绍了超声波明渠液位测量的原理和方法,分析了影响超声波明渠液位测量精度和测量量程的因素。采用温度补偿法修正了声速变化带来的误差,利用声阻抗变换原理和匹配滤波的方法提高了超声波回波信号的信噪比。
     2.设计了基于嵌入式DSP为核心的软件及硬件系统。硬件部分设计了超声波信号的发射和接收电路、回波信号采集电路以及温度测量电路等,软件部分将信号处理算法在DSP系统上进行了实现。设计了系统与中心站之间的通信协议,实现了测量数据的存储、读取功能。
     3.实验研究工作,通过实验验证本文所采用的方法及其实现的系统。
This paper mainly studies the method of ultrasonic open-channel level measurement, and designs software and hardware system based on embedded DSP system. In view of the characteristic and deficiency of open-channel level measurement, this paper studies non-contact open-channel level measurement method in use of ultrasonic signal.The method of acoustic impedance transform is used to improve the transmission efficiency of ultrasonic wave in the air, and the method of matched filter is used to improve signal to noise of remote liquid surface reflection echo, increasing the action distance of sound wave while the measuring precision of echo time is improved.
     The article consists of three parts:
     1. The article introduces the principle and method of open-channel level measurement in detail, and analyzes the influencing factors of measurement precision and range. The method of temperature compensation is employed to fix the error caused by the change of sound velocity, and the method of acoustic impedance transform and Matched filter is employed to improve the signal to noise ratio of echo.
     2. The article designs software and hardware system based on embedded DSP system. Hardware system includes the circuit of ultrasonic signal emitting and receiving, acquisition echo, temperature measurement, etc. Software system realizes the signal processing algorithm on DSP. Communication protocol is defined between the system equipments and center station, realizing the storaging and reading of the measurement data.
     3. The work of experimental study, through the experiments, the method mentioned above is proved and the system is realized.
引文
[1]宋继红.超声波液位检测仪的设计[D].长春:吉林大学,2007
    [2]孙娟.基于DSP的超声波液位计的研制[D].南京:南京信息工程大学,2005
    [3]刘艳艳.超声波液位计的研究[D]北京:北京化工大学,2007
    [4]孙丽梅,刘守宁,张亚先,等.超声波液位计综述.天津市电视技术研究会2009年年会论文集(1), 2009
    [5]廖雁鸿.动态自校正超声液位测量系统研究与实现[D].华中科技大学硕士学位论文,2004
    [6]武桦.节水灌区输配水自动化关键技术研究[D].杨凌:西北农林科技大学,2003
    [7]焦冰.基于ARM的超声波液位计的研制[D].南京:南京信息工程大学,2008
    [8]林韶峰.基于超声波的非侵入式压力测量方法研究[D].浙江大学,2005
    [9]陈洁.基于BP网络的高精度超声波液位计研究[D].无锡:江南大学,2008
    [10]张彦淘基于AT89S52的超声波明渠流量计关键技术研究[D].杨凌:西北农林科技大学硕士论文2010
    [11]潘仲明.大量程超声波测距系统研究[D].长沙:国防科学技术大学,2006
    [12]冯若.超声手册[M].南京:南京大学出版社,1999
    [13]姚若河,张朝基.超声波反射式液位计[J].广西物理,2000(4):24-28
    [14]陈先中,张争,王伟.大量程超声波回波测距系统的研究[J].仪器仪表学报, 2004,S2:180-182.
    [15]郭纲.基于双指数模型的超声定位算法及其应用研究[D].长春:吉林大学,2008
    [16]陈先中,张争;复杂工况下超声波液位测量系统的设计[J].传感器技术, 2005,24(11):41-42
    [17]行鸿彦,唐娟.时延估计方法的分析[J].声学技术, 2008(1): 110-114.
    [18]潘宗预,潘登.超声波测距精度的探讨[J].湖南大学学报,2002(3):18-21
    [19]李启虎.声纳信号处理引论[M].北京:海洋出版社,2000
    [20]路锦正等.超声波测距仪的设计[J].传感器技术,2002 (8):29-31
    [21]胡萍.超声波测距仪的研制[J].计算机与现代化,2003(10):54-56
    [22]卢文科,朱长纯,刘君华.超声波式数字测距仪的研究[J].仪器仪表学报,2003(2):219-220
    [23]同济大学声学教研室[M].超声工业测量技术.上海:上海人民出版社,1979
    [24]林书玉,超声换能器的原理及设计[M].北京:科学出版社,2004:4-7,56-66
    [25]陆昊.基于DSP的电力系统参量测量的研究[D].南京:河海大学,2004
    [26] Marioli D, etal. Digital Time-of-Flight Measurement for Ultrasonic Sensors[J]. IEEE Trans Instruments and Measurement,1992,41(l):93-97
    [27] Bucci G, Landi C. Numerical method for transit time measurement in ultrasonic sensor applications[J]. IEEE Trans, Instrumentation and Measurement, 1997,46(6):1241-1246
    [28] Devaud F, Hayward G, Soraghan JJ. The use of chirp overlapping properties for improved target resolution in an ultrasonic ranging system [C]. IEEE International ultrasonics, ferroelectrics and frequency control joint 50th anniversary conference,2004:2041-2044
    [29]葛万成.相关法高抗干扰超声波距离测量中的信号处理[J],同济大学学报, 2002,30(1):71-76
    [30]程晓畅,王跃科,潘仲明,祝琴.基于相关函数包络峰细化的高精度超声测距方法[J].测试技术学报,2006,20(4):320-324
    [31] [美] Steven M.Kay.统计信号处理基础—估计与检测理论[M](罗鹏飞等译).电子工业出版社,2003:129-164
    [32]葛万成,吴凤萍.两步相关法高抗干扰超声波距离测量技术研究[J].仪器仪表学报,2002,23(3):253-256
    [33]翟国富,刘茂恺一种实时高精度的机器人用超声波处理方法[J].应用声学,1996,15(l):35-45
    [34]郭荣祥,马磊,马和平.基于GPRS的灌区明渠测流系统研究与设计[J]自动化与仪器仪表,2010,5(115):92-93
    [35]谌丽基于FM-DCSK调制混沌保密通信的研究和DSP实现[D].长春:吉林大学硕士论文,2005
    [36]保铮.雷达成像技术[M].北京:电子工业出版社, 2005
    [37]韩庆帮.超声换能器电匹配特性研究[J].陕西师范大学学报, 1996,24(4),114-115
    [38]魏守水等.超声电机阻抗匹配变压器的设计[J].电机与控制学报,2000,4(1),13-16
    [39] Texas Instruments. TMS320C55x DSP Functional Overview. June 2000
    [40]吴运发.水声宽带换能器匹配技术研究[J].声学技术,2000,19(2),87-89
    [41]康华光(主编).电子技术基础(第四版)[M].北京:高等教育出版社,2000: 222-223
    [42]王超,潘玮华,刘苏仪一种超声波液位测量仪的设计方案[J],2010,10(3),44-45
    [43]尹旭全,张建华,高守玮.超声在测量中的应用[J].现代电子技术,2003,5:100-102
    [44]严宏穗,宋进,陈敏贤.超声波测距在智能机器人开发中的应用[J].机电一体化,2001,5: 31-34
    [45]童峰,许水源,许天增.一种高精度超声波测距处理方法[J].厦门大学学报(自然科学版),1998,37(4)
    [46] M.Parrilla,J.J.Anaya,C.Fritsch.Digital Signal Processing Techniques for High Accuracy Ultrasonic Range Measurements[C].IEEE Trans.Instruments and Measurement,1991,40(4)
    [47] A. K. Nandi. On the Subsample Time Delay Estimation of Narrowband Ultrosonic Echoes[C],IEEE Trans. Ultrasonics,1995, 42(6): 588-595
    [48]葛万成,吴凤萍.两步相关法高抗干扰超声波距离测量技术的研究[J].仪器仪表学报, 2002,23(3):253-256
    [49]郑兆宁,向大威.水声信号被动检测与参数估计理论[M],北京:科学出版社,1983.
    [50]陈伟华,蔡宗义等.二次加权频域自适应时延估计算法与应用[J].声学学报,2003,28(1):61-65
    [51]童峰,许水源,许天增.基于遗传算法的超声信号自适应时延估计[J].应用声学,2000,19(4)
    [52]袁易全主编.超声换能器[M].南京:南京大学出版社,1994
    [53]陈后金,薛健,胡健.数字信号处理[M].北京:高等教育出版社,2004.
    [54]明德刚.DS18B20在单片机温控系统中的应用[J].贵州大学学报.2006(2):106-110.
    [55]马大猷.现代声学理论基础[M].北京:科学出版社,2004.
    [56]李烨,尹征琦,刘智勇,刘焕成.嵌入式超声液位计的设计[J].仪器仪表装置,2005(l):18-20
    [57]赵海鸣,卜英勇,王纪蝉,周知进.一种高精度超声波测距方法的研究[J].湖南科技大学学报(自然科学版),2(X)6,21(3):35-38
    [58]马志敏,刘珍秧,刘爱东,李强一种自动抑制超声测量盲区的方法[J].声学技术,2005,24(1):55-57
    [59]胡健恺,张谦琳编著.超声检测原理和方法[M].合肥:中国科学技术大学出版社. 1993.
    [60] J.布利茨(英)著,李东林译.超声技术及其应用[M].北京:海洋出版社, 1992.
    [61]应崇福.超声学[M].北京:科学出版社. 1990.
    [62]沈凤麟,叶中付,钱玉美.统计信号分析与处理[M].合肥:中国科学技术大学出版社. 2001.
    [63] Massa. Ultrasonic Ranging Module Selection Guide [EB/OL]. [2008-09-18].http://www.massa.com/datasheets/e201.html.
    [64]李希胜,吴并臻,尤佳,舒雄鹰.连续窄带调频超声波测距方法[J].北京科技大学学报. 2005, 02:250-252.
    [65] G. Benet, M. Martinez, F. Blanes, et al, Differentiating Walls from Corners Using the Amplitude of Ultrasonic Echoes, ROBOTICS AND AUTONOMOUS SYSTEMS, 2005, 50 (1): 13~25
    [66] Hans Moravec, Sensor Fusion in Certainty Grids for Mobile Robots, AI Magazine,1988, 9 (2): 61~74
    [67] Klaus-Werner J rg, Markus Berg, Sophisticated mobile robot sonar sensing with pseudo-random codes, Robotics and Autonomous Systems, 1998, 25(3-4):241~251
    [68] Toshio Hori, Yoshifumi Nishida, Takeo Kanade, et al, Improving Sampling Rate with Multiplexed Ultrasonic Emitters, IEEE International Conference on Systems, Man and Cybernetics, 2003, 5: 4522~4527
    [69] Alvaro Hernández, Jesús Ureňa, Juan J. García, et al, Ultrasonic ranging sensor using simultaneous emissions from different transducers, IEEE Transactions on Ultrasonic, Ferroelectrics and Frequency Control, 2004, 51 (12): 1660~1670
    [70] Luigi Fortuna, Mattia Frasca, Alessandro Rizzo, Chaotic pulse position modulation to improve the efficiency of sonar sensors, IEEE Transactions on Instrumentation and Measurement, 2003, 52(6): 1809~1814
    [71] Qinghao Meng, Fengjuan Yao, Yuehua Wu, Review of crosstalk elimination methods for ultrasonic range systems in mobile robots, IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006, 1164–1169
    [72]罗忠辉,黄世庆.提高超声测距精度的方法[J].机械设计与制造,2005,1:109
    [73]王润田.双频超声波测距[J].声学技术,1996,15(3):116一118.
    [74]李淑萍.基于单片机AT89S52的超声波测距系统的设计[J].自动化与仪器仪表
    [75]马晓岩,向家彬等.[M]雷达信号处理.湖南科学技术出版社.1998,10.
    [76]刘波,文忠等. MATLAB信号处理[M] .电子工业出版社, 2006,1.
    [77]张明友,吕明.信号检测与估计[M] .电子工业出版社, 2005,2.
    [78]胡广书.数字信号处理-理论、算法与实现[M] .北京:清华大学出版社,1997.
    [79] Texas Instruments.TMS320VC5503/5507/5509/5510 DSP Direct Memory Access (DMA) Controller Reference Guide. January 2007.
    [80] Texas Instruments.TMS320VC5501/5502/5503/5507/5509/5510 DSP Multichannel Buffered Serial Port (McBSP) Reference Guide. April 2005.
    [81] Texas Instruments.TMS320VC55xx DSP Library Programmer’s Reference. August. 2006.
    [82] Texas Instruments. TMS320VC5509 Real-Time Clock (RTC) Reference Guide.June 2004.
    [83] Texas Instruments. TMS320VC5503/5507/5509/5510 DSP Timers Reference Guide. April 2006.
    [84] Texas Instruments.Using the TMS320VC5503/5506/5503/5507/5509DSP Bootloader. April 2008.
    [85] Texas Instruments.TMS320C55x Optimizing C/C++ Compiler User’s Guide. June 2003.
    [86] Maxim.μpReset Circuits with Capacitor-Adjustable Reset/Watchdog Timeout Delay.2005
    [87] Texas Instruments.TMS320C55x DSP Peripherals Overview User's Guide. April 2006
    [88] Texas Instruments.TMS320C55x Chip Support Library API Reference Guide.September 2004
    [89] Texas Instruments.TMS320VC55xx DSP Library Programmer’s Reference. August. 2006.
    [90] Texas Instruments.TMS320VC5507/5509 DSP Analog-to-Digital Converter (ADC) Reference Guide.June 2004
    [91] Texas Instruments. TMS320C55x Instruction Set Simulator Technical Reference. April 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700