高分子三维多孔生物支架的成型及结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织工程多孔生物支架作为种植细胞的场所和组织再生的模板,是组织工程领域重要研究方向之一,已经引起了越来越多的研究者重视。理想的多孔生物支架必须具备,高孔隙率、内部相互连通性、无毒性、良好的生物相容性和较好力学性能等,因此,如何制备符合及满足细胞需求的理想三维多孔生物支架是组织工程领域的前沿课题。基于可降解高分子生物支架具有在引导细胞生长的同时可被机体吸收的突出优点,使其成为生物支架研究方向的热点。
     论文以可降解高分子生物支架的制备工艺一结构形态一性能为主线,通过选择合适的加工方法、设计合理的材料配方,调控泡孔形态、孔隙率、吸水率、内部连通性和力学性能等,加工制备新型的具有高孔隙率且内部相互连通的三维多孔可降解高分子生物支架。主要工作包括:
     1、采用注塑成型/粒子沥滤技术加工PCL和PCL/HA三维多孔生物支架。基于不同材料配方控制支架的泡孔形态、孔隙率、力学性能、吸水性能和生物性能。分析NaCl颗粒和可溶性高分子聚合物PEO的沥滤过程,对比探讨了PCL和PCL/HA三维多孔生物支架的力学性能和生物相容性。研究结果表明,PEO的应用较大的提高了支架内部相互连通性;HA的使用不仅增强了支架的力学性能,而且促进了细胞的增殖生长。
     2、利用微发泡注塑成型/粒子沥滤技术加工PCL三维多孔生物支架。对比探究了传统注塑成型和微发泡注塑成型技术所制备支架的内部孔洞结构形态、静态和动态力学性能、孔隙率和吸水率等。超临界N2的使用不仅作为物理发泡剂,而且起到增塑剂的作用,降低共混物的熔体粘度,使其易于加工成型,同时有效的提高了PCL生物支架的孔隙率。
     3、基于注塑成型技术、弱酸沥滤方法和新材料配方(PCL/PEO/NaCl/壳聚糖纤维),首次利用壳聚糖纤维加工了具有微孔洞和微管道双重形态特征的三维多孔PCL生物支架。壳聚糖纤维的引入,不仅在支架中形成了微管道结构形态,而且提高了其孔隙率及内部连通性。分析了壳聚糖含量对PCL生物支架泡孔形态和力学性能影响。
     4、采用单向冷冻干燥法和静电纺丝技术相结合,加工了具有微米级管道和纳米级微结构特征的高孔隙率三维壳聚糖/PLGA纳米复合生物支架。相比壳聚糖生物支架,PLGA纳米纤维的加入不仅使三维生物支架具有纳米级形态结构,而且使其具有较大的比表面积和更高的力学性能。并研究了壳聚糖溶液浓度和静电纺丝时间对支架结构形态和力学性能的影响。
     5、研究了压缩成型聚酸酐样品的降解机理和降解速率。分析探究了样品加工温度和几何尺寸对其降解速率的影响。
The research on porous tissue engineering scaffold has been one of the major braches in tissue engineering field. Therefore, it has received considerable attention and many researchers have already focused on it due to its application as matrix of seeding cells and repairing the tissues. Ideally, these porous scaffolds should have the following characteristics:high porosity, an interconnected porous structure, nontoxic, biocompatible, and suitable mechanical strength. Therefore, How to fabricate the ideal three dimensional porous scaffolds is a front subject in the field of tissue engineering. The biodegradable polymer scaffolds have become the focal researcher of tissue engineering domain due to its outstanding advantage; for example, it would be resorbed by live tissue while guiding the cells growth.
     This dissertation pays attention on the technology, morphology, and property of biodegradable polymer scaffolds in the process of their forming. The novel porous biodegradable polymer scaffolds were manufactured with high porosity, interconnected, and three dimensional by choosing suitable technique, designing rational material formula, controlling pores morphology, porosity, water absorption, interconnectivity, and mechanical porosity. The main works are as follow:
     1、 To fabricate the three dimensional porous PCL and PCL/HA scaffolds by injection molding/particulate leaching method. To control the pores morphology, porosity, water absorption, and mechanical porosity of the scaffold by varying the material formula. The leaching process of NaCl particular and the soluble polymer PEO inside the scaffold were observed. The mechanical porosity and biocompatible of three dimensional porous PCL and PCL/HA scaffold were compared. The result shows that the application of HA not only enhance the mechanical porosity of scaffold, but also promote the proliferation ability of cells.
     2、To fabricate the three dimensional porous PCL scaffolds by microcellular injection molding/particulate leaching. The morphology、static and dynamic mechanical properties, porosity, and water absorption of scaffold which formed by injection molding were compared with that of scaffold which fabricated by microcellular injection molding. The super critical N:not only used as physical blowing agent, but also used as plasticizer, which could decrease the viscosity of blend melt, resulting to easy to molded, as well as increasing the porosity of the PCL scaffold.
     3、To fabricate the three dimensional porous PCL scaffolds with double morphology of micro pores and channels by using chitosan fiber at the first time based on adopting injection molding technique、weak acid leaching method and novel material formula (PCL/PEO/NaCl/chitosan fiber). The addition of chitosan fiber not only formed the micro channel inside scaffold, but also increased the porosity and interconnectivity of scaffold. In addition, the effection of chitosan fiber content in blend on the morphology and mechanical property of PCL scaffold were studied.
     4、To fabricate the three dimensional highly porous chitosan/PLGA nario composite scaffolds with micro channels and nano-topography by combining unidirectional freeze drying and electrospinning technology. The chitosan/PLGA scaffold not only has nano-topography but also has bigger specific surface area and higher mechanical property compared with that of chitosan scaffold due to the addition of PLGA nano fiber. In addition, the effection of chitosan concentration and electrospinning time on the morphology and mechanical property of scaffold were investigated.
     5、The degradation mechanism and degradation rate of compression molding polyanhydrides samples were investigated. Moreover, the effection of processing temperature and the geometry of samples on the degradation rate were studied.
引文
[1]Langer R., Vacanti J.P. Tissue Engineering [J]. Science,1993,260:920-926.
    [2]Ross J.M. Cell-extracellular Matrix Interactions. In:Frontier in Tissue Engineering[M]. EI Sevier,1998.15-27.
    [3]Lysaght M.J., O'Loughlin J.A. Demographic Scope and Economic Magnitude of Contemporary Organ Replacement Therapies [J]. ASAIO Journal,2000,46:515-521.
    [4]Lysaght M.J., Reyes J. The Growth of Tissue Engineering [J]. Tissue Engineering,2001,7: 485-493.
    [5]http://www.mrc.ethz.ch/research/materials_for_medicine/index.
    [6]http://www.makna.org.my/images/autoglass.gif.
    [7]http://www.curasan.de/usa/patients/synthetic-materials.php.
    [8]510 B. Introduction to Tissue Engineering, taught at the University of Wisconsin-Madison 2005.
    [9]Thomson R.C., Shung A.K., Yaszemski M.J., et al. Chapter 21 Polymer Scaffold Processing [M]. Principles of Tissue Engineering, Academic Press:2000.251-262.
    [10]Bryant S.J., Anseth K.S. Chapter 6 Photopolymerization of Hydrogel Scaffolds [M]. Scaffolding in Tissue Engineering, Boca Raton FL:CRC Press,2006.71-90.
    [11]Hollister S.J. Porous Scaffold Design for Tissue Engineering [J]. Nature Materials,2005,4: 518-524
    [12]http://worldwidegadget.blogspot.com/2011/12/science-hydrogel-regenerates-your.html.
    [13]Li W.-J., Tuli R., Okafora C., et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells [J]. Biomaterials,2005,26: 599-609.
    [14]Middleton J.C., Tipton A.J. Synthetic Biodegradable Polymers as Orthopedic Devices [J]. Biomaterials,2000,21:2335-2346
    [15]Cheung H., Lau K., Lu T., et al. A Critical Review on Polymer-Based Bio-Engineered Materials for Scaffold Development [J]. Composites:Part B,2007,38:291-300
    [16]Hutmacher D.W. Biodegradable Polymeric Materials" in Encyclopedia of Materials:Science and Technology, Muellhaupt et al. (Eds.) [M]. Elsevier Science:2001.
    [17]Pachence J.M., Kohn J. Chapter 22 Biodegradable Polymers", in Principles of Tissue Engineering, Lanza, R. P., Langer, R., and Vacanti, J. P., (Eds.)[M]. San Diego:Academic Press,2000.263-277
    [18]Hutmacher D.W. Polymers for Medical Applications" in Encyclopedia of Materials:Science and Technology, Muellhaupt et al. (Eds.) [M]. Elsevier Science,2001.
    [19]Drumright R.E., Gruber P.R., Henton D.E. Polylactic Acid Technology [J]. Advanced Materials,2000,12:1841-1846
    [20]Vert M., Li S.M., Spenlehauer G., et al. Bioresorbability and Biocompatibility of Aliphatic Polyesters [J]. Journal of Materials Science:Materials in Medicine,1992,3:432-446.
    [21]Hutmacher D.W. Polymers for Medical Applications" in Encyclopedia of Materials:Science and Technology, Muellhaupt et al. (Eds.) [M]. Elsevier Science:2001
    [22]Gunatillake P.A., Adhikari R. Biodegradable Synthetic Polymers for Tissue Engineering [J]. European Cells Materials,2003,5:1-16.
    [23]Kohn J., Abramson S., Langer R. Chapter 2.7 Bioresorbable and Bioerodible Materials", in Biomaterials Science, Ratner, B. D., Hoffman, A. S., Schoen, F. J., and Lemons, J. E., (Eds.)[M]. San Diego:Academic Press,2004
    [24]Miller R.A., Brady J.M., Cutright D.E. Degradation Rates of Oral Resorbable Implants (Polylactates and Polyglycolates):Rate Modification with Changes in PLA/PGA Copolymer Ratios [J]. Journal of Biomedical Materials Research,1977,11:711-719.
    [25]Nicol S. Life after death for empty shells:Crustacean fisheries create a mountain of waste shells, made of a strong natural polymer, chitin. Now chemists are helping to put this waste to some surprising uses [J]. New Scientist,1991,1755:
    [26]Junqueira L.C., Carneiro J. Basic Histology[M]. McGraw-Hill Companies:2003,144.
    [27]Chasin M., Lewis D., Langer R. Polyanhydrides for controlled drug delivery [J]. Biopharmaceutical Manufacturing,1988,1:33-35.
    [28]Mader K., Bacic G, Domb A., et al. Characterization of microstructures in drug delivery systems by EPR spectroscopy [J]. Processing Internation Symposium on Controlled Release of Bioactive Materials,1995,22:780-781.
    [29]Uhrich K.E., Cannizzaro S.E., Langer R.S., et al. Polymeric systems for controlled drug release [J]. chemical reviews,1999,99:3181-3198.
    [30]Mikos A.G., Temenoff J.S. Formation of Highly Porous Biodegradable Scaffolds for Tissue Engineering [J]. Electronic Journal of Biotechnology,2000,3:114-119.
    [31]Hutmacher D.W. Scaffolds in Tissue Engineering Bone and Cartilage [J]. Biomaterials,2000, 21:2529-2543.
    [32]Puppi D., Chiellini F., Piras A.M. Polymeric materials for bone and cartilage repair [J]. Progress in Polymer Science,2010,35:403-440.
    [33]Freed L.E., Vunjaknovakovic G., Biron R.J., et al. Biodegradable Polymer Scaffolds for Tissue Engineering [J]. Biotechnology,1994,12:689-693.
    [34]Whang K., Healy K.E., Elenz D.R., et al. Engineering Bone Regeneration with Bioabsorbable Scaffolds with Novel Microarchitecture [J]. Tissue Engineering,1999,5: 35-51.
    [35]Sherwood J.K., Riley S.L., Palazzolo R., et al. A Three-Dimensional Osteochondral Composite Scaffold for Articulate Cartilage Repair [J]. Biomaterials,2002,23:4739-4751.
    [36]Shao X.X., Hutmacher D.W., Ho S.T., et al. Evaluation of a Hybrid Scaffold/Cell Construct in Repair of High-Load-Bearing Osteochondral Defects in Rabbits [J]. Biomaterials,2006, 27:1071-1080.
    [37]Yang S., Leong K., Du Z., et al. The Design of Scaffolds for Use in Tissue Engineering. Part Ⅰ Traditional Factors [J]. Tissue Engineering,2001,7:679-689.
    [38]Agrawal C.M., Ray R.B. Biodegradable Polymeric Scaffolds for Muskuloskeletal Tissue Engineering [J]. Journal of Biomedicine Materials,2001,55:141-150
    [39]Karande T.S., Ong J.L., Agrawal C.M. Diffusion in Musculoskeletal Tissue Engineering Scaffolds:Design Issues Related to Porosity, Permeability, Architecture, and Nutrient Mixing [J]. Annals ofBiomedical Engineering,2004,32:1728-1743.
    [40]Boyan B.D., Hummert T.W., Dean D.D., et al. Role of Material Surfaces in Regulating Bone and Cartilage Cell Response [J]. Biomaterials,1996,17:137-146.
    [41]Saltzman W.M. Chapter 19 Cell Interactions with Polymers", in Principles of Tissue Engineering, Lanza, R. P., Langer, R., and Vacanti, J. P., (Eds.)[M]. San Diego:Academic Press,2000,221-235.
    [42]Liu X., MaPolymeric P.X. Scaffolds for Bone Tissue Engineering[J]. Annals of Biomedical Engineering,2004,32:477-486.
    [43]Liu X., Ma P.X. Polymeric Scaffolds for Bone Tissue Engineering [J]. Annals of Biomedical Engineering,2004,32:477-486.
    [44]Cao Y., Croll T.I., Cooper-White J.J., et al. Production and Surface Modification of Polylactide-Based Polymeric Scaffolds for Soft Tissue Engineering [J]. Methods in Molecular Biology,2004,238:87-112.
    [45]Agrawal C.M., Carter J., Ong J.L. Basics of Polymeric Scaffolds for Tissue Engineering [J]. Journal of ASTM Internation,2006,3:1-10.
    [46]Liu C.Z., Czernuszka J.T. Development of Biodegradable Scaffolds for Tissue Engineering: A Perspective on Emerging Technology [J]. Materials Science and Technology,2007,
    [47]Baji A., Wong S.-C., Srivatsan T.S., et al. Processing Methodologies for Polycaprolactone-Hydroxyapatite Composites:A Review [J]. Materials and Manufacturing Proceses,2006,21:211-218.
    [48]Mikos A.G., Thorsen A.J., Czerwonka L.A., et al. Preparation and Characterization of Poly(L-Lactic Acid) Foams [J]. Polymer 1994,35:1068-1077.
    [49]Mikos A.G., Sarakinos G., Leite S.M., et al. Laminated Three-dimensional Biodegradable Foams for Use in Tissue Engineering [J]. Biomaterials,1993,14:323-330.
    [50]Yang Q., Chen L., Shen X., et al. Preparation of Polycaprolactone Tissue Engineering Scaffolds by Improved Solvent Casting/Particulate Leaching Method [J]. Journal of Macromolecular Science, Part B:Physics,2006,45:1171-1181.
    [51]Kang H.G., Kim S.Y., Lee YM. Novel Porous Gelatin Scaffolds by Overrun/particle leaching process for Tissue Engineering Applications [J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2006,79B:388-397.
    [52]Nam Y.S., Yoon J.J., Park T.G. A Novel Fabrication Method of Macroporous Biodegradable Polymer Scaffolds Using Gas Foaming Salt As a Porogen Additive [J]. Journal of Biomedical Materials Research,2000,53:1-7.
    [53]Ramay H.R., Zhang M.Q. Preparation of Porous Hydroxyapatite Scaffolds by Combination of the Gel-casting and Polymer Sponge Methods [J]. Biomaterials,2003,24:3293-3302.
    [54]Tsuji H., Smith R., Bonfield W., et al. Porous Biodegradable Polyesters. I. Preparation of Porous Poly(L-lactide) Films by Extraction of Poly(ethylene Oxide) from Their Blends [J]. Journal of Applied Polymer Science,2000,75:629-637.
    [55]Ma P.X., Choi J.-W. Biodegradable Polymer Scaffold with Well-Defined Interconnected Spherical Pore Network [J]. Tissue Engineering,2001,7:23-33.
    [56]Ma Z.W., Gao Y.H., Gong Y.H. Paraffin Spheres as porogen to fabricate Poly(L-lactic acid) Scaffolds with Improved Cytocompampatibility for Cartilage Tissue Engineering [J]. Journal of Materials Research Part B,2003,67B:610-617.
    [57]Gong Y.H., Zhou Q.L., Gao C.Y., et al. In Vitro and In Vivo Degradability and Cytocompatibility of Poly(L-lactic acid) Scaffold Fabricated by a Gelatin Particle Leaching Method [J]. Acta Biomaterialia,2007,3:531-540.
    [58]Yang Q., Chen L., Shen X.Y., et al. Preparation of Polycaprolactone Tissue Engineering Scaffolds by Improved Solvent Casting/Particulate Leaching Method [J]. Journal of Macromolecular Science, Part B:Physics,2006,45:1171-1181.
    [59]Mooney D.J., Baldwin D.F., Suh N.P., et al. Novel Approach to Fabricate Porous Sponges of Poly(D,L-lactic-co-glycolic acid) Without the Use of Organic Solvents [J]. Biomaterials, 1999,17:1417-1422.
    [60]Singh L., Kumar V., Ratner B.D. Generation of Porous Microcellular 85/15 Poly(DL-lactide-co-glycolide) Foam for Biomedical Applications [J]. Biomaterials,2004,25: 2611-2617.
    [61]Wang X., Li W., Kumar V. Solvent Free Fabrication of Biodegradable Porous Polymers [J]. Proceedings of the ASME Manufacturing Engineering Division,2004,15:595-602.
    [62]Wang X.X., Li W., Kumar V. A Method for Solvent-free Fabrication of Porous Polymer Using Solid-state Foaming and Ultrasound for Tissue Engineering Application [J]. Biomaterials,2006,27:1924-1929.
    [63]Yoon J.J., Kim J.H., Park T.G. Deamethasone-releasing Biodegradable Polymer Scaffolds Fabrication by a Gas-foaming/salt-leaching method [J]. Biomaterials,2003,24:2323-2329.
    [64]Yoon J.J., Song S.H., Lee D.S., et al. Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method [J]. Biomaterials,2004,25:5613-5620.
    [65]Formhals A. Process and Apparatus for preparing Artificial Threads[P].US Patent.1975504.
    [66]Li W.J., Laurencin C.T., Caterson E.J. Electrospun Nanofibrous Structure:A Novel Scaffold for Tissue Engineering [J]. Journal of Biomedical Materials Research,2002,60:613-621.
    [67]Li W.J., Danielson K.G, Alexander P.G. Biological Response of Chondrocytes Cultured in Three Dimensional Nanofibrous Poly(epsilon caprolactone) Scaffolds [J]. Journal of Biomedical Materials Research,2003,67A:1105-1114.
    [68]Khan S.S., Fertala A., Ko F. Multifunctional Nanofiber Scaffolds for Tissue Engineering [J]. Polymer Preprints,2003,44:88.
    [69]Shields K.J., Beckman M.J., Bowlin G.L. Mechanical Properties and Cellular Proliferation of Electrospun Collagen type Ⅱ [J]. Tissue Engineering,2004,10:1510-1517.
    [70]Matthews J.A., Boland E.D., Wnek G.E. Electrospinning of Collagen Type II:A Feasibility Study [J]. Journal of Bioactive and compatible polymers,2003,18:125-134.
    [71]Yoshimoto H., Shin Y.M., Terai H. A Biodegradable Nano-fober Scaffold by Electrospinning and Potential for Bone Tisssue Engineering [J]. Biomaterials,2003,24:2077-2082.
    [72]Shin M., Yoshimoto H., Vacanti J.P. In Vivo Bone Tissue Engineering Using Mesenchymal Stem Cells on a Novel Electrospun Nanofibrous Scaffold [J]. Tissue Engineering,2004,10: 33-41.
    [73]Boland E.D., Matthews J.A., Pawlowski K.J. Electrospinning Collagen and Elastin: Preliminary Vascular Tissue Engineering [J]. Front Bioscience,2004,1:1422-1432.
    [74]Stitzel J.D., Pawlowski K., Wnek G.E. Arterial Smooth Muscle Cell Proliferation on a Novel Biomimicking, Biodegradable Vascular Graft Scaffold [J]. Journal of Biomaterials Applications,2001,16:22-33.
    [75]Xu C.Y., Yang F., Wang S. In Vitro Study of Human Vascular Endothelial Cell Function on Materials With Various Surface Roughness [J]. Journal of Materials Research 2004,71A: 154-161.
    [76]Xu C.Y., Inai R., Kotaki M. Aligned Biodegradable Nanofibrous Structure:A Potential Scaffold for Blood Vessel Engineering [J]. Biomaterials,2004,25:877-886.
    [77]Mo X.M., Xu C.Y., Kotaki M. Electrospun P(LLA-CL) Nanofibers:A Biomimetic Extracellular Matrix for Smooth Muscle Cell and Endothelial Cell Proliferation [J]. Biomaterials,2004,25:1883-1890.
    [78]Xu C.Y., InaiR J., Kotaki M. Electrospun Nanofiber Fabrication as Synthetic Extracellular Matrix and Its Potential for Vascular Tissue Engineering [J]. Tissue Engineering,2004,10: 1160-1168.
    [79]Ma Z., Kotaki M., Yong T. Surface Engineering of Electrospun Polyethylene Terephthalate(PET) Nanofibers Towards Development of a New Material for Blood Vessel Engineering [J]. Biomaterials,2005,26:2527-2536.
    [80]Zong X., Bien H., Chung C.Y. Electrospun Non-woven Membranes as Scaffolds for Heart Tissue Constructs [J]. Polymer Preprints,2003,44:96-97.
    [81]Shin M., Ishii O., Sueda T. Contractile Cardiac Grafts Using a Novel Nanofibrous Mesh [J]. Biomaterials,2004,25:3717-3723.
    [82]Yang F., Murugan R., Wang S. Electrospinning of Nano/micro Scale Poly(L-lactic acid) Aligned Fibers and Their Potential in Neural Tissue Engineering [J]. Biomaterials,2005,26: 2603-2610.
    [83]Bini T.B., Gao S.J., Tan T.C. Electrospun Poly(L-lactideco-glycolide) Biodegradable Polymer Nanofibre Tubes for Peripheral Nerve Regeneration [J]. Nanotechnology,2004,15: 1459-1464.
    [84]Dietmar W.H. Scaffolds in Tissue Engineering Bone and Cartilage [J]. Biomaterials,2000,21: 2529-2543.
    [85]Espy P.G., McManus M.C., Bowlin G.L. Electrospun Eastin Scaffolds for Use in Bladder Tissue Engineering [J]. Journal of Urology,2004,171:457.
    [86]Boland E.D., Wnek G.E., Simpson D.G. Tailoring Tissue Engineering Scaffolds by Employing Electrostatic Processing Techniques:A Study of Poly(glycolic acid) Electrospinning [J]. Journal of Macromolecular Science:Pure and Applied Chemistry,2001, A38:1231-1243.
    [87]Huang Z.M., Zhang Y.Z., Kotaki M. A Review on Polymer Nanofibers by Electrospinning Applications in Nanocomposites[J]. Composites Science and Technology,2003,63: 2223-2253.
    [88]Deitzel J.M., Kleinmeyer J., Hirvonen J.K. Controlled Deposition of Electrospun Poly (ethylene oxide) Fibers [J]. Polymer,2001,42:
    [89]Theron A., Zussman E., Yarin A.L. Electrostatic Fields Assisted Alignment of Electrospun Nanofibres [J]. Nanotechnology,2001,12:384-390.
    [90]Dalton P.D., Kleea D., Mouller M. Electrospinning with Dual Collection Rings [J]. Polymer, 2005,46:611-614.
    [91]Estelles J.M., Vidaurre A., et al.Physical characterization of polycaprolactone scaffolds[J]. Journal of Materials Science:Materials in Medicine,2008,19:189-195.
    [92]McDonald P.F., Lyons J.G, Geever L.M., et al. In vitro degradation and drug release from polymer blends based on poly(dl-lactide), poly(1-lactide-glycolide) and poly(epsilon-caprol-actone)[J]. Journal of Materials Science,2010,45:1284~1292.
    [93]Ozkan S., Kalyon D.M., Yu X.J., et al. Multifunctional protein-encapsulated polycaprolactone scaffolds:Fabrication and in vitro assessment for tissue engineering[J]. Biomaterials,2009,30:4336-4347.
    [94]Izquierdo R., Garcia-Giralt N., Rodriguez M.T., et al. Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering[J]. Journal of Biomedical Materials Research Part A 2008; 85A:25~35.
    [95]Gercek I., Tigli R.S., Gumusderelioglu M. A novel scaffolds based on formation and agglomeration of PCL microbeads by freeze-drying[J]. J. Biomed. Journal of Biomedical Materials Research Part A,2008,86A:1012~1022.
    [96]Yeh C.C., Li Y.T., Chiang P.H., et al. Characterizing microporous PCL matrices for application of tissue engineering[J]. Journal of Medical and Biological Engineering,2009,29: 92~97.
    [97]Lee S., Park S., Kim W. Fabrication of porous 3D PCL scaffold using rapid prototyping system[J]. Journal of Tissue Engineering Regenerative Medicine,2010,7:211~316.
    [98]Heo S.J., Kim S.E., Wei J., et al. Fabrication and characterization of novel nano-and micro-HA/PCL composite scaffolds using a modified rapid prototyping process[J]. Journal of Biomedical Materials Research Part A,2009,89A:108~116.
    [99]Sprio S., Tampieri A., Celotti G., et al. Development of Hydroxyapatite/calcium silicate composites addressed to the design of load-bearing bone scaffolds. Journal of Mechanical Behavior of Biomeddical Materials,2009,2:147-155.
    [100]Bonfield W., Li C.H. Anisotropy of Nonelastic Flow in Bone[J]. Journal of Applied Physics, 1967,38:2450~2455.
    [101]Kim S.S., Park M.S., Jeon O., et al. Poly(lactide-coglycolide)/hydroxyapatite composite scaffolds for bone tissue engineering[J]. Biomaterials,2006,27:1399-1409.
    [102]Wan J.L., Tulia R., Okafora C. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells[J]. Biomaterials,2005,26:599-609.
    [103]Draghi L., Resta S., Pirozzolo M.G Microspheres leaching for scaffold porosity control[J]. Journal of Materials Science:Materials in Medicine,2005,16:1093-1097.
    [104]Svoboda P., Svobodova D., Slobodian P. Phase separation and phase dissolution in poly(ε-caprolactone)/poly(styrene-co acrylonitrile)blend[J]. European Polymer Journal,2009, 45:2434-244.
    [105]Hou Q.P,. Grijpma D.W., Feijen. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process. Journal of Biomedical Materials Research Part B,2003,67B:732-740.
    [106]Chuenjitkuntaworn B., Inrung W., Damrongsri D. Polycaprolactone/Hydroxyapatite composite scaffolds:Preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells[J]. Journal of Biomedical Materials Research Part A, 2010,94A:241-251.
    [107]Kim J.Y., Lee T.J., Cho D.W.,et al. Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering[J]. Journal of Biomaterials Science, Polymme Edition,2010,21:951~962.
    [108]Oh S.H., Kang S.G., kim E.S. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method[J]. Biomaterials,2003,24:4011~4021.
    [109]Reignier J., Huneailt M.A. Preparation of interconnected poly(ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching[J].Polymer,2006,47: 4703-4717.
    [110]Kramschuster A, Turng L-S. An Injection Molding Process for Manufacturing Highly Porous and Interconnected Biodegradable Polymer Matrices for Use as Tissue Engineering Scaffolds[J]. Journal of Biomedical Materials Research Part B,2010,2:366-376.
    [111]Oliveira J.M., Rodrigues M.T., Silva S.S., et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue engineering applications:Scaffold design and its performance when seeded with goat bone marrow stromal cells[J]. Biomaterials,2006,27: 6123-6137.
    [112]Royer J.R., Gay Y.J., Desimone J.M.,et al. High-Pressure Rheology of Polystyrene Melts Plasticized with C02:Experimental Measurement and Predictive Scaling Relationships[J], Journal of Polymer Science Part B:Polymmer Physics,2000,38:3168-3180.
    [113]Kwag C., Manke C.W., Gulari E. Effects of Dissolved Gas on Viscoelastic Scaling and Glass Transition Temperature of Polystyrene Melts, Industrial & Engineering Chemistry Research,2001,40:3048-3052.
    [114]Buechner P.M., Lakes R.S., Swan C. et al. A broadband viscoelastic spectroscopic study of bovine bone:implications for fluid flow[J]. Annals of Biomedical Engineering,2001,29: 719-728.
    [115]Alves M., Saiz-Arroyo C., Rodriguez-Perez M.A. et al. Microhardness of starch based biomaterials in simulated physiological conditions[J].Acta Biomaterials,2007,3:69-76.
    [116]Recknor J.B., Recknor J.C., Sakaguchi D.S. et al. Oriented astroglial cell growth on micropatterned polystyrene substrates[J]. Biomaterials,2004,25:2753-2767.
    [117]Miller C, Jeftinija S., Mallapragada S. Micropatterned Schwann cell-seeded biodegradable polymer substrates signiWcantly enhance neurite alignment and outgrowth[J]. Tissue Engineering,2001,7:705-715.
    [118]Shen J.Y., Chan-Park M.B. Three-Dimensional Microchannels in Biodegradable Polymeric Films for Control Orientation and Phenotype of Vascular Smooth Muscle Cells[J]. Tissue Engineering,2006,12:2229-2240.
    [119]Matsuzaka K., Walboomers X.F., de Ruijter J.E.,et al. The effect of poly-L-lactic acid with parallel surface microgroove on osteoblast-like cells in vitro[J]. Biomaterials,1999,20: 1293-1301.
    [120]Miller C., Shanks H., Witt A. et al. Oriented Schwann cell growth on micropatterned biodegradable polymer substrates[J]. Biomaterials,2001,22:1263-1269.
    [121]Vernon R.B., Gooden M.D., Lara S.L. et al. Microgrooved Wbrillar collagen membranes as scaffolds for cell support and alignment[J]. Biomaterials,2005,26:31-40.
    [122]Lu Q., Simionescu A., Vyavahare N. Novel capillary channel fiber scaffold for guided tissue engineering[J]. Acta Biomaterialia,2005,1:607-614.
    [123]Ao Q., Wang A.J., Cao W.L. et al. Preparation of porous multi-channeled chitosan conduits for nerve tissue engineering[J]. Key Engineering Materials,2005,288~289:27-30
    [124]Zong X.H., Bien H., Chung C.Y. et al. Electrospun fine-textured scaffolds for heart tissue constructs[J]. Biomaterials 2005,26:5330-5338.
    [125]Miyazaki S., Ishii K., Nadai T. The use of chitin and chitosan as drug carriers[J]. Chemical and Pharmaceutical Bulletin,1981,29:3067-3069.
    [126]Madihally S.V., Matthew H.W.T. Porous chitosan scaffolds for tissue engineering[J]. Biomaterials,1999,20:1133-1142.
    [127]Zhang Y., Zhang M., Synthesis and characterization of macroporous chitosan/calciumphosphate composite scaffolds for tissue engineering[J]. Journal of Biomedical Materials Research,2001,55:304-312.
    [128]Stevens M.M., George J.H., George J.H. Exploring and engineering the cell surface interface [J]. Science,2005,310:1135-1138.
    [129]Flemming R.G., Murphy C.J., Abrams G.A. et al. Effects of synthetic micro-and nano-structured surfaces on cell behavior. Biomaterials,1999,20:573-588.
    [130]Dalby M.J., Marshall G.E., Johnstone H.J.H. et al. Interactions of human blood and tissue cell types with 95-nm-high nanotopography[J]. IEEE Transactions on Nanobioscience,2002, 1:18-23.
    [131]Popat K.C., Leoni L., Grimes C.A. et al. Influence of engineered titania nanotubular surfaces on bone cells[J]. Biomaterials,2007,28:3188-3197.
    [132]Rice J.M., Hunt J.A., Gallagher J.A. et al Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro[J]. Biomaterials 2003,24:4799-4818.
    [133]Colon G., Ward B.C., Webster T.J. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2[J]. Journal of Biomedical Materials Research Part A,2006,78:595-604.
    [134]Kriparamana R., Aswath P., Zhou A. et al. Nanotopography:cellular responses to nanostructures materials[J]. Journal of Nanoscience and Nanotechnology,2006; 6: 1905-1919.
    [135]Zhang L., Ramsaywack S., Fenniri H. et al. Enhanced osteoblast adhesion on self-assembled nanostructured hydrogel scaffolds[J]. Tissue Engineering Part A,2008,14: 1353-1364.
    [136]Bakeine G.J., Benedetti L., Galli, D. et al. Effects of substrate nanopatterning on human osteosarcoma cells (SaOs-2) behavior[J]. Microelectronic Engineering,2010,87:830-833.
    [137]Garcia D.M., Cruz J.L.E., Ivirico M.M. et al. Chitosan microparticles as injectable scaffolds for tissue engineering[J]. Journal of Tissue Engineering and Regenerative Medicine,2008,2: 378-380.
    [138]Tuzlakoglu K., Alves C.M., Mano J.F. et al Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications[J]. Macromolecular Bioscience,2004,4:811-819.
    [139]Xiao Y.M., Li D.X., Chen X.N. et al. Preparation and cytocompatibility of chitosan-modified polylactide[J]. Journal of Applied Polymer Science,2008,110:408-412.
    [140]Prabaharan M., Rodriguez-Perez M.A., Sajae J.A. et al. Preparation and characterization of poly(1-lactic acid)-chitosan hybrid scaffolds with drug release capability[J]. Journal of Biomedical Materials Research Part B,2007,81B:427-434.
    [141]Chen F., Li X., Mo X. et al. Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix [J]. Journal of Biomaterials Science, Polymme Edition,2008,19: 677-691.
    [142]Miyazaki S., Ishii K., Nadai T. The use of chitin and chitosan as drug carriers[J]. Chemical and Pharmaceutical Bulletin,1981,29:3067-3069.
    [143]Lahiji A. Sohrabi A., Hungerford et al. Chitosan supports the expression of extra-cellular matrix proteins in human osteoblasts and chondrocytes. Journal of Biomedical Materials Research,51:586-595.
    [144]Griffon D.J., Sedighi M.R., Schaeffer D.V. et al. scaffolds:interconnective pore size and cartilage engineering[J]. Acta Biomaterials,2006,2:313-320.
    [145]Whu S.W., Tsai C.L., Hsu S.H. Evaluation of human bone marrow mesenchymal stem cells seeded into composite scaffolds and cultured in a dynamic culture system for neocartilage regeneration in vitro[J]. Journal of Medical and Biological Engineering,2009,29:52-58.
    [146]Abarrategi A., Gutierrez M. C., Moreno-Vicente C. et al. Multiwall carbon nanotube scaffolds for tissue engineering purposes[J]. Biomaterials,2008,29:94-102.
    [147]Chang C.P., Cheng K.B. The study of automatic measuring method applied on nonwoven fabric[J]. Journal of Textile Science & Engineering,1997,15:1-15.
    [148]Shi GX., Cai Q., Wang C.Y. et al. A novel porous cells scaffold made of polylactide-dextran blend by combining phase-separation and particle-leaching techniques[J], Polymers for Advanced Technologies,2002,13:4483-4492.
    [149]Nam Y.S., Park T.G. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation[J]. Journal of Biomedical Materials Research,1999,47:8-17.
    [150]Kim H.D., Bae E.H., Kwon I.C. et al. Effect of PEG-PLLAdiblock copolymer on macroporous PLLA scaffolds bythermally induced phase separation[J], Biomaterials,2004, 25:2319-2329.
    [151]Tu C.F., Cai Q., Yang J. et al. The fabrication and characterization of poly(lactic acid) scaffolds for tissue engineering by improved solid-liquid phase separation[J], Polymers for Advanced Technologies,2003,14:565-573.
    [152]Shin K.C., Kim B.S., Kim J.H. et al. A review on biodegradable polymeric materials for bone tissue[J]. Polymer,2005,46:3801-3808.
    [153]Cao Y., Mitchell G., Messina A. et al. The Influence of Architecture on Degradation and Vascularisation of Three Dimensional Poly(lactic-co-glycolic) Scaffolds in vitro and in vivo[J]. Biomaterials,2006,27:2854-2864.
    [154]Nakamatsu J., Torres F.G., Troncoso O.P. et al. Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds[J]. Biomacromolecules, 2006,7:3345-3355.
    [155]Wen P., Gao J.P., Zhang Y.L. et al. Fabrication of Chitosan Scaffolds with Tunable Porous Orientation Structure for Tissue Engineering[J]. Journal of Biomaterials Science,2011,22: 19-40.
    [156]Cheung, M. K.; Wan, K. P. Y.; Yu P. H. Miscibility and morphology of chiral semicrystalline poly-(R)-(3-hydroxybutyrate)/chitosan and poly-(R)-(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan blends studied with DSC, 1HT1 and T1 CRAMPS[J]. Journal of Applid Polymer Science,2002,86:1253-1258.
    [157]Gonzalez V., Guerrero C., Ortiz U. Chemical Structure and Compatibility of Polyamide-Chitin and Chitosan Blends[J]. Journal of Applied Polymer Science,2000,78: 850-857.
    [158]Sakurai K., Maegawa T., Takahashi T. Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolid) blends[J]. Polymer,2000,41:7051-7056.
    [159]Wang S.G., Sun X.F., Chitosan hydrogel beads for fulvic acid adsorption:Behaviors and mechanisms[J]. Chemical Engineering Journal,2008,142:239-247.
    [160]Zeng M., Fang Z., Xu C. Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane[J]. Journal of Membrane Science,2004,230:175-181.
    [161]Chang C.P., Hsu C.C., The formation and water content of synthetic fiber growing media[J]. Materials Science and Engineering,2006, A 433:100-103.
    [162]Peter X.M., Langer R. Fabrication of Biodegradable Polymer Foams for Cell Transplantation and Tissue Engineering[J]. Tissue Engineering Methods and Protocols,1999, 18:47-56.
    [163]Gopferich A., Gref R., Minamitake Y. et al. Drug delivery from bioerodible polymer: systemic and intravenous administration[J]. ACS Symposium Series,1994,567:242-277.
    [164]Reis R.L., Roman J.S. Biodegradable systems in tissue engineering and regenerative medicine[M]. Crc press,2004,7-19.
    [165]Weiler A., Hoffmann R.F.G. Biodegradable implants in sports medicine:The biological base. Arthroscopy[J]. The Journal of Arthroscopic & Related Surgery,2000,16:305-321.
    [166]Engelberg I., Kohn J. Physico-mechanical properties of degradable polymers used in medical applications:A comparative study[J]. Biomaterials,1991,12:292-304.
    [167]Lendlein A., Langer R. Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications [J]. Science Express,2002,296:1673-1676.
    [168]Peppas N.A., Langer R. New challenges in biomaterials[J]. Science,1994,264:1065-1067.
    [169]Kim K., Yu M.k., Zong X.H. et al.Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide)nanofiber scaffolds for biomedical applications[J]. Biomaterials,2003,24:4977-4985.
    [170]Langer R., Peppas N. Chemical and physical structure of polymers as carriers for controlled release of bioactive agents:a review[J]. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry & Physics,1983, C23:61-126.
    [171]Gopferich A. Mechanisms of polymer degradation and erosion[J]. Biomaterials,1996,17: 103-114.
    [172]derike F., Burkersroda V., Schedl L. et al. Why degradable polymer undergo surface erosion or bulk erosion[J]. Biomaterials,2002,23:4221-4231.
    [173]Langer R. New methods of drug delivery[J]. Science,1990,249:1527-1532.
    [174]Holland S.J., Tighe B.J., Gould P.L. Polymers for biodegradable medical devices.1. The potential of polyesters as controlled macromolecular release system[J]. Journal of Controlled Release,1986,4:155-180.
    [175]Nair L.S., Laurencin C.T. Biodegradable polymers as biomaterials[J]. Progress in polymer science,2007,32:762-798.
    [176]Rosen H.B., Chang J., Wnek G.E. et al. Bioerodible polyanhydrides for controlled drug delivery[J]. Biomaterials,1983,4:131-133.
    [177]Middleton J.C., Tipton A.J. Synthetic biodegradable polymers as orthopedic devices[J]. Biomaterials,2000,21:2335-2346.
    [178]Maurus P.B., Kaeding C.C. Bioabsorbable implant material review[J]. Operative Techniques in Sports Medicine,2004,12:158-160.
    [179]Middleton J.C.,Tipton A.J. Synthetic biodegradable polymers as medical devices[J]. Medical Plastics and Biomaterials Magazine,1998,21:2335-2346.
    [180]Bergsma J.E., Rozema F.R., Bos R.R., et al. In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polyactide particles[J]. Biomaterials,1995,16: 267-274.
    [181]Katti D.S., Lakshmi S., Langer R. et al. Toxicity, biodegradable and elimination of polyanhydrides[J]. Advanced Drug Delivery Reviews,2002,54:933-961.
    [182]Laurencin C.T., Norman M.E., Elgenxy H.M. et al. Use of polyphosphazenes for skeletal tissue regeneration[J]. Journal of Biomedical Materials Research,1993,27:963-973.
    [183]Torres M.P., Determan A.S., Grechen L. et al. Amphiphilic polyanhydrides for protein stabilization and release[J]. Biomaterials,2007,28:108-116.
    [184]Fan L.T., Singh S.K. Controlled Release Qquantitative Treatment[M]. Berlin: Springer-Verlag,1989,105-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700