高直链淀粉基可降解膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于塑料垃圾造成的环境污染问题和石油危机给塑料工业带来的巨大压力,使得对可降解塑料的开发成为各国竞相研究的热点领域。淀粉具有来源广泛、价格低廉、可再生、可生物降解等优点,已公认为是最具有发展潜力的生物降解塑料的原料而被广泛研究。
     本文以高直链玉米淀粉为主要原料,采用流延法通过共混、增塑、交联等工艺过程制备淀粉基可降解膜,研究了直链淀粉含量、增塑剂、交联剂、淀粉/聚乙烯醇(PVA)配比以及成膜介质、反应温度、搅拌速度等因素对高直链淀粉基可降解膜的影响。以PVA40%、甘油20%、乙二醛10%、尿素2%为最佳助剂用量,在以有机玻璃板为成膜介质、反应温度90℃、交联反应pH值2、搅拌速度120 r /min、烘干温度70℃的最佳工艺条件下制备高直链淀粉基可降解膜:拉伸强度32.8MPa、断裂伸长率135%、透光率42.1%、吸水率41.7%和吸油率0%,其性能明显高于普通淀粉基可降解膜。采用FTIR、XRD、DSC和SEM对淀粉基可降解膜进行表征和微观结构观察。证明了乙二醛的交联反应和甘油的增塑作用;高直链淀粉基薄膜由于两相相容性好因而热稳定性高于普通淀粉基薄膜;薄膜断面的扫描电镜照片显示,高直链淀粉基薄膜内部结构比普通淀粉基薄膜更致密。采用土埋法对淀粉基薄膜进行降解性实验,以失重率为评价指标,并使用扫描电镜对膜表面进行微观结构观察。实验发现,不同直链淀粉含量的薄膜其降解形式具有差异性,并初步探讨了原因。高直链淀粉基薄膜降解50d后失重率可达68%以上,具有良好的生物降解性能。
Since the development of plastics earlier this century, it has become a popular material used in a wide variety of ways. But now, plastics become a huge pollution problem in the world. Biodegradable plastics made with plant-based materials have been available for many years. Starch is a natural polymer. Because of its cheapness and regeneration, it has been recognized as a kind of potential raw material for producing biodegradable plastics.
     In this paper, based on amylose having better filming properties than native corn starch, the starch-based degradable film with higher amylose content was produced by chemical cross-linking. The optimal additives content and producing conditions are as following: polyvinyl alcohol (PVA), 40%; glycerol, 20%; glyoxal, 10%; urea, 2%; the reaction temperature, 90℃;cross–linking reaction pH, 2; stirring speed, 120r/min; and drying temperature, 70℃. The produced film’s tensile strength, elongation at break, transmittance, water absorption and oil absorption were 32.8MPa, 135%, 42.1%, 41.7% and 0%, respectively. The films produced by native corn starch and corn starch of higher amylose content (82%) were characterized by FTIR and XRD. The spectrum proved that the chemical reaction took place between glyoxal and hydroxy. Thermodynamic properties of the films were analyzed by DSC, and the result showed corn starch of higher amylose content (82%) based film has better stability compared to native corn starch based film. The SEM photograph of film cross section displayed the structure of corn starch of higher amylose content (82%) based film was more compact than native corn starch based film. Starch based films were buried in soil in order to evaluate their degradability. The corn starch of higher amylose content (82%) based film has been decomposed 68.2% after 50 days. The SEM photograph of film revealed that amylose content affected the degradability of starch based film, and the preliminary explanation of this phenomenon was given.
引文
1 F. Qi, M. A. Hanna. Characteristics of Biodegradable Mater-Bi? Starch Based Foams as Affected by Ingredient Formulations. Industrial Crops and Product. 2001, 13:219~227
    2滕立军,王高升,曹敏等.淀粉-聚乙烯生物降解塑料薄膜的性能研究.包装工程. 2004, 25(6):63~65
    3陈立新,焦建,蓝立文.功能塑料.化学工业出版社, 2004:236~237
    4温耀贤.功能性塑料薄膜.机械工业出版社, 2005:1~10
    5 A. Buléon, P. Colonna, V. Planchot et al. Starch Granules: Structure and Biosynthesis. International Journal of Biological Macromolecules. 1998, 23:85~112
    6张莉娜.天然高分子改性材料及应用.化学工业出版社, 2006:216~222
    7 G. J. L. Griffin. Starch Polymer Blends. Polymer Degradation and Stability. 1994, 45(2):241~247
    8 U. Funke, W. Bergthaller, M. G. Lindhauer. Processing and Characterization of Biodegradable Products Based on Starch. Polymer Degradation and Stability. 1998, (59):293~296
    9 A. Abd Karim, M. H. Norziah, C. C. Seow. Methods for the Study of Starch Retrogradation. Food Chemistry. 2000, 31:9~36
    10 R. F. Tester, J. Karkalas, X. Qi. Starch-composition, Fine Structure and Architecture. Journal of Cereal Science. 2004, 39:51~165
    11王凤格,许美玲,马秋刚.我国特用玉米产业及其发展前景.粮油食品科技. 2002, 10(2):38~39
    12 J. L?rcks. Properties and Applications of Compostable Starch-based Plastic Material. Polymer Degradation and Stability. 1998, 59:245~249
    13董亚琳,才卓,徐国良等.高直链玉米淀粉的研究及其利用.农业与技术. 2006, 26(2):53~54
    14谷宏,马涛.高直链玉米淀粉在生物可降解塑料中的应用.农产品加工. 2006, 2:37~39
    15 S. H. D. Hulleman, F. H. P. Janssen. The Role of Water During Plasticization of Native Starch. Polymer. 1998, 39(10):2043~2048
    16胡爱琳,王公应.全淀粉降解塑料的研究进展.精细化工. 2004, 21(10):759~762
    17刘宏治.热塑性淀粉材料的制备、结构与性能研究.郑州大学硕士学位论文. 2002:3~6
    18 T. Ishigaki, Y. Kawagoshi, M. Ike et al. Biodegradation of A Polyvinyl Alcohol-Starch Blend Plastic Film. World Journal of Microbiology & Biotechnology. 1999, 15:321~327
    19 H. R. Park, S. H. Chough, Y. H. Yun. Properties of Starch/PVA Blend Films Containing Citric Acid as Additive. Journal of Polymers and the Environment. 2005, 13(4):375~382
    20 Y. H. Yun, Y. H. Na, S. D. Yoon. Mechanical Properties with the Functional Group of Additives for Starch/PVA Blend Film. Journal of Polymers and the Environment. 2006, 14(1):71~78
    21 D. Lowdin, G. D. Valle, P. Colonna. Influence of Amylose Content on Starch Films and Foam. Carbohydrate Polymers. 1995, 27(4):261~270
    22 T. Nakashima, C. Xu, Y. Bin et al. Morphology and Mechanical Properties of Poly (vinyl alchohol) and Starch Blends Prepared by Gelation/Crystallization from Solution. Colloid& Polymer Science. 2001, 279(7):646~654
    23 P. Cinelli, E. Chiellini, S. H. Gordan et al. Characteristics and Degradation of Hybrid Composite Film Prepared from PVA, Starch and Ligncellulosics. Macromolecular Symposia. 2003, 17:143~155
    24邱威扬,邱贤华,喻继文.聚乙烯醇-淀粉共混溶液流变特性研究.高分子学报. 1996, (3):365~368
    25陈和生,孙振亚.生物降解塑料的研究进展.塑料科技. 2000, (4):36~39
    26彭少贤,池彩云,孙义明等.淀粉-聚乙烯醇可生物降解塑料研究进展.上海塑料. 2006, (1):4~6
    27吴春华,安鑫南,刘应隆.可生物降解的耐水性塑料薄膜的研制.南京林业大学学报(自然科学版). 2002, 26(2):49~51
    28 R. Pareta, M. J. Edirisinghe. A novel method for the preparation of starch films and coatings. Carbohydrate Polymers. 2006, 63:425~431
    29戈进杰.生物降解高分子材料及其应用.化学工业出版社, 2002:61
    30杨光,丁霄霖.直链淀粉提纯方法的研究.食品工业. 2000, (3):4~5
    31洪雁,顾正彪,刘晓欣.直链淀粉和支链淀粉纯品的提取及其鉴定.食品工业科技. 2004, 5(4):86~88
    32张璐.淀粉的糊化以及测定方式的发展与探讨.粮食与饲料工业. 2003, (8):43~45
    33 L.Yu, G. Christie. Measurement of Starch Thermal Transitions Using Differential Scanning Calorimetry. Carbohydrate Polymers. 2001, 46:179~184
    34刘娅,赵国华,陈宗道等.甲基玉米淀粉/PVA可降解薄膜的研制.包装工程. 2004, 25(2):22~25
    35时亮,丁佳.红外光谱样品制备中常见问题及解决办法.分析仪器. 1999, (4):45~48
    36谢狄霖,陈忠.含水物质红外光谱测试的样品制备.分析仪器, 2003, (4):52~53
    37李钢,邓文,何凤麟. X射线衍射法对高分子薄膜的结构分析.实验室研究与探索. 1998, (1):32~36
    38 J. Delville, C. Joly, P. Dole et al. Influence of Photocrosslinking on the Retrogradation of Wheat Starch Based Films. Carbohydrate Polymers. 2003, 53:373~381
    39刘宏生,谢丰魏,陈玲等. PVA与淀粉薄膜的研究进展与应用.中国塑料. 2005, 19(8):7~10
    40邱礼平,温其标.高直链交联变性淀粉结构及糊化性质的研究.粮油食品. 2004, 12(1):8~10
    41 Y. X. Xu, K. M. Kim, M. A. Hanna. Chitosan–starch Composite Film: Preparation and Characterization. Industrial Crops and Products. 2005, 21:185~192
    42潘则林,王才.水溶性高分子产品应用技术.化学工业出版社, 2006: 360~361
    43 M. L. Zhai, Fumio Yoshii, Tamikazu Kume. Radiation Modification of Starch-based Plastic Sheets. Carbohydrate Polymers. 2003, 52:311~317
    44张光华,周小丰,来智超. SA/PVA可降解复合塑料膜的制备与性能研究.塑料工业. 2006, 30(10):64~66
    45 P. Myll?rinen, R. Partanen, J. Sapp?l? et al. Effect of Glycerol on Behavior of Amylose and Amylopectin Films. Carbohydrate Polymers. 2002, 50:355~361
    46 V. D. Alves, S. Mali, A. Beléia et al. Effect of Glycerol and Amylose Enrichment on Cassava Starch Film Properties. Journal of Food Engineering. 2007, 78:941~946
    47孙勇.乙二醛的生产应用及市场分析.化学中间体, 2002, (7):17~18
    48那海宁,秦航,李丽等.淀粉基聚乙烯醇完全生物降解塑料薄膜的结构与性能.塑料工业. 2005, 33(10):50~52
    49古媛媛,魏文龙,左英英等.淀粉-聚乙烯醇塑料薄膜的研究.精细化工.1994, 11(2):52~53
    50陈洁,曹春雨,吴海芳.生物可降解包装膜.无锡轻工大学学报. 2000, 19(4):354~359
    51卢金珍.纳米SiO2改性淀粉基全生物降解薄膜的研究.华中农业大学硕士学位论文. 2004:22~23
    52陈强,张文清,吕伟娇等.可生物降解的壳聚糖肥料包膜材料的研究.高分子材料科学与工程, 2005, 21(3):290~293
    53熊汉国,张美玲,谢笔钧.玉米淀粉生物降解地膜的研究.湖北农业科学. 2004, (6):84~86
    54常建华,董绮功.波谱原理及解析.科学出版社, 2001: 83~84
    55钱建亚,顾林.三种常用淀粉糊化测定方法的比较.西部粮油科技. 1999, 24(4):42~46
    56丁文平.加热糊化温度对大米淀粉中直链淀粉结晶形成的影响. 2006, (8):80~81
    57 J. J. G. Van Soest, J. F. G. Vliegenthart. Crystallinity in Starch Plastics: Consequences for Material Properties. TIBTECH JUNE. 1997, 15:208~212
    58刘宏生,谢丰魏,陈玲等. PVA与淀粉薄膜的研究进展及应用.中国塑料. 2005, 19(8):7~10
    59 M. A. Bertuzzi, M. Armada, J. C. Gottifredi. Physicochemical Characterization of Starch Based Films. Journal of Food Engineering. 2007, 82:17~25
    60 S. Mali, M. V. E. Grossmann, M. A. García et al. Effects of Controlled Storage on Thermal, Mechanical and Barrier Properties of Plasticized Films from Different Starch Sources. Journal of Food Engineering. 2006, 75:453~460
    61 A. Rindlav-Westling, M. Stading, P. Gatenholm. Crystallinity and
    46 V. D. Alves, S. Mali, A. Beléia et al. Effect of Glycerol and Amylose Enrichment on Cassava Starch Film Properties. Journal of Food Engineering. 2007, 78:941~946
    47孙勇.乙二醛的生产应用及市场分析.化学中间体, 2002, (7):17~18
    48那海宁,秦航,李丽等.淀粉基聚乙烯醇完全生物降解塑料薄膜的结构与性能.塑料工业. 2005, 33(10):50~52
    49古媛媛,魏文龙,左英英等.淀粉-聚乙烯醇塑料薄膜的研究.精细化工.1994, 11(2):52~53
    50陈洁,曹春雨,吴海芳.生物可降解包装膜.无锡轻工大学学报. 2000, 19(4):354~359
    51卢金珍.纳米SiO2改性淀粉基全生物降解薄膜的研究.华中农业大学硕士学位论文. 2004:22~23
    52陈强,张文清,吕伟娇等.可生物降解的壳聚糖肥料包膜材料的研究.高分子材料科学与工程, 2005, 21(3):290~293
    53熊汉国,张美玲,谢笔钧.玉米淀粉生物降解地膜的研究.湖北农业科学. 2004, (6):84~86
    54常建华,董绮功.波谱原理及解析.科学出版社, 2001: 83~84
    55钱建亚,顾林.三种常用淀粉糊化测定方法的比较.西部粮油科技. 1999, 24(4):42~46
    56丁文平.加热糊化温度对大米淀粉中直链淀粉结晶形成的影响. 2006, (8):80~81
    57 J. J. G. Van Soest, J. F. G. Vliegenthart. Crystallinity in Starch Plastics: Consequences for Material Properties. TIBTECH JUNE. 1997, 15:208~212
    58刘宏生,谢丰魏,陈玲等. PVA与淀粉薄膜的研究进展及应用.中国塑料. 2005, 19(8):7~10
    59 M. A. Bertuzzi, M. Armada, J. C. Gottifredi. Physicochemical Characterization of Starch Based Films. Journal of Food Engineering. 2007, 82:17~25
    60 S. Mali, M. V. E. Grossmann, M. A. García et al. Effects of Controlled Storage on Thermal, Mechanical and Barrier Properties of Plasticized Films from Different Starch Sources. Journal of Food Engineering. 2006, 75:453~460
    61 A. Rindlav-Westling, M. Stading, P. Gatenholm. Crystallinity and

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700