壳聚糖对蔬菜产量品质、根系生长及土壤理化性状的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用盆栽、水培和根箱试验,研究壳聚糖对蔬菜产量品质、蔬菜根系生长及土壤理化性状的影响。主要结论如下:
     1.壳聚糖能提高蔬菜的产量。施用壳聚糖处理能提高樱桃番茄的产量16.2%~20.0%,提高番茄产量24.6%~26.1%,提高盆栽小白菜产量3.6%~29.4%,适宜浓度的壳聚糖也可以提高水培小白菜产量。
     2.壳聚糖能改善蔬菜品质。施用壳聚糖在提高蔬菜产量的同时,还改善了其品质。壳聚糖能显著提高番茄果实中Vc的含量,并调节果实中的糖酸比,使之口感更佳。且施用壳聚糖处理的番茄果实果型更加美观。盆栽试验中,施肥+壳聚糖处理比单施肥料处理小白菜叶片Vc含量提高18.2%,糖酸比提高24.8%,硝态氮含量降低12.9%;水培试验中,用浓度为2mg/L壳聚糖处理小白菜叶片Vc含量提高3.1%,糖酸提高25.5%,硝态氮含量降低26.6%。
     3.壳聚糖能促进蔬菜营养生长和生殖生长。壳聚糖可以促进蔬菜地上部的生长,尤其能促进蔬菜苗期生长。在番茄盛花期到来之前,施用壳聚糖能使番茄株高增长速度比对照快一倍,茎较对照粗壮,叶色也较浓绿。壳聚糖处理的樱桃番茄和水培小白菜叶片叶绿素含量也显著提高。到生殖生长时期,施用壳聚糖处理的蔬菜开花多、座果率高,成熟期可提早两到三天。
     4.壳聚糖促进了蔬菜根系生长,增加了蔬菜根冠比,增加了水培小白菜根系活跃吸收面积。施用壳聚糖不仅促进蔬菜地上部生长,而且对蔬菜根系生长促进作用尤为显著。施用壳聚糖处理的水培小白菜根冠比、根长和根重较对照均有所增加,尤其是壳聚糖浓度为2mg/L时,小白菜根系的侧根较多,根颜色发亮,根系生长态势良好;根系活跃吸收面积增加35.8%,根系的比表面积和总吸收面积也分别增加19.7%和49.8%。但壳聚糖浓度过高时,则会抑制小白菜根系的生长。由根箱试验可以得出,施用壳聚糖处理的番茄、黄瓜、小白菜、苋菜、辣椒五种蔬菜的根冠比提高了15%~60%;根系密度也有所增加,尤其是番茄和黄瓜,效果十分显著。
     5.壳聚糖能改善土壤物理性质。壳聚糖可以增加未种植蔬菜黄棕壤和潮土的总孔隙度,且作用时间越长增加量越大。壳聚糖可以增加土壤毛管孔隙度,增强土壤保持水分的能力,尤其是在种作物的条件下。壳聚糖可以增加黄棕壤粒径较大的微团聚体含量,减少粒径较小微团聚体含量,改善黄棕壤土壤结构。
     6.壳聚糖促进了土壤有机质分解。施用壳聚糖可以促进种蔬菜的黄棕壤有机质的分解。对于未种蔬菜土壤,壳聚糖对土壤有机质的作用与土壤类型有关。施用壳聚糖促进贫瘠的黄棕壤土壤有机质的分解;施用壳聚糖还增加了肥力较高的潮土土壤有机质含量。
     7.壳聚糖提高了土壤速效养分含量,促进了蔬菜对养分的吸收。壳聚糖处理可以增加未种蔬菜土壤速效氮的含量。肥料+壳聚糖处理的未种蔬菜黄棕壤和潮土两种土壤的速效氮含量增加量与单施肥料处理相比,差异分别达到极显著和显著水平。对于生物量较小的种蔬菜土壤和根箱非根际土,壳聚糖使其速效氮含量均有所增加。而对于种蔬菜土壤和根箱根际土,施肥+壳聚糖处理可使其速效氮含量减少。且使蔬菜养分含量增加。土壤速效磷变化趋势与速效氮基本一致,只是幅度略小。对于土壤速效钾含量而言,无论是否施肥条件下,壳聚糖处理均可提高未种蔬菜的黄棕壤和潮土的速效钾含量。但对于种蔬菜土壤,经壳聚糖处理后速效钾含量则有降低的趋势。说明壳聚糖不仅可以增加土壤速效养分含量,还可以促进蔬菜对土壤养分的吸收,从而增加土壤肥力,提高肥料利用率。
     8.壳聚糖增强了蔬菜抗逆性。壳聚糖处理可提高樱桃番茄和番茄脯氨酸的含量,降低其丙二醛和电解质渗透率含量,其中樱桃番茄脯氨酸增加量达到显著性水平,从而增强了它们抗高温能力;对于小白菜,壳聚糖处理可以显著提高其叶片中脯氨酸的含量,降低丙二醛的含量,从而提高其抗寒能力。
The pot, root box and solution cultivation were conducted to study the effects of chitosan on vegetables yields, qualities, root growth. soil physical properties and chemical characteristics. The resuilts show that:1. Chitosan treatment can increas vegetables yields. Application of chitosan increased the yield of cherry tomato, tomato, and Chinese cabbagge by 16. 2%—20.0%, 24.6%-26.1%, and 3.6%-29.4%, separately.2. Chitosan application improved qualities of vegetables. Application of chitosan increased the Vc content and the brix/acid ratio in vegetables. The pot cultivation showed that fertilizer-chitosan treatment increased content of Vc, brix/acid ratio and decreased NO_3-N concent in Chinese cabbage. The solution cultivation also showed that application of 2mg/L chitosan increased concent of Vc and brix/acid ratio in Chinese cabbage by 3.1% and 25.5%, separately, but decreased concent of NO_3-N by 26.6%.3. Chitosan treatment can improve vegetables growth. Chitosan treatment improved growth of vegetable shoot, especially seedling growth. The growth speed of plant height of tomato by using chitosan was two times than control before the flowering period in cherry tomato and tomato, the stem was thicker than control, the content of chlorophyll was increased significantly, the number of flower and fruit were more than control, and the date of maturity was advanced two or three days.4. Chitosan application inproved the root growth, increased the active absorption area and the ratio of root-shoot. The solution cultural cultivation indicated that Chitosan application increased the length and weight of root and the ratio of root-shoot, and the effects were greater at 2mg/L chitosan concent. But when the chitosan concent was too high, the root growth was inhibited. Chitosan also increased the root-shoot ratio of the five vegetables: tomato, cucumber, Chinese cabbage, amaranth and pepper in root box cultivation, the root-shoot ratio of five vegetables were increased 15%-60%; their root density were also increased, especially in tomato and cucumber.5. Chitoan treatment can amend soil physical properties. Application of chitoan improved the total porosity in yellow brown soil and flavor-aquic soil. It also increased the soil capillary porosity, especially in the condition of planting vegetables. The ability of holding water and the bigger diameter micro-aggregate were enhanced, but decreased content of the smaller diameter.6. Chitosan facilitated the decomposition of soil organic matter. Chitosan facilitated the decomposition of soil organic matter. For no planting soil, the effects of chitosan were related with soil species. Chitosan faciliated the decomposition of organic matte in yellow brown soil, but increased the organic content in flavor-aquic soil.
     7. Chitosan elevated available nutrition contents in soil and faeiliated nutrition absorption by vegetable. Chitosan increased the available N content in no planting soil. Compared with the control, fertilizer-chitosan treatment significantly increased alkali hydrolysable N in both yellow brown soil and flavor-aquic soils. The content of alkali hydrolysable N also was increased in planting soil with small biomass and bulk soil with in root box culture. But the content of alkali hydrolysable N also was reduced in planting soil and rhizosphere soil in root box culture. The nutrition contents of vegetable were increased. The change trend of soil available P was consistent with alkali hydrolysable N, but its range was smaller. The available K contents in soil, with or without fertilizer, were elevated in the two soils treated with chitosan. But for the planting soil, the content of available K was reduced. We concluded that chitosan improved soil available nutrient content, faciliated vegetable takeup of nutrients, and improved soil fertility and fertilizer efficiency
     8. Chitosan treatment can enhance vegetable resistance. Chitosan increased the content of praline in tomato leaves, and decreased the content of MDA and EL. Praline concent in cherry tomato was significantly increased with chitosan application. Chitosan also increased praline content in cabbage leaves, and decreased the MDA content, improving cold-resistance of Chinese cabbage.
引文
1.陈津津.甲壳素/壳聚糖及其衍生物在环境领域中的研究进展.安徽化工,2003,3:2-4
    2.陈忻,袁毅掸,莫炎.从棕色金龟提取甲壳素.化学研究与应用,2003,15(2):270-271
    3.陈云,梁建生,刘立军,胡健,郑涌明.低聚壳聚糖对小麦种子萌发以及幼苗生理生化特性的影响.耕作与栽培,2003,1:28-29
    4.董建萍,陆庆轩,刘国富,姜会宏.壳聚糖浸种对草坪草根系及地上部生长的影响.北方果树,2003,3:11-12
    5.董学畅,杨燕兵.甲壳素和壳聚糖应用研究新动向.云南民族学院学报,2002,11(1):566-570
    6.段新芳.甲壳素和壳聚糖的研究及其在农林业中的应用.世界林业研究,1998,3:9-14
    7.冯双庆.水果与蔬菜保鲜剂.保鲜与加工,2005(4):38
    8.顾振权,宋锦昌.稀土甲壳素对生长肉猪的效应研究.中国畜牧杂志,1994,30(3):36-38
    9.胡建,陈云,陈宗祥.壳聚糖对水稻纹枯病不同抗性品种几丁质酶诱导的研究.江苏农业研究,2000,21(4):37-40
    10.明景江,左仲武,刘彦超.壳聚糖对油松种子萌发及幼苗生理生化特征的影响.西北林学院学报,2003,18(4):21-23
    11.胡品虎,梁双林,唐天德,杨周记.鳗鱼饲料添加稀土甲壳素的应用研究.水产养殖,1994,5:21-23
    12.胡品虎.稀土甲壳素在河蟹养殖中的应用.水产养殖,1999,5:13-14
    13.胡文玉,吴娇莲.甲壳素的性质和用途及其在农业上的应用前景.植物生理学通迅,1994,30(4):294-296
    14.黄崇元.甲壳素资源的综合利用与发展.湿法冶金,1995,9,第3期:4-18
    15.黄丽萍,刘宗明.甲壳质、甲壳素在农业上的应用.辽宁农业科学,1999,(6):18-21
    16.纪明山,陈捷,程根武,谷祖敏,郑文华,孙长凤.壳聚糖浸种对玉米幼苗根系中几种防御酶活性的影响.沈阳农业大学学报,1996,30(3):200-203
    17.姜传福.壳聚糖在环境污染上的应用.锦州师范学院学报(自然科学版),2001,22(4):33-35
    18.姜海平,阚李斌,丁兰兰,孙迎春,孙建东.壳聚糖S-Ⅱ拌种对水稻恶苗病的控制作用.安徽农业科学,1999,27(6):292-593
    19.姜华,宁淑香,杨文新,王有福.壳聚糖对MDMV的防效与玉米叶片防御酶活性的关系.辽宁师范大学学报(自然科学版),2002,25(1):72-75
    20.金光辉,孙秀梅,马金友,徐永海,于丽红.“934”增产剂在马铃薯生产中的应用效果.杂粮作物,2000,20(5):33-35
    21.李保英.甲壳素制剂控制蔬菜十传病害的研究.中国农学通报,2005,35(1):275-277
    22.李德生,张萍,鲁法典,胡卫萱.黄前库区流域主要经济林综合效益研究.山东农业大学学报(自然科学版),2004,35(3):413-417
    23.李东.甲壳素及其衍生物的开发应用现状.自然杂志,2003,025(002):92-97
    24.李慧喧,王建刚,王光华.蛹皮制甲壳质与虾、蟹制甲壳质的性能比较.丝绸,1993,4:27—29.
    25.李欣,易军鹏,芦雷鸣.银条的壳聚糖复合涂膜保鲜效果研究.河南化工,2005,22(6):27-29
    26.李云龙.甲壳素及其衍生物—甲壳胺的生产和应用.明胶科学与技术,2001,21(1):34-37
    27.廖春燕,马国瑞,洪文英.壳聚糖诱导番茄对早疫病的抗性及其生理机制.浙江大学学报(农业与生命科学版),2003,29(3):280-286
    28.刘海英,杨贵芹.甲壳素、壳聚糖在饲料业中应用的研究进展.饲料博览,2002,12:33-35
    29.刘和众,刘东辉,刘丰佳,曲虹.甲壳素植物生长调节剂在玉米上的应用.天然产物研究与开发,1996,,1.8,(4):90-92
    30.刘立新,付艳梅.几丁质酶及其在植物抗病中的作用.现代化农业,2003,5:5-7
    31.刘明河,吴清华.甲壳低聚糖抑菌性鉴定.生物技术,2005,15(3):36-38
    32.刘伟,杨广玲,王金信,鲁梅.0.3%壳聚糖水剂对番茄产量和病害发生的影响.现代农药,2004,3(2):30-31.44
    33.陆引罡,钱晓刚,彭义,马国瑞.壳寡糖油菜种衣剂剂型应用效果研究.种子,2003,4:38-40
    34.罗兵,徐朗莱 孙海燕.壳聚糖对黄瓜品质和产量的影响.南京农业大学学报,2004,27(1):20-23
    35.罗兵,孙海然,徐朗莱.新型植物生长调节刺—甲壳素及其衍生物.常熟高专学报,2004,18(2):43-46
    36.罗兵,孙海燕,徐朗莱.新型植物生长调节剂—甲壳素及其衍生物.常熟高专学报,2004,18(2):43-46
    37.马龙.低能量保健冰淇淋的开发研究.冷饮与速冻食品工业,2005,11(1):7
    38.马鹏鹏,何立千.壳聚糖对植物病害的抑制作用研究进展.天然产物研究与开发,2001,13(6):82-86
    39.马鹏鹏.甲壳素及其衍生物在农业生产中的应用.植物生理学通迅,2001,37(5):475-478
    40.倪红,杨艳燕,陈怀新.桑蚕蛹甲壳素及甲壳素的提取与制备工艺研究.湖北大学学报(自然科学版),1998,20(1):94-96
    41.欧阳寿强,徐朗莱.壳聚糖对不结球白菜营养品质和某些农艺形状的影响.植物生理学通讯,2003,39(1):21-24.
    42.齐凤生.甲壳素/壳聚糖的研究进展及应用.水利渔业,2002,22(4):4-6
    43.邵健,王亚玲,杨宇民.L- 半胱氨酸改性甲壳素处理含铅、镉工业废水.环境污染治理技术与设备,2003,12(4):63-65
    44.沈东风.贾之慎,孔祥东,林宜芳.不同分子量壳聚糖对草莓防腐效果的研究.食品科学2000,21(7):
    45.盛彦清,陈繁忠,傅家谟,盛国英,杨志英.壳聚糖和黄腐酸在草菇栽培中的应用试验.中国食用菌,2004,23(5)20-21
    46.施永新.稀土甲壳素在棉花上应用效果.江苏农业科学,1993,4:46-47
    47.帅素云,薛启汉,刘蔼民,练兴明.羧甲基壳聚糖(NCMC)对玉米种子蛋白质合成与积累的影响.玉米科学,1999,7(2):55-57
    48.水茂兴,马国瑞,陈美慈,柴伟国.壳聚糖处理番茄、青椒的保鲜效果.浙江农业科学,2001,4:164-166
    49.苏根水,陈卫东,卓海浪.壳聚糖对苗木立枯病的防治作用及机理初探.福建林业科技,2001,28(1):40-43
    50.隋雪燕,周泽琳,张文清,金鑫荣,李 明,李守义.壳聚糖包农剂对黄瓜和辣椒种子发芽及幼苗素质的影响.华东理工大学学报,2002,28(6):637-639
    51.唐振兴,钱俊青,葛立军,何志平.甲壳素/壳聚糖及其衍生物在食品和生物工程中的应用.杭州食品科技,2003,3:4-7
    52.滕玉宏,迟长云.甲壳丰等营养剂浸种对豆类、瓜类蔬菜幼苗影响的研究初报.蔬菜,2005,09:42-43
    53.田澍,顾学芳.甲壳素、壳聚糖及其衍生物的研究和应用.化工时刊,2003,17(1):12-16
    54.王海明,牛迎福,贾钧,卢胜杰,黄愿如.应用绿色植保素防治牡丹病害试验研究.林业科技开发,2004,18(4):39-41
    55.王杰.决明子化学成分和医疗作用[J].山东中医杂志,1989,3(6):33.
    56.王金华,干信.蚕蛹甲壳素的开发应用.现代商贸工业,2003,4:46-48
    57.王文全,郑春霞,郝俊蓉,杨远昭,周疆明.卤虫卵壳及粗甲壳素对重金属离子的吸附性.环境科学与技术,2005,28(1),51-54
    58.王转花,张政,张天民.蜗牛壳甲壳素的制备及其理化性质研究.药物生物技术,1997,4(1):32-35.
    59.邢光耀.甲壳素与杀菌剂互作对棉苗病害的防治试验.中国棉花,2005,04:22
    60.徐岩.蔬菜低硝酸盐制剂对蔬菜品质影响的试验研究.连云港职业技术学院学报,2002,15(2):12-14,17
    61.许萍,宁敏,于丽莎.甲壳素衍生物对烟草抗菌活性影响的研究.功能高分子学报,2002,15(1):53-58
    62.严淑兰,陆大年.甲壳素/壳聚糖的应刚.广西纺织科技,2000,29(2):38-40
    63.于汉寿,吴汉章,张益明,陈永萱,朱桂梅,姜海平,周培根.壳聚糖拌种对小麦生长及纹枯病发生的影响.江苏农业科学,1997,6:9-10
    64.于汉寿,张益民,陈永萱,吴汉章.壳聚糖对油菜生长及油菜菌核病的影响.上海农业学报,1999,15(2):80-83
    65.于汉寿,张益民,陈永萱,吴汉章.水溶性壳聚糖对小麦和油菜几丁质酶的诱导作用.江苏农业学报,1999,15(2):67-70
    66.张静,杨洪强,魏钦平.几丁质及其衍生物的生物活性与在农业中的应用.植物学通报,2003,20(2):178-183
    67.张文青,隋雪燕,夏玮,张元兴,林彩玲.壳聚糖的制备及其对黄瓜的促生长作用.功能高分子学报,2002,15(2):199-202
    68.张英锋.甲壳素一“第六大生命要素”.化学教育,2003,9:1-3
    69.赵春燕,孙军德,刘志恒,张恩禄,何瀛,崔晓晶.甲壳素对土壤微生物区系组成的影响.辽宁农业科学,2000,(5):7-8
    70.赵海霞,牟大可.甲壳素/甲壳素及其衍生物的应用研究进展.山东医药,2004,44(17):59-60
    71.赵海霞,牟大可.甲壳素/壳聚糖及其衍生物的应用研究进展.山东医药,2004,44(17):59-60
    72.赵建方,陈洪美,耿建芬等.鲁北地区西瓜病害发生特点、抗药性增长及无公害防治技术.中国植保导刊,2005 25(7)18-20
    73.赵蕾,梁元存,刘廷荣.壳聚糖对烟草黑胫病的作用.应用与环境生物学报,2000,6(5):436-439
    74.赵丽,王萍.甲壳素和壳聚糖在水处理中的应用.化工环保,2003,23(4):213-215
    75.郑爱娟,刘海英,杨贵芹.新型绿色饲料添加剂—甲壳素/壳聚糖.山东饲料,2003,3:11-12
    76.钟秋平,夏文水.壳聚糖对芒果炭疽病、蒂腐病菌的拮抗作用.食品与机械,2005,21(1):25-27
    77.周天.甲壳素对玉米种子萌发和幼苗生长的影响.吉林农业科学,2004,29(3):8-10,18
    78. Vidal-Cros A, Boccar M. ldentiication of four chitin synthase genes in the rice blast disease agent Magnaporthe grisea. FEMS Microbiology Letters, 1998, 165: 103-109
    79. Iseli-Gamboni B, Boiler T, Neuhaus J M. Mutation of either of two essential glutamates converts the catalytic domain of tobacco classl chitinase into a chitin-binding lectin. Plant Science. 1998, 134: 45-51
    80. Wan Andrew C. A., Khor E, Hastings G W. The influence of anionic chitin derivatives on calcium phosphate crystallization. Biomaterials, 1998, 19: 1309-1316
    81. Chlan C A., Bourgeois R P. Class I chitinases in cotton(Gossypium hirsutum): characterization, expression and purification. Plant Science, 2001, 161: 143-154
    82. Somashekar D. & Joseph R. Chitosananases-properties and applications: areview. Bioresoure Technilogy. 1996(55): 35-45
    83. Reguera G, Leschine S B. Chitin degradation by cellulolytic anaerobes and facultative aerobes from soils and sediments. EMS Microbiology Letters, 2001, 204: 367-374
    84. Stacey G H. Molecular signals exchanged between host plants and rhizobia: basic aspects and potential application in agriculture. Soil Boil Biochem, 1997, 9: 819-830
    85. Hallmann J., RodroA, guez-KaA bana R., Kloepper J. W. Chitin-mediated changes in bacterial communities of the soil. rhizosphere and within roots of cotton in relation to nematode control. Soil Biology and Biochemistry, 1999, 31: 551-560
    86. Gupta M. C. Biological control of fusarium moniizforme Sheldon and pythium butler Subramanian by aphelenchus avenae bastian in chitin and cellulose-amended, soils Soil Biol Biochem. 1986, 18:(3), 327-329
    87. Soulie M. -C, Piffeteau A, Choquer M, Boccara M, VidaI-Crosb A. Disruption of Botrytis cinerea class-Ⅰ chitin synthase gene Bcchsi results in cell wall weakening and reduced virulence. Fungal Genetics and Biology, 2003, 40: 38-46
    88. Gryndler M, Jansa J, Hrselova H, Chvatalova I, Vosatka M. Chitin stimulates development and sporulation of arbuscular mycorrhizal fungi. Soil Ecology, 2003, 22: 283-287
    89. Ben-Shalom N, Ardi R, Pinto R, Aki C, Fallik E. Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Protection, 2003, 22: 285-290
    90. Mittai N, Saxena G, Mukerrji K. G. Integrated control of root-knot disease in three crop plants using chitin and Paecilomyces lilacinus. Crop Protection, 1995, 14(8): 647-651
    91. Nicole B, George T. Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium axysporum, sp. radicis-lycopersici, Physiol Mol Plant Patho, 1992, 41: 33-52
    92. Vivekananthana R, Ravia M, Saravanakumara D, Kumarb N, Prakasama V, Samiyappana R. Microbially induced defense related proteins against post harvest Anthracnose infection in mango. Crop Protection, 2004, 23: 1061 - 106
    93. Tellam R L. Craig Eisemann Chitin is only a minor component of the peritrophic matrix from larvae of Lucilia cuprina. Insect Biochemistry and Molecular Biology. 2000 (30): 1189-1201
    94. Werner S, Steiner U, Becher R, Kortekamp A, Zyprian E, Deising H B. Chitin synthesis during in planta growth and asexual propagation of the cellulosic oomycete and obligate biotrophic grapevine pathogen Plasmopara viticola. FEMS Microbiology Letters, 2002, 208: 169-173
    95. Gould W.D, Bryant R.J, Trofymow J.A, Anderson R.V, Elliott E.T, Coleman D.C. Chitin decomposition in a modle soil system. Soil boil.Biochem, 1981, 13: 487-492
    96. Wang S L, Shih I L, Wang C H, Tseng K C, Chang W T, Twu Y K, Ro J J, Wang C L. Production of antifungal compounds from chitin by Bacillus subtilis. Enzyme and Microbial Technology. 2002 (31): 321-328
    97. Teng W L, Khor E, Tan T K, Lee Y L, Tana S C. Concurrent production of chitin from shrimp shells and Fungi. Carbohydrate Research, 2001 (332): 305-316
    98. De Boer W, Gunnewiek K P J. A, Lafeber P, D. Janse J, E. Spit B, W.Woldendorp J. Anti-fungal properties of chitinolytic dune soil bacteria.Soil Biol. Biochem, 1998, 0(2): 193-203

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700