利用菌糠制作生物有机菌肥的途径及其效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用甘肃农业大学草地微生物资源与多样性实验室提供的优良PGPR菌株,以食用菌菌糠为菌肥载体,研制植物根际促生菌肥,分析了菌糠作为菌肥载体的可行性;向菌糠接种固氮菌和溶磷菌后进行堆肥,研究了堆肥过程中生物化学指标的变化,从而分析菌糠堆肥腐熟规律并确定腐熟指标;将堆肥终产物用于大田试验以评价堆肥终产物的肥效;测定了堆肥终产物浸提液对10株病原菌的抑菌效果,其结果如下:
     1.以泥炭为对照,研究了不同载体的吸水能力发现,菌糠吸水能力强于泥炭,可为微生物提供较为湿润的生存环境,其中大粒径菌糠(6mm)吸水能力高于小粒径(2mm)。菌糠载体在至少在135d的保存期内都能使PGPR菌的有效活菌数保持在108个/g以上,并且各菌种在菌糠上的生长均优于泥炭。用保存至40d的菌糠菌肥浸提液进行了发芽试验,在培养至36h、60h时测定苜蓿种子发芽指数发现,浸提液在培养苜蓿种子60h之后,都有80%以上的发芽指数,证明菌糠菌肥对植物生长无毒性。利用上述菌糠菌肥进行了苜蓿盆栽试验,测定了不同时期的株高和第一茬地上生物量发现,菌肥处理和化肥处理差异不显著,说明这种以菌糠作为载体的菌肥,在苜蓿生长过程中可以部分代替化肥。菌糠含有非常丰富的有机质,在适宜目标菌种生长的同时也更容易被其他杂菌污染。
     2.将接种固氮菌(N)、接种溶磷菌(P)、接种固氮溶磷混合菌(N+P)以及不接菌(CK)这四个处理进行堆肥,堆肥过程中定期测定温度、pH值、E4/E6、有机碳、全量指标(氮、磷、钾)、水溶性指标(水溶性有机碳、氨态氮、硝态氮)、(氮、磷、钾)、纤维素分解菌数量等指标发现:各处理均是良好的堆肥系统,在堆制2个月后能够达到堆肥腐熟要求;接菌处理在一定程度上能够促进堆肥腐熟;接种固氮菌能够提高堆肥速效氮含量,接种溶磷菌能够提高堆肥速效磷含量,而接菌与否对速效钾的最终含量影响不大;在堆肥初期,纤维素分解菌的数量在4.1×106个/g,当堆肥第3d进入高温期时,其数量骤减为7.3×104个/g此后,进入保温期后其数量一直保持在3-6×105个/g。
     3.对四个处理各个化学指标的相关性分析可以看出,总有机碳TOC、总氮TN、固相C/N、水溶性有机碳WSC、水溶性NH4+-N、水溶性NO3--N及E4/E6相关性很好,可以作为判别菌糠堆肥腐熟度的指标。在这几个指标之中,进一步筛选水溶性有机碳WSC、水溶性NH4+-N、E4/E6三个指标作为菌糠堆肥腐熟度判定指标。但是堆肥过程是一个由堆肥原料、环境因素决定的相当复杂的生物化学过程,对其腐熟评价不能用单纯的某几个化学指标准确标定,应该采取物理和多个化学评价相结合的方式。
     4.经外观观察、营养测定及田间试验证明:四个处理堆肥终产物外观良好,总养分含量在5%以上,均高于有机肥料标准,其中有机质含量从高到低依次为N处理46.55%、CK45.94%、P处理45.84%、N+P处理44.82%;其中速效总养分含量从高到低依次为P处理20.19×103mg/kg、N处理19.76×103mg/kg、CK18.95×103mg/kg、N+P处理17.59×103mg/kg;在苜蓿、黑麦草、早熟禾生长25d之后,与化肥对照(CK)相比堆肥才表现出明显的促生效果,株高比CK高出13.11-114.41%,地上生物量比CK高出19.93%-95.87%;在堆肥处理之中,接菌处理促生效果优于不接菌处理,混合菌和溶磷菌处理优于固氮菌处理。
     5.通过打孔培养和混合培养,研究了堆肥终产物浸提液对棉花立枯病菌Rhizoctonia solani (cotton strain) kuhn Schl、西瓜尖镰孢Fusarium oxysporum f. Niveum、番茄灰霉病菌Botrytis cinerea Pers、黄瓜枯萎病菌Fusarium oxysporum (schl) f.sp cucumerinum、玉米小斑病菌Bipolaria maydis(Nisikado et Miyake) Shome、辣椒立枯丝核病菌Rhizoctonia solani(pepper strain) kuhn Schl、小麦长蠕孢Bipolaria.sorokiniana、玉米大斑病菌Exserohilum turcicum (Pass) Leonard&Suggs、油菜菌核病菌Sclerotinia sclerotiorum (rape strain)(Lib) De Bary、茄子菌核病菌Sclerotinia sclerotiorum (egg plant strain) (Lib) De Bary等10种作物病原菌的影响,发现该浸提液对棉花立枯病菌Rhizoctonia solani(cotton strain)有明显的抑制作用。
The plant growth-promoting rhizobacteria (PGPR) strains from Microorganism Resources and Diversity Laboratory of Gansu Agricultural University were inoculated on spent mushroom substrate (SMS) to study the feasibility of SMS as a kind of microbial fertilizer carrier. And Inoculating nitrogen bacteria and phosphate solubilizing bacteria on SMS before composting, biological and chemical indexes in this process were measured to analyze maturity rules of SMS and to determine indexes of maturity. Then the SMS compost was applied in field to evaluate its effect on plant growth promotion. Finally, the suppressive effect of compost water extract on 10 phyotopathogenic fungi was tested. The results of the whole experiments were as follows:
     1. Spent mushroom substrate (SMS) could be a kind of microbial fertilizer carrier that can replace peat more suitably. Firstly it has more powerful capability of water absorbing than peat, which means better survival environment for microorganism. And the numbers of PGPR strains inoculated on it were above 108cfu/g within storage expiration of at least 135d. Furthermore, culturing alfalfa seed 36 hours and 60 hours with water extract of SMS biofertilizer in 40 days’extract of storage expiration. The germination indexes were measured. The results showed that the germination indexes of alfalfa seed cultured in 60 hours were higher than 80%, so it could be beneficial to alfalfa seed development but no phytotoxicity. Finally, Pot culture discovered that there was no significant difference between SMS biofertilizer and chemical fertilizer. All of that means SMS can replace chemical fertilizer partially or totally in alfalfa cultivation. However, Contamination was found after 105 days storing, which was suggested that the storage expiration of SMS biofertilizer should be within 4 months.
     2. After inoculating nitrogen fixing bacteria, phosphate solubilizing bateria, the mixture of nitrogen fixing bacteria and phosphate solubilizing bateria separately to SMS, the chemical and biological indexes were measured to research affects of plant growth promoting rhizobacteria(PGPR) on the SMS compost and their products. In the process of composting, indexes such as temperature, pH value, E4 to E6 ratio, organic carbon to organic nitrogen ratio(C/N), water-soluble carbon(WSC), water-soluble nitric-N, water-soluble ammonium-N, total (N, P, K), available(N,P,K), the number of lignocelluloses degrading microorganisms were measured, which suggested that all of the SMS compost treatments could be better matured and stabilized after composting for 2 months compared with control, and the treatments inoculated bacteria had an accelerated process of maturity to some extent. Furthermore, the treatment inoculated nitrogen fixing bacteria had the highest content of available N, and the treatment inoculated phosphate solubilizing bateria had the highest content of available P, but there were no significant changes on available K. As the number of lignocelluloses-degrading microorganisms, it dramatically decreased after the heat preservation stage.
     3. After analyzing correlation of chemical indexes in different composting stages, the three indexes WSC, water-soluble NH4+-N, and E4/E6 were determined as indexes of composting maturity. However, composting is an dramatically complicated process in physically and chemically which is determined by the raw materials of composting and environmental facts. So its maturity could be evaluated by the comprehensiveness of physical, chemical, and biological indexes but not those given chemical indexes.
     4. Appearance observation, nutrient test and field plot experiment showed that the products of SMS compsting accorded with the standard of organic fertilizer. The total nurtrients were more than 5%. Generally, the SMS compost had better growth promoting affects to Alfalfa, Perennial ryegrass, Kentucky bluegrass than the chemical control. But this effect of promotion played important role only in 25ds later. For example, the height of treatments after application of SMS compost would be 13.11-114.41% higher than that of chemical control. And the above ground biomass would be 19.93%-95.87% higher than that of chemical control. Compared within compost treatments, also the result indicated that the growth promoting effect of compost inoculated in bacteria were better than that of compost no inoculated, and the growth promoting effect of compost inoculated mixed bacteria were better than that of compost inoculated single bacteria.
     5. The suppressive effect of compost water extract on 10 phyotopathogenic fungi was tested by well-cut and mixed methods. The results were as follows. Compost water extract had the best inhibiting effects on Rhizoctonia solani (cotton strain) kuhn Schl, and fine inhibiting effects on Fusarium oxysporum f. Niveum, Botrytis cinerea Pers, Fusarium oxysporum (schl) f.sp cucumerinum; moderate inhibiting effect on Bipolaria maydis(Nisikado et Miyake) Shome, Rhizoctonia solani(pepper strain) kuhn Schl, Bipolaria.sorokiniana, Exserohilum turcicum (Pass) Leonard & Suggs; and the least inhibiting effect on Sclerotinia sclerotiorum (rape strain)(Lib) De Bary, Sclerotinia sclerotiorum (egg plant strain) (Lib) De Bary.
引文
[1]但卫华,廖隆理,王坤余等.生物质科学与工程及其发展前景[J].皮革科学与工程,2003,13(4):20-25.
    [2]闫有旺.21世纪绿色可再生资源———生物质[J].贵州化工,2003,28(5):1-3.
    [3]汪建飞,于群英,陈世勇等.农业固体有机废弃物的环境危害及堆肥化技术展望[J].安徽农业科学,2006,34(18):4720-4722.
    [4]郑海龙,陈杰,邓文靖等.城市和城市边缘带农业的环境与健康问题[J].环境与健康杂志,2005,22(1):76-79.
    [5]王书洁.中国食用菌产业发展的现状与展望[J].生态农业与农业生产,2003(4):39.
    [6]李学梅.食用菌菌糠的开发利用[J].河南农业科学,2003,(5):40-42.
    [7]周飞.菌糠作肥料吸附剂试验.食用菌,1990, (4):40.
    [8]徐志伟.食用菌栽培废料的营养价值和开发利用途径[J].青海畜牧兽医杂志,1997,7(4):41-42.
    [9]尹涛.苹果渣生产有机肥料和微生物肥料的研究[C].西北大学,2004:2-4.
    [10]周群英,高廷耀,环境工程微生物学[M].北京:高等教育出版社,2000:199-204.
    [11]席北斗,刘鸿亮,白庆中,等.堆肥中纤维素和木质素的生物降解研究现状[J].环境污染治理技术与设备,2002,3(3):19-23.
    [12]李志超.种菇后废料的肥效试验[J].食用菌,1985,7(1):42.
    [13]赵丽珍,刘振钦,郑怀训,等.施用菌糠对大豆生育和产量的影响[J].吉林农业大学学报,1994,16(2):40-44.
    [14]刘政峰.食用菌下脚料可制植物激素[J].中国食用菌,1997,16(4):19.
    [15]王志强,郭倩,凌霞芬等.利用废菌糠提高覆土持水力和蘑菇产量的研究[J].中国食用菌,2004,23(5):17-19.
    [16]阮晓东.利用菌糠生产花土[J].农业科技与信息,2005,(6):18.
    [17]郑林用,黄小琴,彭卫红等.食用菌菌糠的利用[J].食用菌学报,2006,13(1):74-75.
    [18]王扬军,陈若霞,陆冬青等.食用菌废料在花卉蔬菜上的再利用试验[J].食用菌,2006(1):45-47.
    [19]赵丽珍,刘振钦.菌糠对玉米生长发育的影响[J].吉林农业科学,1995(3):53-55.
    [20]林辰壹,陈青君,杨静波等.几种无土栽培轻型基质对番茄幼苗生长的影响[J].新疆农业大学学报,2002,25(4):13-16.
    [21]王兴国,冉丽萍,朴日子等.利用菌糠废料配制培养土的初探[J].2003,25(2):114-116.
    [22]肖胜刚,刘叶高,王文美等.食用菌废菌料回填脐橙果园[J].食用菌,2005(6):48-49.
    [23]林斌.菌糠、沼渣有机肥对脐橙产量和品质的影响[J].福建农业学报, 2006,21(3):293-195.
    [24]李俐俐,刘天学,古红梅.平菇菌糠水提物对棉种萌发和幼苗生长的化感效应[J].安徽农业科学,2007,35(7):1916-1917.
    [25]李学梅.食用菌菌渣的开发利用[J].河南农业科学,2003(5):40-42.
    [26]朱小平,刘微,高书国,等.NaCl胁迫下施用有益微生物加菌糠对豌豆生长及结瘤的影响[J].河北科技师范学院学报,2004,18(1):20-22.
    [27]朱小平,刘微,高书国.有益微生物组合加菌糠对小白菜生长及土壤养分的影响[J].河南农业科学,2004.(6):58-61.
    [28]朱小平,王文颇,刘微,等.施用微生物加菌糠对辣椒养分吸收及土壤养分转化的影响[J].中国农学通报,2005,21(5):281-283.
    [29]陈广银,王德汉,项钱彬.蘑菇渣与落叶联合堆肥过程中养分变化的研究[J].农业环境科学学报,2006,25(5):1347-1353.
    [30]梅福杰,于开亮,乔淑芹等.利用双孢菇废菌料栽培越冬茬西葫芦[J].蔬菜,2001,9:33-34.
    [31]王继红.番茄无土栽培技术要点[J].蔬菜栽培,2005(4):15.
    [32]李晓强.有机基质菇渣在现代化大型温室蔬菜无土栽培中的应用研究[C].南京农业大学,2006.
    [33]袁才生.废弃生物质资源综合利用技术研究[C].南京农业大学,2006:3-4.
    [34]陈洪龙.开发秸秆类资源大有可为.海峡科技[J],2003(6):45.
    [35]杨中平,郭康权,杨林青等.玉米秸秆的综合利用技术[J].国土与自然科学研究. 1997(1):76-79.
    [36]高述超.我国秸秆人造板发展概况及建议[J].林产业加工,2007,34(4):5-7.
    [37]广东高新技术产业发展中心,精细化工[J].1993,10(4):61.
    [38]秸秆变成天然气管道直通农户家.北京节能[J]. 1997 (4 ): 35.
    [39]国家发展和改革委员会能源局.中国首个秸秆混烧发电项目建成投产[EB/OL]. http://nyj. ndrc. gov. cn/zdxm/t20051229-55134.htm, 2005-12-29.
    [40]陈鸿伟,庞永梅,等.催化热解玉米秸秆实验研究[J].电站系统工程,2007,23(5):14-17.
    [41]赵秋霞,赵丽.河北省利用秸秆发电的现状研究[J].农机化研究,2007(9):36-37.
    [42]张士华,杨众.加强秸秆综合利用促进农民增收致富[J].农业装备技术.2003,29(2) :15-16.
    [43]常宁芳.秸秆微贮技术在甘肃省的推广应用[J].草业科学,1997,14(3 ): 37-68.
    [44]贾小红,黄元仿,徐建堂.有机肥料加工与使用时[M].北京:化学工业出版社.2002: 13-16.
    [45]王宁,闫洪奎,王君等.不同量秸秆还田对玉米生长发育及产量影响的研究[J].玉米科学,2007,15(5): 100-103.
    [46]翟国胜.发展循环经济建设生态文明[J].中国农垦,2008(1):40-43.
    [47]袁才生.废弃生物质资源综合利用技术研究与应用[C].南京农业大学,2006.
    [48] Fernandez N.Pulp and paper development from sugar cane bagasse , World PaperMaking[J].1997,16(2):24-27
    [49]翟学民.甘蔗渣锅炉设计新构思.工业锅炉[J] . 2000,(2 ):9-12.
    [50]严明奕,莫炳荣.甘蔗渣的综合利用一一赴巴西考察报告[J].广西轻工业,2001,(1)4-9.
    [51]粱坤,谭京梅,孙可伟.甘蔗渣的综合利用现状及展望[J].中国资源综合利用,2003, (5):26-29.
    [52]李志西.苹果渣综合利用研究[J].黄牛杂志, 2002, 28( 4) :58- 62.
    [53]马慧玲,盛义保,等.不同类型果渣有效成分的变化及其利用对策[J].西北农林学院学报, 2003, 18(4):120- 122.
    [54]王秦晋.一种极具开发潜力的饲料资源—苹果渣[J].饲料博览,2003,(9):36-38.
    [55]史红兵,宋纪蓉,黄洁等.苹果渣制备可溶性膳食纤维的工艺研究[J].西北大学学报(自然科学版),2002, 32 (2 ): 148-151.
    [56]邓红,宋纪蓉,史红兵.苹果渣水不溶性膳食纤维的提取及脱色工艺研究[J].食品与发酵工业,2003, 28 (5):10-134.
    [57]葛邦国,吴茂玉,和法涛等.苹果渣膳食纤维的改性研究[J].食品科技,2007(10):235-237.
    [58]陈雪峰,詹雪英,杨大庆.苹果渣中提取果胶工艺研究[J].食品工业科技. 2000,21 (3):19-21.
    [59]孔臻,刘钟栋.微波法从苹果渣中提取果胶的研究[J].郑州粮食学院学报,2000,21 (2 ):11-15.
    [60]赵江,程彦伟等.苹果渣提取果胶最佳水解条件的研究[J].河南工业大学学报,2007,28(4):48-50.
    [61]党育红,李鸿魁,陈敦群等.苹果渣用于造纸初探[J].纸和造纸,2007, 26 (4):30-34.
    [62]国家环境保护总局自然生态保护司.全国规模化畜禽养殖业污染情况调查及防治对策[M].北京:中国环境科学出版社,2002.
    [63] Vallini G .,et al. Process constrains in sorce-collected vegetable waste composting. Water Science and Technology, 1993, 28(2):229-236.
    [64] EI-Haggar S M.,Hamoda M.F.,Elbieh M.A. Composting of vegetable waste in subtropical climates. International Jounral of Enivronment and Pollution,1998,9(4):411-420.
    [65]黄鼎曦,陆文静,王洪涛.农业蔬菜废物处理方法研究进展和探讨[J].环境污染治理技术与设备,2002,3(11):38-42.
    [66]张蔚.福建省固体废弃物在绿色墙体材料中的应用[J].福建建设科技,2007(4):51-54.
    [67]谢尧生.固体废弃物在新型墙材中的应用[J].墙材革新与建筑节能,2004(2).
    [68]李国学,李玉春,李彦富等.固体废物堆肥化及堆肥添加剂研究进展[J].农业环境科学学报,2003,22(2):252-256.
    [69]潘文道.芽抱杆菌菌株的生物学特性及其拮抗物质分离纯化研究[C].广西大学,2007:2-3.
    [70]马艳,常志州,黄红英等.堆肥防治植物病害的研究[J].土壤肥料,2005(2):3-6.
    [71] Van Dijk,K.etal. 2002.Fatty acid competition as a mecha-nism by which Enterobacter cloacae suppress Pythium ultimum sporangium germination and damping -off. Composting and Compost Utilization International Symposium track
    [72] Cinthia et al 2001. Effect of Chitin waste-based composts pro-duced by two - phase composting on two oomycete plantpathogens Plant and Soil 235: 27-3.
    [73] Elad,Y., R.Baker.1985. The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp. By Pseudomonas spp. Phytopathology 75: 1053-1059.
    [74] M.H. EL-Masry,A.I. Khalil,M.S. Hassouna et al.In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World Journal of Microbiology & Biotechnology 18: 551-558, 2002.
    [75]赵德立.多粘芽抱杆菌抗真菌活性的初步研究[C].四川大学.2006: 46-47.
    [76]刘蔼民,易琼华,师素云.用豆饼防治棉花枯萎病的作用机制研究[J].植物病理学报,1993,23(3):267-268.
    [77]赵蕾,汪天虹.几丁质、壳聚糖在植物保护中的研究与应用进展[J].植物保护,1999,25(1):43-44.
    [78] Zhang, W. et al. 1998. Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidop-sis. Phytopathology 88: 450-455.
    [79]常志州,马艳,黄红英,等.辅以拮抗菌的有机肥对辣椒疫病生防效果的研究[J].土壤肥料,2005,(2),28-30.
    [80] Stone A G.Rawand composted papermill sludge amendments : second year effects on disease incidence[C].Proceedings,Wisconsin Potato and Vegetable Growers Annualmeeting,2000.
    [81] CinthiaL,Philippe Leclerc,Nathacic Cote,etal.Effect of chitin wast-based composts produced by two-phase composting on two oomycete plantpathogens[J]. PlantandSoil, 2001,235:27~34.
    [82] Alexandra G Stone 2002.Organic matter-mediated suppression of Pythium, Phytophthora and Aphanomyces root rots in field soils.Composting and Compost Utilization International Sym-posium track 2.
    [83]袁飞,彭宇,张春兰等.有机物料减轻设施连作黄瓜苗期病害的微生物效应[J].应用生态学报,2004,15(5):867-870.
    [84] M.H. EL-Masry,A.I. Khalil,M.S. Hassouna et al.In situ and in vitro suppressive effect of agriculturalcomposts and their water extracts on some phytopathogenic fungi. World Journal of Microbiology & Biotechnology 18: 551-558, 2002.
    [85]徐国高,周立祥,常志州等.基质对番茄和黄瓜苗期生长及病害发生的影响[J].江苏农业科学,2006(1):69-71.
    [86] Cinthia et al 2001. Effect of Chitin waste-based composts pro-duced by two - phase composting on two oomycete plantpathogens Plant and Soil 235: 27-34.
    [87]李永兴,匡柏健,李久蒂,等.不同载体对微生物菌剂质量的影响[J].土壤肥料,1999,(6):30-32.
    [88]张堃,张德罡,姚拓,等.PGPR菌肥制作及其对高寒牧区3种禾本科牧草苗期株高的影响[J].草原与草坪,2006,(3):49-52.
    [89]韩文星,姚拓,席琳乔等.PGPR菌肥制作及其对燕麦生长和品质影响的研究[J].草业学报,2008,17(2):75-84.
    [90]李元芳.有效活菌数的测定方法、允许差与判定[J].土壤肥料.1997,(4):43-45.
    [91]土壤微生物研究会编.土壤微生物实验法[M].科学出版社, 1983.30-35.
    [92]赵斌,何绍江.微生物学实验[M].科学出版社,2002.69-72.
    [93] Zucconi F,Pera A,Forte M,etal.Evaluating toxicity of immature compost Biocycle,1981a,22:54-57.
    [94]刘雯雯,姚拓,孙丽娜,苑力辉.菌糠作为微生物肥料载体的研究[J].农业环境科学学报,2008, 27(2):787-791.
    [95]李季,彭生平.堆肥工程实用手册[M].北京:化学工业出版社,2005:63-97.
    [96]南京农业大学主编.土壤农化分析(第二版)[M].农业出版社,1988,33-36.
    [97]魏复胜.水和废水监测分析方法(第三版)[M].中国环境科学出版社,1989.252~256.
    [98]张建强,李亚澜,李勇.纤维素降解菌的分离鉴定及固态发酵条件[J].西南交通大学学报2006,41(4):443-446.
    [99]中华人民共和国农业行业标准:微生物肥料NY 227-94.北京:中国标准出版社,1994.
    [100] M.H. EL-Masry, A.I.Khalil, M.S. Hassouna,et al. In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi [J]. World Journal of Microbiology & Biotechnology 2002(18): 557-558.
    [101]周少奇.有机垃圾好氧堆肥法的生化反应机理[J].环境保护.1999,(3):31-32.
    [102]魏自民,王世平,魏丹,等.生活垃圾堆肥过程中有机态氮形态的动态变化[J].植物营养与肥料学报2005,11(2):194-198.
    [103]刘政峰.食用菌下脚料可制植物激素[J].中国食用菌,1997,16(4):19.
    [104] Zucconi F,Forte M.,Monaco A,et al.Biological evaluate on of compost maturity.Biocyle,1981b, 22:27-29.
    [105]钱学玲,孙义.模糊综合评价法判别堆肥腐熟度研究[J].上海环境科学,2001,20(2): 85-87.
    [106]孙先锋,钟海风等.高效堆肥菌种的筛选及在城市污泥堆肥上的应用.环境污染治理技术与设备,2006,2(7):108-111.
    [107]魏源送,王健敏.堆肥技术及进展.环境科学进展,1999,7(3):12-23.
    [108]赵庆祥.污泥资源化技术[M].北京:化学工业出版社,2002.
    [109] Keller P.Methods to evaluate maturity of compost[J].Compost SciUtil,1961,2(7):20-26.
    [110]张所明,陈世和.城市生活垃圾堆肥发酵的腐熟度研究[J].上海环境科学,1988,7(10):9-12.
    [111]张亚宁.堆肥腐熟度快速测定指标和方法的建立:[中国农业大学硕士论文].2004.
    [112] Garcia,C.,T.Harnandez and F,Costa.Study on water extract of sewage sludge composts[J].Soilsci.Plant Nutr,1991,37:399-408.
    [113] N.V.Hue and J.Liu.Predicting compost stability[J].Compost Science and Utilization,1995,3(2):8-18
    [114]刘卫星,顾金刚,姜瑞波等.有机固体废弃物堆肥的腐熟度评价指标.土壤肥料,2005(3):3-7.
    [115] Garcia C,Hernaandez T,Fosta,et al.Evaluation of the maturity of municipal waste compost using simple chemical parameters[J].Commun Soil Sci Plant Anal,1992,23:1501-1512.
    [116] Morel T L,Conlin F,Germon J,et al.Methods for the evaluation of the maturity of municipal refuse compost[A].Gasser J K R .Composting of agricultural and other wastes[C].New York: Elsevier Applied Science Publishers ,1985.56-72
    [117]胡菊,肖湘政,吕振宇等.接种VT菌剂堆肥过程中物理化学变化特征分析.[J ].农业环境科学学报,2005,4(5):970-974.
    [118]孙先锋,邹奎,钟海风.不同工艺和调理剂对猪粪高温堆肥的影响[J].农业环境科学学报,2004,23(4):787-790.
    [119]张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用.土壤学报[J].1998,(2):104-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700