海山类型与结壳成矿的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“海山类型与结壳成矿的关系研究”以中太平洋海山区和马尔库斯-威克海岭的富钴结壳资源调查海山为研究对象,旨在探讨不同类型海山结壳的成矿差异和形成机理,为当前富钴结壳资源找矿、圈矿和资源评价提供理论指导。文中基于17座海山共96条地形测量剖面统计结果,参照海山形态学分类方法以平坦度f=0.25为界将研究海山划分为平顶和尖顶海山两种类型。利用我国自行调查的249个站位资料,选取厚度、成矿元素、类型、结构构造、矿物学和地球化学组成等结壳成矿特征参数,系统比对了两类海山的成矿差异;综合地形、沉积堆积作用和底层流等环境影响因素探讨了成矿差异的形成机理;结合结壳生长与成矿过程的研究建立了两类海山的结壳成矿分布模型,提出了结壳调查加密和圈矿工作的初步建议。
     研究认为,海山地形、沉积堆积作用、底层流的相互作用对结壳成矿有重要影响,其中地形在控制结壳成矿和空间分布上起着基础性的作用。尖顶海山和平顶海山在地形上的差异影响了沉积堆积作用和底层流强度的空间格局,进而产生了两类海山之间不同的环境氧化性、底栖生物活动和成矿适宜区。尖顶海山总体上比平顶海山具有较强的环境氧化性和构造稳定性,产出厚度较大,富成矿元素和生物组分的结壳。结壳的生长具有一定的界线,界线的形成与结壳的初始生长介质--固结岩石和松散沉积物之间成核势垒和成核方式的不同有直接关系。结壳生长与成矿大体可以分为分散成核、单体增长、聚合体形成、斑块状板状结壳和面(带)状板状结壳五个阶段。在空间上,海山山顶区一般为微结核发育区,仅在局部高地才会有结壳生长乃至成矿。向山顶边缘过渡结壳生长经聚合体与斑块状板状结壳阶段后演变为面(带)状板状结壳区。斜坡上段(除陡崖外)为板状结壳连续分布区,中段后随沉积物增多,面(带)状板状结壳将会向斑块状,继而向聚合体和单体结壳演变,至下段以后递进为与沉积物共生的微结核。尖顶海山山顶、边缘、上部斜坡及中部斜坡区山脊部位均有结壳成矿,平顶海山则基本上限于边缘和除陡崖外的上部斜坡区。
"Study on relation between seamounts type and cobalt-rich crusts mineralization" take seamounts from Mid-Pacific Mountains and Marcus-Wake ridge as research objects, aim to discuss differences in crust mineralization for different seamounts type and their mechanism, offer theoretical guidance to present crust ore-finding, ore-delineation and resources assessment. Basing on statistics of17seamounts and total96landform sections measurement, in light of seamounts morphology taxonomy, the article classify studying seamounts into two types, i.e. pointy and flat-topped seamounts, with borderline at seamount flatness f=0.25. Utilizing249survey data of our country, selecting mineralization characteristics parameters of thickness, mineral elements, types, texture&structure, mineralogy&geochemistry components of cobalt-rich crust, the article compare the differences between two types seamounts systematically, discuss their forming mechanism by integrating analysis of environmental factors, such as seamounts topography, sediment accumulation and bottom flow etc., build spatial distribution model of crust mineralization after combining research in crust growth and mineralization process, and give advise in following survey and ore-delineation of cobalt-rich crusts.
     The research deems mutual action of seamounts topography, sediment accumulation and bottom flow play an important role on crust mineralization, thereinto, impaction of seamounts topography on controlling crusts mineralization and spatial distribution is basically. Pointy and flat-topped seamounts different topography bring different spatial patterns of sediment accumulation and bottom flow intensity, and then produce different environmental oxidation, movements of benthic organism and suitable area of mineralization. Pointy seamounts have more intensive environmental oxidation and structure stability, developing crusts with lager thickness, more mineral-forming and biogenic elements. There are boundaries in crust growing, their formations directly relates with different nucleation potential barriers and nucleation patterns of two kinds of crust basis:concreted rock and loose sediments. Process of crusts growth and mineralization can be divided into five steps:first dispersed nucleation stage, second monomer increasing stage, third polymer forming stage, fourth porphyritic-clumpy tabular crusts stage and fifth facial (banded) tabular crusts stage. Spatially, top of seamounts always appear micronodules, only at local highland can find crusts growth and mineralization. Crust growth goes through polymer crusts and porphyritic-clumpy tabular crusts stage; evolve into continuous facial (banded) tabular crusts area from top to seamounts marginal zone. Upside slope of seamount, except for cliff, are continuous tabular crusts distribution area, when entering middle slope area, sediments coverage will increase gradually, facial (banded) tabular crusts will change into porphyritic-clumpy tabular crusts, then polymer and monomer tabular crusts, rudaceous crusts and nodule, at last go forward to micronodules intergrowth with sediments at downside and foot area of the seamount. Pointy seamounts can form ore deposit in top area, marginal zone, upside slope and ridge area of middle slope, but flat-topped seamounts basically limited in marginal zone and upside slope with exception for its cliff area.
引文
[1]澳特钴镍制品(大连)有限公司.挑战镍钴产业[EB/OL]. http://www.dlalt.com/ news/news_detail.asp?id=345##,2004-05-10
    [2]边立曾,林承毅,张富生等.深海锰结核—核形石的新类型[J].地质学报,1996,70(3):232-236
    [3]卜英勇,刘勇等.深海钴结壳采掘机器人滚筒式采集头优化设计[J].矿山机械,2002,30(12):6-8
    [4]陈建林.太平洋多金属结核中铁锰矿物分析及成因研究[J].海洋学报,1997,21(2): 56-64
    [5]陈建林,马维林,武光海等.中太平洋海山富钴结壳与基岩关系的研究[J].海洋学报,2004,26(4):71-79
    [6]初凤友,孙国胜,李晓敏等.中太平洋海山富钴结壳生长习性及控制因素[J].吉林大学学报:地球科学版,2005,35(3):320-325
    [7]初风友等.中国大洋资源与环境调查DY105-12/14航次研究报告(富钴结壳部分)[R],2005,67-69
    [8]郭世勤,吴必豪,卢海龙等.《太平洋中部多金属结核综合研究》之三,多金属结核和沉积物的地球化学研究[M].北京:地质出版社,1994
    [9]郭世勤等.大洋矿产资源勘查航次报告(DY95-10航次)[R],2001,108-117
    [10]韩喜球,陈建林,沈华悌.太平洋锰结核内部显微构造的成因解释[C].见:沈华悌,钱江初主编.东太平洋多金属结核论文集.北京:海洋出版社,1996,55-59
    [11]何高文,陈圣源.试谈富钴结壳的成矿机制[J].南海地质研究,2002,(13):35-40
    [12]胡文宣,周怀阳,顾连兴等.深海(铁)锰结核微生物成因新证据[J].中国科学D辑,1999,29(4):362-366
    [13]金庆焕.海底矿产[M].北京:清华大学出版社,广州:暨南大学出版社,2001
    [14]金性春编著.漂移的大陆[M].第2版.上海:上海科学技术出版社,2000
    [15]克罗南D S著.水下矿产[M].高战朝,阎铁,陈奎英译.北京:科学出版社,1987,134-135
    [16]孔祥瑞.试论大洋多金属结核的金属物质来源[J].海洋地质与第四纪地质,1989,9(1): 63-73
    [17]梁德华,朱本铎.麦哲伦海山链富钴结壳成矿区域地质背景[J].南海地质研究,2003,14:84-90
    [18]梁宏峰,许东禹,林振宏等.太平洋几个不同海区水成铁锰结壳元素地球化学研究[C].见:许东禹,姚德,梁宏峰等著.《多金属结核形成的古海洋环境》.北京:地质出版社,1994.22-41
    [19]梁宏锋,姚德,梁德华等.南海尖峰海山多金属结壳地球化学[J].海洋地质与第四纪地质,1991,11(4):49-58
    [20]梁平,石海林等.洋底富钻结壳的开采方法[J].金属矿山,2002,11:20-22
    [21]林承毅,边立曾,张富生等.深海锰结核中微生物的分类及串珠状超微生物化石的研究[J].科学通报,1996,41(9):821-824
    [22]林振宏.深海底金属矿产[M].见:朱而勤主编.《近代海洋地质学》.青岛:青岛海洋大学出版社,1991.310-329
    [23]刘英俊,曹励明,李兆麟等.元素地球化学[M].北京:科学出版社,1984
    [24]吕文正,张国祯等.大洋矿产资源勘查航次报告(DY105-11航次)[R],2003,160-162
    [25]吕文正,周怀阳,眭良仁等.中国大洋矿产资源勘查航次调查报告(DY95-6、DY95-8航次)[R],1999,158-163
    [26]马维林,金翔龙,陈建林等.中太平洋海山区富钴结壳地质特征研究[J].东海海洋,2002,20(3):11-23
    [27]潘家华等.富钴结壳资源研究项目研究总结报告[R],2001
    [28]潘家华,Eric Decarlo,刘淑琴等.西太平洋富钻结壳生长与富集特征[J].地质学报,2005,79(1):124-132
    [29]潘家华,刘淑琴.西太平洋富钴结壳的分布、组分及元素地球化学[J].地球学报,1999,20(1):47-54
    [30]谭欣,周秀英,王福良等.改性大洋富钴结壳吸附铜的研究[J].有色金属,2004,2:1-10
    [31]谭欣,周秀英,王福良等.改性大洋富钻结壳吸附铅的研究[J].有色金属,56(1):2004,28-30
    [32]沈裕军,陈文如,郭锋等.富钻结壳的还原熔炼研究[J].矿冶工程,2004,24(4):44-46
    [33]施阔里尼科,洛施别尔格等.麦哲伦海山区平顶山钴结壳的产出条件、分布规律和形成特点[J].陈邦彦译.海洋地质,2003,2:22-33
    [34]孙志国,文丽,韩昌甫等.太平洋铁锰结壳的锶同位素地球化学研究[J].海洋地质与第四纪地质,1997,17(1):67-74
    [35]许东禹.中太平洋锰结壳地球化学特征[J].海洋地质与第四纪地质,1990,10(4):1-10
    [36]杨克红,章伟艳,胡光道等.分形理论在富钴结壳资源量评价方面的应用研究[J].地质与勘探,2004,40(6):61-64
    [37]姚德等.太平洋中部多金属结核元素地球化学研究[J].海洋地质与第四纪地质,1991,11:67-124
    [38]尹希才,王淑红.多金属结核和富钴结壳的调查研究[J].国外地质科技,1998,4:4-45
    [39]王成厚.锰、铁的分离、聚集和锰结核的形成[J].中国科学(B辑),1986,10:1100-1107
    [40]王成厚编著.大洋锰结核[M].北京:海洋出版社,1982
    [41]王嘹亮,梁德华等.麦哲伦海山区富钴结壳成矿条件分析[J].南海地质研究,2002,13: 24-34
    [42]武光海.中太平洋海山富钻结壳的特征及其形成环境[D]:[博士学位论文].浙江:浙江大学地球科学系,2001
    [43]章家保,高金耀,金翔龙等.断裂和白垩纪岩浆活动对中、西太平洋海山区海山形成的影响[J].海洋地质与第四纪地质,2006,26(1):67-74
    [44]张丽洁,姚德,崔汝勇等.海底沉积铁锰矿床形成机制讨论[J].海洋地质与第四纪地质,1998,18(2):75-80
    [45]张丽洁,姚德.海山铁锰结壳基岩岩石学特征及其生长关系[J].海洋地质与第四纪地质,2002,22(2):49-56
    [46]赵宏樵,姚龙奎.中太平洋富钴结壳Co元素地球化学特征[J].东海海洋,2003,21(4): 34-40
    [47]赵俐红,高金耀,金翔龙,章家保.中太平洋海山群漂移史及可能来源的研究[J].海洋地质与第四纪地质,2005,25(3):35-42
    [48]周林立,胡光道.富钴结壳资源量评估方法[J].海洋地质动态,2005,21(6):29-31
    [49]朱训主编.中国矿情[M](第一卷).北京:科学出版社,1999
    [50]Abouchami W, Goldstein S L, Galer S J G., et al. Secualr changes of lead and neodymium in Central Pacific seawater recorded by a Fe-Mn crusts[J]. Geochimica et Cosmochimica Acta,1997,61(18):3957-3974
    [51]Alvarez R, De Carlo E H, Cowen J, et al. Micromorphological characteristics of marine ferromanganese crustss[J]. Mar Geol,1990,94:239-249
    [52]Aplin A C, and Cronan D S. Ferromanganese oxide deposits from the Central Pacific Ocean, I.Encrustsations from the Line Island Archipelago[J]. Geochimica et Cosmochimica Acta,1985,49:427-436
    [53]Baker P E, Castillo P R, and Condliffe E. Petrology and geochemistry of igneous rocks from Allison and Resolution Guyots, Site 865 and 866[R]. In Winterer E L, Sager W W, Firth J V, and Sinton J M, eds. Proceedings of Ocean Drilling Program, Scientific results. 1995,143:245-261
    [54]Batiza R and Vanko D. Volcanic development of small oceanic central volcanoes on the flanks of the East Pacific Rise inferred from narrow-beam echo-sounder surveys[J]. Marine Geology,1983,54:53-90
    [55]Bricker O P[J]. American Mineralogist,1965,50:1296-1354
    [56]Buckley P J M, and van den Berg C M G. Copper complexation profiles in the Atlantic Ocean, A comparative study using electrochemical and ion exchange techniques[J]. Mar Chem,1986,19:281-295
    [57]Burns R G. The uptake of cobalt into ferramanganese nodules, soils and synthetic manganese(Ⅳ) oxide[J]. Geochim Cosmochim Acta,1976,40:95-102
    [58]Buser W, and Grutter A[J]. Schweiz Mineral Petrogr Mitt,1956,36:49-62
    [59]Calvert S E, et al. Geochemistry of the rare earth elements in the ferromanganese nodules from DOMES Site A. northern equatorial Pacific[J]. Geochim Cosmochim Acta,1987, 51:2331-2338
    [60]Christensen J N, Halliday A N, Godfrey L V, et al. Climate and ocean dynamics and the lead isotopic record in Pacific ferromanganese crustss[J]. Science,1997,277:913-918
    [61]Christie D M, Dieu J J, Gee J S. Petrologic Studies of Basement Lavas from Northwest Pacific Guyots[R]. Proc Ocean Drill Program, Scient Results,1995,144:495-512
    [62]CHU Fengyou, SUN Guosheng, MA Weilin, et al. Classification of seamount morphology and its evaluating significance of ferramanganese crusts in the central Pacific Ocean[J]. Acta Oceanologica Sinica,2006,25(2):63-70
    [63]CHU Feng-you, QIAN Xin-yan, ZHANG Hai-sheng, et al. Discovery of ferromanganese crusts boundary and its genetic and ore prospecting significance[J]. Journal of Zhejiang University SCIENCE,2005,6A(7):656-662
    [64]Chukhrov F V, et al.海洋锰结核中自生锰相矿物学[J].肖绪琦译.国外矿床地质,1996,1(总75):64-73
    [65]Cowen J P, Decarlo E H, and McGee D L. Calcareous nannofossil biostratigraphic dating of a ferromanganese crusts from Schumann Seamount[J]. Marine Geology,1993, 115:289-306
    [66]Craig J D, Andrews J E, and Meylan M A. Ferromanganese deposits in the Hawaiian Archipelago[J]. Marine Geology,1982,45:127-157
    [67]Cronan D S, Deep sea manganese nodules: Distribution and geochemistry[M]. In:Glasby G P, eds. Marine Manganese Deposits. Amsterdam:Elsevier,1977,11-14
    [68]Cronan D S, and Tooms J S. The geochemistry of Mn-Nodules and associated pelagic deposits from the Pacific and Indian Oceans[J]. Deep Sea Res,1969,16:335-359
    [69]Davis A S, Gray L B, Clague D A, et al. The Line Islands Revisited:New 40ar/39ar Geochronologic Evidence for Episodes of Volcanism Due to Lithospheric Extension[J]. Geochemistry Geophysics Geosystems,2002,3
    [70]Dieu J J. Mineral Compositions in Leg 144 Lavas and Ultramafic Xenoliths:the Roles of Cumulates and Carbonatite Metasomatism in Magma Petrogenesis[R]. Proc Ocean Drill Program, Scient Results,1995,144:513-533
    [71]Duncan R A, and Clague D.A. Pacific plate motion recorded by linear volcanic chains[M]. In:Nairn A E M, Stehli F G, and Uyeda S, eds. The Ocean Basins and Margins(Vol.7A):The Pacific Ocean. Newyork:Plenum,1985,89-121
    [72]Eisenhauer A, Gegen K, Pernicka E, et al. Climatic influences on the growth rates of Mn crustss during the Late Quaternary[J]. Earth and Planetary Science Letters,1992, 109:25-36
    [73]Eldholm O, and Coffin M F. Large igneous provinces and plate tectonics[C]. In:Richards M, Gordon R, and Van der Hilst R, eds. The history and dynamics of global plate motions. American Geophysical Union Geophysical Monograph,2000,121:309-326
    [74]Frank D. Ferromanganese deposits of the Hawaiian archipelago[J]. Hawaii Instit Geophys,1976,14:1-69
    [75]Frank D J, Meylan M A, Craig J D, et al. Ferromanganese deposits of the Hawaiian Archipelago[R]. Hawaii Institute of Geophysics Report, HIG-76-14,1976,71
    [76]Frank M, O'Nions R K, Hein J R, et al.60 Mys records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crustss: reconstruction of seawater paleochemistry[J]. Geochimica et Cosmochimica Acta,1999,63(11/12):1689-1708.
    [77]Friedrich G, and Schmitz-Wiechowski S A. Mineralogy and chemistry of a ferromanganese crusts from a deep-sea hill, central Pacific,"Valdivia" cruice VA 13/2[J]. Mar Geol,1980,37:71-90
    [78]Frondel C, Marvin J B, and Ito J[J]. American Mineralogist,1960,45:1167-1173
    [79]Glasby G P, and Andrews J E. Manganese crustss and nodules from the Hawaiian Ridge[J]. Pacific Science,1977,31:363-379
    [80]Goldberg E E. Chemistry in the oceans[M]. In:Hill M N, eds. Oceanography. Am Assoc Adv Sci Publ,1961,67
    [81]Groshkov A I, et al. Mineral components and genesis of ferromanganese crustss and nodules on oceanic guyots[J]. Wang X D translated. Journal of Geoscience Translations, 1992,9(3):54-59
    [82]GEOROC[DB/OL]:http://georoc.mpch-mainz.gwdg.de,2005
    [83]Halbach P. Cobalt-rich and Platinum-bearing manganese crustss nature, occurrence, and formation[Z]. Workshop on Marine Minerals of the Pacific. Honolulu:East-West Center, 1985
    [84]Halbach P. Processes controlling the heavy metal distributina in Pacific ferromanganese nodules and crustss[J]. Geologische Rundschau,1986,75(1):235-247
    [85]Halbach P, and Manheim F T. Potential of cobalt and other metals in ferromanganese crustss on seamounts of the central Pacific Basin[J]. Marine Mining,1984,4:319-336
    [86]Halbach P, Manheim F T, and Otten P. Co-rich ferromanganese deposits in the marginal seamount regions of the central Pacific basin-results of the Mid-pac[J]. Erzmetall,1982, 35:447-453
    [87]Halbach P, and Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crustss from the Central Pacific seamount areas[J]. Earth Planet Sci Letts,1984,68(1):73-87
    [88]Hart S R. A large-scale isotope anomaly in the Southern Hemisphere mantle[J]. Nature, 1984,309:753-757
    [89]Hein J R. Genesis and resource potential of metal-rich ferromanganese crusts[Z]. Denver Annual Meeting,2002
    [90]Hein J R, Manheim F T, Schwab W C, et al. Ferromanganese crustss from Necker ridge, Horizon Guyot and S. P. Lee Guyot:geological considerations[J]. Marine Geology,1985, 69:25-54
    [91]Hein J R, Schwab W C, and Davis A S. Cobalt- and platinum-rich ferromanganese crustss and associated substrate rocks from the Marshall Islands[J]. Mar Geol,1988, 78:255-283
    [92]Hill R J, and Howard C J[J]. J APPL Crystallogr,1987,20:467-474
    [93]Jackson E D, Bargar K E, Fabbi B P, et al. Petrology of the Basaltic Rocks Drilled on Leg 33 of the Deep Sea Drilling Project[R]. Init Rep Deep Sea Drill Proj,1976, 33:571-630
    [94]Jordan T H, Menard H W, Smith D K. Density and size distribution of seamounts in the eastern Pacific inferred from wide-beam sounding data[J]. J Geophys Res,1983, 88:10508-10518
    [95]Jorn Thiede, Boserma A, Schmidt R R. Reworked fossils in Mesozoic and Cenozoic pelagic Central Pacific Ocean sediments[R]. Initial Reports of the Deep Sea Drilling Project,1978,62:495-512
    [96]Jorn Thiede, Vallier T L, et al[R]. Initial Reports of the Deep Sea Drilling Project,1978, 62:33-45
    [97]Kang J K. Mineralogy and internal structures of a ferromanganese crusts from a seamount,Central Pacific [J]. Journal Oceanological Society of Korea,1987, 22:168-178.
    [98]Kerr A C, Marriner G F, Tarney J, et al. Cretaceous basaltic terranes in western Colombia: elemental, chronological and Sr-Nd[J]. Journal of Petrology,1998,38:677-702
    [99]Kiyoto Futa Zell, Peterman E, and Hein J R. Sr and Nd isotopic variations in ferromanganese crustss from the Central Pacific.Implications for age and source provenance[J]. Geochimica et Cosmochimica Acta,1988,52:2229-2233
    [100]Klinkhammer G P, and Bender M L. The distribution of manganese in the Pacific Ocean[J]. Earth Planet Sci Lett,1980,46:361-384
    [101]Konovalov Yu I, Martynov Y A. Volcanic Complex Of The Lamont Guyot, Markus Wake Uplift, Pacific Ocean[J]. Pacific Geol,1992,5:40-47
    [102]Koppers A A P. 40Ar/39Ar geochronology and isotope geochemistry of the West Pacific seamount province: implications for Pacific plate motion and chemical geodynamics[D]: [Ph D]. the Netherlands:Vrije Universiteit Amsterdam,1998,263
    [103]Koppers A A P, Staudigel H, Wijbrans J R. Dating Crystalline Groundmass Separetaes of Altered Cretaceous Seamount Basalts By the 40Ar/39Ar Incremental Heating Technique[J]. Chem Geol,2000,166:139-158
    [104]Larson R L. Late Jurassic and Early Cretaceous Evolution of the Western Central Pacific Ocean[J]. J Geomagnet Geoelec,1976,28:219-239
    [105]Larson R L. Geological consequences of superplumes[J]. Geology,1991,19:963-966
    [106]Larson R L, and Chase C G. Late Mesozoic evolution of the western Pacific Ocean[J]. Geol Soc Am Bull,1972,83:3627-3644
    [107]Ling H F, Burton K W, O'Nions R K, et al. Evolution of Nd and Pb isotopes in Cetral Pacific seawater from ferromanganese crustss[J]. Earth and Planetary Science Letters, 1997,146:1-12
    [108]Ludden J N, Thompson G. An evaluation of the behavior of the rare earth elements during the weathering of sea-floor basalt[J]. Earth and Planetary Letters,1979,43:85-92
    [109]Lunemann C P, Taillefert M, Perret D, et al. Association of cobalt and manganese in aquatic system:chemical and microscope evidence[J]. Geochim Cosmochim Acta,1997, 61(7):1437-1446
    [110]Lyle M. Estimating growth rates of ferromanganese nodules from chemical compositions: implication for nodule formation processes[J]. Geochem et Cosmoschem Acta,1982, 46:2301-2306
    [111]Manheim F T, et al.太平洋铁锰结核化学图[C].孙天锡译.28thIGC Abstracts,1989,2:359-360
    [112]Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crustss as a monitor of hydrothermal discharge on the Pacific sea floor[J]. Nature,1988,335:59-62
    [113]Matsuda J I. Low Sr Isotopic Ratios of Alkali Basalts from the Line Islands in the Pacific Ocean[J]. Geochem J,1980,14:41-46
    [114]McNutt M K, and Judge A V. The superwell and mantle dynamics beneath the South Pacific[J]. Science,1990,248:969-975
    [115]McNutt M K, Winterer E L, Sager W W, et al. The Darwin Rise:A cretaceous superwell[J]? Geophysical Reasearch Letters,1990,17(8):1101-1104
    [116]McNutt M K, and Fischer K M. The South Pacific superwell. In:Keating B H, Fryer P, Batiza R, et al. eds. Seamounts, Islands, and Atolls[J]. Am Geophys Union Geophys Monogr,1987,43:25-34
    [117]Menard H W. Marine geology of the Pacific[M]. McGraw-Hill Inc,1964
    [118]Mero J L. The mineral resourses of the sea[M]. Amsterdam:Elsevier,1965
    [119]Mills R A, Wells D M, and Roberts S. Genesis of ferromanganese crustss from the TAG hydrothermal field[J]. Chemical Geology,2001,176:283-293
    [120]Natland J H. Petrology of Volcanic Rocks Dredged from Seamounts in the Line Islands[R]. Init Rep Deep Sea Drill Proj,1976,33:749-777
    [121]Neal C R, Mahoney J J, Kroenke L W, et al. The Ontong Java Plateau, in Large igneous provinces:Continental, oceanic, andplanetary flood volcanism[J]. American Geophysical Union Geophysical Monograph,1997,100:183-216
    [122]O'Nions R K, Frank M, Von Blanckenburg F, et al. Secular variations of Nd and Pb isotopes in ferromanganese crustss from the Atlantic,Indian and Pacific Oceans[J]. Earth and Planetary Science Letters,1998,155:15-28
    [123]Pichocki C, and Hoffert M. Characteristics of co-rich ferromanganese nodules and crustss sampled in French Polynesia[J]. Marine Geology,1987,77:109-119
    [124]Pringle M S, Duncan R A. Radiometric Ages of Basaltic Lavas Recovered at Sites 865, 866 and 869[R]. Proc Ocean Drill Program, Scient Results,1995,143:277-283
    [125]Puteanus D, Halbach P. Correlation of Co concentration and growth rate-A method for age determination of ferromanganese crustss[J]. Chemical Geology,1988,69:73-85
    [126]Rabb W J, and Meylan M A[C]. In: Glasby G P, eds. Marine Manganese Deposits. Amsterdam: Elsevier,1977,109-146
    [127]Sager W W, Winterer E L, and Firth J V, et al[R]. Proceeding of the Ocean Drilling Program, Initial Reports,1993,143:181-183
    [128]Scott M R, Scott R B, Rona PA, et al[J]. Geophys Res Letts,1974,1:355-358
    [129]Scott R W. Global enviromental controls on the Cretaceous reefal ecosystems[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1995,119:187-199
    [130]Seyfried W E, and Bischoff J L. Experimental seawater-basalt interaction at 300℃,500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals[J]. Geochimica et Cosmochimica Acta,1981,45(2):135-147
    [131]Sinton C W, Duncan R A, Storey M, et al. An oceanic flood basalt province within the Caribbean plate[J]. Earth and Planetary Science Letters,1998,155:221-235
    [132]Smith D K. Shape analysis of Pacific seamounts[J]. Earth and Planetary Science Letters, 1988,90:457-466
    [133]Smith D K, and Jordan T H. The size distribution of Pacific seamounts[J]. Geophys Res Lett,1987,14:1119-1122
    [134]Smith D K, and Jordan T H. Seamount stastics in the Pacific Ocean[J]. J Geophys Res, 1988,93:2899-2918
    [135]Smith W H F, Staudigel H, Watt A, et al. The Magellan seamounts:Early Cretaceous record of the South Pacific Isotopic and Thermal Anormaly[J]. Journal of Geophysical Reasearch,1989,94(88):10501-10523
    [136]Smoot N C. Orthogonal intersections of megatrends in the Western Pacific ocean basin:a case study of the Mid-Pacific mountains[J]. Geomorphology,1999,30:323-356
    [137]Smoot N C. Mass wasting and subaerial weathering in guyot formation:the Hawaiian and Canary Ridges as examples[J]. Geomorphology,1995,14:29-41
    [138]Staudigel H, and Hart S R. Alteration of basaltic glass:Mechanisms and significance for the oceanic crusts-seawater budget[J]. Geochimica et Cosmochimica Acta,1983, 47:337-350
    [139]Staudigel H, Park K H, Pringle M, et al. The longevity of the South Pacific isotopic and thermal anomaly[J]. Earth Planet Sci Lett,1991,102:24-44
    [140]Straczek J A, Horen A, Ross M, et al[J]. American Mineralogist,1960,45:1174-1184
    [141]Takematsu N. et al. Metal-organic complexes in seawater pumped up from under the ground[J]. J Oceanogr Soc Japan,1983,39:305-309
    [142]Taylor P T, Wood C A, and O'Hearn T J. Morphological investigations of submarine volcanism:Henderson seamount[J]. Geology,1980,8:390-395
    [143]Toth J R. Deposition of submarine crustss rich in manganese and iron[J]. Geological Society of America Bulletin, part Ⅰ,1980,91:44-54
    [144]Usui A. Minerals, metal contents and mechanisms of formation of manganese nodules from the Central Pacific basin[C]. In:Rischoff J L, and Piper D Z, eds. Marine Geology and Oceanography of the Pacific Manganese Nodule provinces. Plenum Publ Co,1979, 651-679
    [145]Vallier T L, and Jefferson W S. Volcanogenic sediments from Hess Rise and the Mid-Pacific Mountains, Deep Sea Drilling Project Leg62[R]. Initial Reports of the Deep Sea Drilling Project,1978,62:545-557
    [146]Van den Berg C M G. Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2.Ⅱ .Experimental procedures and application to surface seawater[J]. Mar Chim,1982,11:323-342
    [147]Von Stackelberg U, Beiersdorf H. The formation of manganese nodules between the Clarion and Clipperton Fracture zones southeast of Hawaii[J]. Mar Geol,1991, 98:411-423
    [148]Wen X, and De Carlo E H. A comparative study of the geochemistry and internal structure of seamount ferromanganese crustss[J]. EOS Trans Am Geophys Union,1994, 74:78
    [149]Wiltshire J C, Wen X Y, Yao D. Ferromanganese crustss near Johnston Islands: Geochemistry, Stratigraphy and Economic Potential[J]. Marine Georesources and Geotechnology,1999,17:257-270
    [150]Winterer E L, Ewing J I, et al[R]. Initial Reports of the Deep Sea Drilling Project, Washington(U.S. Govt. Printing Office),1973,17
    [151]Winterer E L, van Waasbergen R, Mammerickx J, et al. Karst morphology and diagenesis of the top of Albian limestone plantforms Mid-Pacific Mountains[R]. In: Winterer E L, Sager W W, Firth J V, et al. eds. Proceedings of Ocean Drilling Program, Scientific results,1995,143:433-468
    [152]Winterhalter B[C]. In:Varentsov I M, eds. International monograph on the geology and geochemistry of manganese, Publishing House of the Hungarian Academy of Science, 1980
    [153]Wood C A. Calderas:a planetary perspective[J]. J Geophys Res,1984,89:8931-8406
    [154]Young R A. The Rietveld Method[M]. Oxford University Press,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700