面向ATO的轨道车辆纵向舒适度评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ATO系统作为列车自动驾驶系统的重要组成部分,它能代替司机的大部分操作,具有实现列车运行操作规范化、提高行车效率、准确执行行车计划、实现列车运行的最佳控制以及节能处理的功能,使列车保持最佳运行状态,在提高乘客舒适度、列车正点率以及节约能源等方面具有重要作用。
     随着生活水平的提高,人们对乘车的舒适性提出了更高的要求。对ATO系统而言,与其相关的乘车舒适性主要取决于列车的纵向冲动。因此,对列车纵向冲动的研究具有重要意义,它能为ATO系统的驾驶曲线优化提供理论基础和方法支持,从而有利于提高乘客的舒适性。
     由于在实际的地铁列车运行过程中列车是以正点、节能、安全、舒适为主要目的,不能提供一些非正常工况下的环境,不具备试验场景完整性的条件,因此在实际得地铁列车上对纵向冲动进行相关研究是不可取的。
     本文从ATO状态下地铁车辆的纵向冲动特点出发,提出了利用动感模拟实验平台研究列车的纵向冲动的方法;设计了动感模拟实验平台并验证了实验平台的逼真度;提出了用手部握力变化值评估列车纵向舒适度的方法,并利用此方法,建立一套纵向舒适度评判标准;最后通过实车测试对所建立的纵向舒适度进行验证。
     论文首先设计了面向ATO的地铁车辆纵向冲动的总体研究方案,对地铁车辆在ATO状态下产生纵向冲动的原因进行了分析,并根据纵向冲动的特点选择了合适的模拟运动平台。
     论文根据所选择的模拟运动平台分析了其机构位姿,并利用位置反解的方法求出电动机所需转动的角度。在此基础上,利用模拟运动平台具有Z轴方向的运动功能,设计了基于Z轴补偿的面向ATO的地铁车辆站姿体感模拟算法,并对算法中的滤波器进行了相关设计。
     论文根据所设计的动感模拟实验平台设计了Z轴补偿实验、工况区别实验和两站一区间实验,通过这三个实验对实验平台的模拟逼真度进行了主观评价,验证了模拟器的逼真度等级。
     论文提出了基于手部握力变化值来评估列车纵向舒适度的方法,对被试人员的手部握力变化值和相应的舒适度感受进行相关分析,确定了可以用手部握力变化值对纵向舒适度进行评估。
     论文最后分析了列车在运行过程中,加速度的大小和保持时间对人体纵向舒适度的影响,进而建立一套纵向舒适度评判标准,并将手部握力变化值与该标准
     相结合,为纵向舒适度的研究提供了一种新的方法。最后在实车上测量了一组手部握力变化值数据,利用这组数据对所建立的纵向舒适度标准进行验证,结果表明,所建立的纵向舒适度标准与实际情况相符合。
As the essential part of the Automatic Train Operation System, ATO system can replace most of the driver's operational work. It can keep the train in the best operating status by realizing the standardization of train running operations, accurately executing the train running programmed, improving the driving efficiency and realizing the best control of train running and energy-efficient operation. It plays an important role in enhancing passager comfort, improving train punctuality and saving energy.
     With the development of people's living standard, higher coach comfort is demanded. And for ATO system, the related coach comfort lies on the longitudinal impulse of the train. This makes it significant to reseach on the train longitudinal impulse. It provides rationale and support methods for the optimization of ATO system's driving curve and improves the passagers'comfort.
     Because as a subway train, the operation of its main purpose is accurate, energy saving, safety, comfort. So it can't provide some abnormal condition, and do not have the integrity test scene condition. Therefore it is not advisable to research longitudinal impulse in the subway train.
     This paper, analyzes the characteristics of metro vehicle's longitudinal impulse of the ATO, puts forward a method of using dynamic simulation experiment platform for researching longitudinal impulse; designs a dynamic simulation experiment platform and proved the fidelity of experimental platform; puts forward a method of the hand grip changes value to evaluate longitudinal comfort, and by using this method, set a longitudinal comfort evaluation standard.
     Firstly, the cause of longitudinal impulse for metro vehicle under ATO status is analyzed and the performance of the simulator is demanded, a researching plan for longitudinal impulse of metro vehicle facing ATO system is designed.
     Secondly, the institutions pose of simulator motion control system is analyzed, and obtained the needed rotation angle with the inverse position kinematics. After that, using the Z Axis motor function this paper designed propnoceptive simulation algorithms for metro vehicle facing ATO system based on Z Axis compensation. And the filter of the algorithm is designed as well.
     Then experiment of Condition difference and experiment of2stations within1 interval are designed, with these two experiments the simulating fidelity level of the experimental platform is evaluated subjectively and the simulator fidelity level is obtained.
     After that it brought up the method which evaluates train longitudinal impulse comfort with hand pressure to analyze the test men's hand pressure change value and their sense of comfort. It confirmed that they have a strong relevance.
     At the end of this paper, the effects caused by the magnitude and duration of the acceleration in constant driving-coasting-driving process on human's longitudinal impulse comfort under Inert operation status is analyzed so as to build up a set of longitudinal impulse evaluation standard. The after testing of longitudinal impulse comfort will be much more convenient with the hand pressure change value combined with this evaluation standard. Finally, verify the longitudinal comfort evaluation standard from a real train test.
引文
[1]孙娟,施卫忠,宁建国.基于Agent的轨道交通ATS系统仿真方法研究[J].铁道学报,2004,26(3):123-126.年6月.
    [2]梁晓钰.城市轨道交通ATO测试系统设计与实现[D].北京交通大学,2008.
    [3]姚理.基于智能控制算法的列车自动驾驶系统的优化研究[D].北京交通大学,2009.
    [4]苏虎,金炜东.列车驾驶仿真器及其关键技术[J].科技导报,2007,25(12).
    [5]潘运平,解金芳,莫易敏,赵刚.列车纵向冲动的判定和检测仪标准的探讨[J].机车车辆工艺,2005,2(1).
    [6]白户,宏明.紧急制动时的舒适度研究[J].国外铁道车辆.1997(4).
    [7]马大炜,王成国.高速列车纵向舒适性的仿真研究[J].第十届中国科协年会论文集.2008.
    [8]TB/T2370-1993《铁路旅客列车纵向动力学试验方法与评定指标》
    [9]TB/T2543-1995《旅客列车纵向冲动评定方法》
    [10]岳中涛,李清坤,徐晶华.列车纵向冲动加速度变化率测试仪的研制[J].铁道机车车辆,1995(04).
    [11]马大炜.旅客列车纵向冲动的研究[J].铁道车辆,2001(5).
    [12]牛炜.列车冲动检测仪的研究与实现[D].武汉理工大学,2003.
    [13]张强.基于遗传算法的列车自动驾驶系统研究与实现[D].北京交通大学,2008.
    [14]刘贺文,赵海东,贾利民.列车运行自动控制(ATO)算法的研究[J].中国铁道科学.2000(12).
    [15]冯晓云.模糊预测控制及其在列车自动驾驶中的应用研究[D].西南交通大学,2001.
    [16]刘传波.列车纵向冲动的机理研究及检测仪器的开发[D].武汉理工大学,2009
    [17]宋晓伟.地铁列车运行控制视景仿真系统中三维建模技术的研究与实现[D].北京交通大学,2006.
    [18]邓野CTCS-3测试仿真环境可视化关键技术的研究[D].北京交通大学,2011.
    [19]http://www.kyb.tuebingen.mpg.de/bu/people/mad/projects/bicycle/bicyle.html
    [20]王行仁.飞行实时仿真系统及技术[M].北京航空航天大学出版社,1998,80-85.
    [21]Metry J L.The Vestibular System and Human Dynamic Space Orientation[J]. NASACR-628, 1966(8):321-328
    [22]Reid L D,Nahon M A. Flight Sumulation Motion-base Drive Algorithms:Part1-developing and testing the equations[J]. UTIAS,1985.
    [23]Hosman R J A W,Van Der Vaart J C. Vestibular Models and Thresholds of Motion Perception. Results of Tests in a Fight Simulator[J]. Dpet. Aerospace Eng.Delft Univ of Technology, ReportLR-256,1978
    [24]Stewart D. A Platform with Six Degree of Freedom[J].IME.1965,PartI(15):371-386
    [25]http://www.qcmnq.com/hyxw/5494/
    [26]http://baike.baidu.com/view/2866720.htm
    [27]李绍安.某型战机飞行模拟器三自由度运动平台的研制[D].华中科技大学,2005.
    [28]胡长春.六自由度列车驾驶运动平台研究[D].西南交通大学,2005.
    [29]陈志雄.列车驾驶模拟器体感模拟的仿真研究[D].西南交通大学,2006.
    [30]刘连松.五自由度驾驶模拟器的开发[D].北京交通大学,2006.
    [31]催玉定.三自由度运动模拟系统的研究[D].吉林大学,2006.
    [32]虞俊俊.自行车模拟器交互性研究[D].北京邮电大学,2005.
    [33]赵一洁.高速列车三自由度体感模拟研究[D].北京交通大学,2010
    [34]A.R. Valente Pais, M. Mulder and M.M. Paassen. Modeling Human Perceptual Thresholds in Self-Motion Perception[J]. AIAA Modeling and Simulation Technologies Conference and Exhibit. Keystone:AIAA,2006:900-914.
    [35]Peter R Grant,Lloyd D Reid. Motion Washout Filter Tuning:Rules and Requirements[J].Journal of Aircraft,April 1997,34(2).
    [36]杨大柱.基于Labview的数字滤波器设计[J].计算机应用,2006(6):19-20.
    [37]陈注君,胡兵,袁成斌.基于Labview的ⅡR数字滤波器软件设计[J].科学论坛,2009,32(2):115-116.
    [38]Sanjit K.Mitra. Digital Signal Processing A Computer-Based Approach[M].Publishing House of Electronics Industry.2006.6
    [39]王建辉,顾树生.自动控制原理[M].冶金工业出版社.2007.
    [40]杨乐平,李海涛,肖相生Labview程序设计与应用[M].北京.电子工业出版社.2001
    [41]侯国屏,王坤,叶齐鑫Labview7.1编程与虚拟仪器设计[M],北京:清华大学出版社,2005.
    [42]唐凯,康凤举.基于模糊AHP的视景仿真系统逼真度评估方法研究[J].系统仿真学报,2008,20(22):6049-6053,6057.
    [43]祁洪全.综合评价的多元统计分析方法[D].湖南大学,2001
    [44]赵峰.典型相关分析算法理论及其在模式分类中的应用[D].西安电子科技大学,2005.
    [45]聂必凯.数学问题提出研究综述[J].数学通报,2003,(01)
    [46]张军英.典型相关分析算法理论及其在模式分类中的应用[D].中国优秀硕士学位论文全文数据库[D],2005,(04).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700