基于漆酶介体体系活化木纤维制备木质纤维板的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的高速增长,生态安全、人类健康和经济社会的和谐发展成为区域乃至国家发展的重要评价标准,人造板作为林业产业的重要组成部分,其发展一直受到游离甲醛的制约,而漆酶作为生物环保型酵素的出现无疑成为解决这一问题的有效途径,且对保障生态安全、发展低碳经济、推进节能减排、构建资源节约型社会具有重要意义。
     本研究以木纤维为原料,应用漆酶介体体系活化木质素生成天然胶粘物质,采用高温高压热处理法制备中密度纤维板,其主要包括四部分内容:(1)基于酚型(愈创木酚)和非酚型(藜芦醇)木质素模型化合物初步确定漆酶、人工介体(ABTS)和天然介体(香草醛)的配比和反应条件;(2)基于傅里叶变换红外光谱和X射线衍射图谱确定紫外光预处理工艺,基于响应面法优化酶促反应工艺参数和热压工艺参数,基于力学性质和物化性质确定提高尺寸稳定性的处理工艺,由上述三部分内容得到漆酶介体体系活化木纤维制备中密度纤维板的优化工艺;(3)借助傅里叶变换红外光谱、X射线衍射仪、环境扫描电镜、接触角测定仪和X射线光电子能谱探究中密度纤维板的结合机理;(4)基于人工加速老化试验研究漆酶介体体系活化木纤维制备中密度纤维板的碳素储存能力。
     本研究得到的结论归纳如下:
     (1)木纤维紫外光预处理的辐照时间为24h,辐照距离为50cm,辐照强度为150W/m2。此时,纤维素部分降解,增加木纤维的漆酶反应活性点,同时少量木质素降解为烷基醛,其可作为漆酶介体催化氧化非酚型木质素;
     (2)基于木质素模型化合物得到的漆酶介体体系活化木纤维的优化工艺为pH5.0,反应温度50℃,反应时间55min,木纤维体积分数4.0%,ABTS摩尔浓度0.28mmol/L,香草醛摩尔浓度1.66mmol/L,漆酶活性60U/mL;中密度纤维板的热压优化工艺为热压温度165℃,热压压力10MPa,热压时间512s。热压过程分为干燥过程和塑化过程,其中干燥过程设定为3周期循环干燥,每一周期均采用先升压到10MPa保压52s,而后降压至4MPa保压52s;塑化阶段在10MPa保压200s;
     (3)以未经尺寸稳定性处理的中密度纤维板为参照样,分别从物理力学性能、接触角、官能团、纤维素结晶度和微观形貌几方面对比分析壳聚糖和固体石蜡对尺寸稳定性的影响,研究认为固体石蜡是借助石蜡分子的疏水性质,通过封闭水分子的流通路径来提高中密度纤维板的尺寸稳定性,但时效短,降低力学强度;壳聚糖是以化学键合的方式加强木纤维之间的黏结,减少或阻断水分子流通路径来提高中密度纤维板的尺寸稳定性,时效长,提高力学强度。因此,采用壳聚糖来提高中密度纤维板的尺寸稳定性,合理的添加量为1.2%;
     (4)基于优化工艺制备的中密度纤维板静曲强度为34.41MPa,弹性模量为2887.9MPa,内结合为0.89MPa,吸收厚度膨胀率为24.80%,根据国标GB/T11718-2009可知,其达到潮湿状态下使用的家具型中密度纤维板(MDF-FN MR)性能要求:
     (5)通过傅里叶变换红外谱图、纤维素相对结晶度和x射线光电子能谱分析可知,中密度纤维板的无胶胶合主要借助于酯化反应、氢键键合、缩聚反应、耦合反应和schiff碱反应,其中耦合反应和缩聚反应是主反应。这些化学反应促使纤维素内生成新的结晶区,提高中密度纤维板的力学强度。热压时,木质素在中密度纤维板内部流动,使得中密度纤维板表面的羧基含量相对较多,内部的醛基含量相对较多,从而使得纤维板内部和表面的化学键合方式存在一定的差异性;
     (6)不同人工加速老化时间段的试样碳素储存量>参照样2碳素储存量>参照样1碳素储存量,且均随着人工加速老化时间的延长而减少,其减少速率逐渐降低,但参照样1的碳素储存量流失速率大于试样和参照样2。碳素储存量减少的根本原因在于中密度纤维板内C-O和C-C键的断裂及芳香环的降解,而直接原因是扩散-渗透系数的增大,短期来看,扩散-渗透系数的增大加速中密度纤维板的腐朽,木腐菌(白腐菌和褐腐菌等)破坏板材中的纤维素、半纤维素或木质素的结构,从而降低碳素储存量;长期来看,腐朽程度的增强会显著降低板材的密度,加速提高板材的吸湿性和渗透性,促其产生翘曲变形,减少其受用寿命,从而缩短中密度纤维板的碳素储存时间。
With the rapid growth of world economy, ecological security, human health and harmonious development became an important evaluation criterion of the international community. Wood based panel as the important ingredient in forestry industry, the free formaldehyde restricted its development all the time. However, laccase was proved to be an effective method to resolve this problem. Meanwhile, laccase had special significance in the insurance of ecological environment security, the development of low carbon economy, the advancement of energy conservation and the construction of a resource-efficient society.
     According to the activation of laccase mediator system, wood fibers were made binderless medium density fiberboard by hot-press. This research focused on four aspects, which were:(1) based on the models of phenol compound (guaiacol) and non-phenol compound (veratryl alcohol), the proportion and reaction conditions of laccase, artificial mediator (ABTS) and natural mediator (vanillin) were determined primarily;(2) UV pretreatment process was determined in view of FTIR and XRD. The technological parameters of enzymatic reaction and hot-press were optimized based on response surface methods. Dimensional stability process was determined by mechanical analysis, physical and chemical analysis. Then optimized technology of medium density fiberboard based on laccase mediator system activation on wood fiber was achieved by above three sections;(3) the binding mechanism of binderless medium density fiberboard was explored by FTIR, XRD, SEM, XPS and contact angle measuring instrument;(4) carbon storage of medium density fiberboard based on laccase mediator system activation on wood fiber was researched by artificial weathering test.
     The conclusions of this research were summarized as follows:
     (1) The process parameters of UV pretreatment were as follows:the UV irradiation time was24h, the UV irradiation distance was50cm and the UV irradiation intensity was150W/m2At the moment, cellulose was degraded which increased the reaction activity sites of laccase. Meanwhile, a little lignin was degraded into alkyl aldehyde which be used for mediator to catalyze non-phenol lignin;
     (2) Based on the model compounds of lignin, the optimized technologies of laccase mediator system activation on wood fibers were as follows:pH value was5.0, the reaction temperature was50℃, the reaction time was55min, the volume fraction of wood fibers was4.0%, the molarity of ABTS was0.28mmol/L, the molarity of vanillin was1.66mmol/L and the laccase activity was60U/mL. The hot-press optimized technologies of medium density fiberboard were as follows:the hot-press temperature was165℃, the hot-press pressure was10MPa and the hot-press time was512s. The hot-press process consisted of dry process and plastics process. Dry process was three cycles, and each cycle was52s at10MPa firstly, and then52s at4MPa. Plastics process was200s at10MPa.
     (3) Binderless medium density fiberboard without dimension stability treatment was as control sample. The effects of chitosan and solid paraffin on dimension stability were comparative analysis based on physical properties, mechanical properties, contact angle, functional groups, cellulose crystallinity and morphology. The results showed that solid paraffin closed water-flow path with hydrophobic property which could improve the dimension stability of medium density fiberboard, but the mechanical strength was reduced and the effective time was relatively short. Chitosan decreased or blocked the water-flow path by chemical bonding to improve the dimension stability, while the effective time was relatively long and enhanced the mechanical strength. Therefore, chitosan was chosen to improve the dimension stability, and the suitable mass fraction was1.2%;
     (4) Based on the optimized technologies, the MOR of medium density fiberboard was34.41MPa, the MOE was2887.9MPa, the IB was0.89MPa and the TS was24.80%. On the basis of Chinese National Standard GB/T11718-2009, the binderless medium density fiberboard reached the performance requirement of MDF-FN MR.
     (5) By the analysis of FTIR, XRD and XPS, the reactions of binderless medium density fiberboard consisted of esterification, hydrogen bonding, polycondensation, coupling reaction and Schiff base reaction. Polycondensation and coupling reaction were main reactions. These reactions helped to bring about new crystalline regions which enhanced the mechanical strength. During the hot-press, lignin flowed in the interior of medium density fiberboard, and then the carboxyl group increased on the surface of medium density fiberboard, while the aldehyde group increased in the interior of medium density fiberboard. Therefore, the bonding types were different between the surface and the interior of binderless medium density fiberboard;
     (6) Under the different artificial weathering time, the carbon storage of test sample was most, and then was control2and control1. The carbon storage decreased with the increasing time, but the rate reduced gradually. The loss rate of controll was greater than test sample and control2. The primary cause of decreasing carbon storage was the breakage of C-O/C-C and the degradation of aromatic ring in medium density fiberboard. The efficient cause was the increasing of diffusion-permeability coefficient. In the short time, the increasing of diffusion-permeability coefficient accelerated the medium density fiberboard to decay. The wood rotting fungi (white-rot fungi and brown-rot fungi) damaged the structures of cellulose, hemicelluloses and lignin which decreased the carbon storage. In the long time, the increasing degree of wood rotting reduced the density of fiberboard observably, and enhanced the hygroscopicity and permeability. Therefore, the medium density fiberboard would create destabilizing buckling deformation which reduced the service life. Consequently, the carbon storage time of medium density fiberboard was reduced.
引文
[1]王国栋,陈晓亚.漆酶的性质、功能、催化机理和应用.植物学通报,2003,20(4):469-475
    [2]季立才.漆酶制中铜的研究.中国生漆,1990,9(4):22
    [3]B. Reinhammar. Cooper Proteins and Cooper Enzymes(Lontie REd) Vol Ⅱ. Boca Raton: CRC Press,1984
    [4]N. D. Upendra, S. Priyanka, V. P. Pandey, A. Kumar. Structure-function relationship among bacterial, fungal and plant laccases. Journal of Molecular Catalysis B:Enzymatic. 2011,68:117-128
    [5]郭明辉.木材品质培育学.哈尔滨:东北林业大学出版社,2001
    [6]李坚.木材科学.北京:高等教育出版社,2002
    [7]王习文,詹怀宇,何为.铜(1I)对漆酶活性的影响.纸和造纸,2003,7(4):43-44
    [8]朱显峰,丁涛.常见金属离子对漆酶酶活的影响.化学学报,2003,14(3):50-51,54
    [9]P. Baldrian. Fungal laccases-occurrence and properties. FEMS Microbiol Rev.2006, 30:215-242
    [10]H. Jung, F. Xu, K. Li. Purification and benzenethiols by fungal laccases:correlation between activity and redox potentials as well as halide inhibition. Biochemistry,1996, 35:7608-7614
    [11]Y. J. Kim, J. A. Nicell. Laccase-catalyzed oxidation of bisphenol A with the aid of additives. Process Biochem,2006,41:1029-1037
    [12]涂楚桥,梁宏,王光辉Cl-、NO3-和SO24-离子对漆酶催化活性的抑制作用.广西科学,1998,5(4):285-287
    [13]A. Schultz, U. Jonas, E. Hammer et al. Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase. Appl Environ Microbiol,2001,67(9):4377-4381
    [14]T. Fukuda, H. Uchida, Y. Takashima et al. Degradation of bisphenol A by purified laccase from Trametes villosa. Biochem Biophys Res Commun,2001,284:704-706
    [15]H. Uchida, T. Fukuda, H. Miyamoto et al. Polymerization of bisphenol A by purified laccase from Trametes villosa. Biochem Biophys Res Commun,2001,287:355-358
    [16]Y. Tsutsumi, T. Haneda, T. Nishida. Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 2001,42:271-276
    [17]J. Hawari, S. Beauet, S. Halasz et al. Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 2000,54:605-618
    [18]C. Ruttimann-Johnson, R. T. Lamar. Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes. Appl Environ Microbiol 1996,62: 3890-3893
    [19]J. M. Bollag, K. L. Shuttleworth, D. H. Anderson. Laccase-mediated detoxification of phenolic compounds. Appl Environ Microbiol,1988,12:3086-3091
    [20]P. J. Collins, M. J. J. Kotterman, J. A. Field et al. Oxidation of anthracene and benzo (a) pyrene by laccases from Trametes versicolor. Appl Environ Microbiol,1996,62: 4563-4567
    [21]J. Michizoe, M. Goto, S. Furusaki. Catalytic activity of laccase hosted in reversed micelles. J Biosci Bioeng,2001,92:67-71
    [22]H. Cabana, J. P. Jones, S. A. Agathos. Preparation and characterization of crosslinked laccase aggregates and their application to the elimination of endocrine disrupting chemicals. J Biotechnol,2007,7:23-31
    [23]H. Cabana, J. P. Jones, S. N. Agathos. Utilization of cross-linked laccase aggregates in a perfusion basket reactor for the continuous elimination of endocrinedisrupting chemicals. Biotechnol Bioeng,2009,102:1582-1592
    [24]H. Cabana, C. Alexandre, S. N. Agathos et al. Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals. Bioresour Technol,2009,100(14): 3447.3458
    [25]A. Zille, F. D. Munteanu, G. M. Gubitz et al. Laccase kinetics of degradation and coupling reactions. J Mol Catal B:Enzym,2005,33(1-2):23-28
    [26]R. C. Minussi, G. M. Pastore, N. Duran. Potential applications of laccase in the food industry. Trends Food Sci Technol,2002,13:205-216
    [27]T. Kudanga, P. E. Nugroho, J. Sipila et al. Coupling of aromatic amines onto syringylglycerol (3-guaiacylether using Bacillus SF spore laccase:a model for functionalisation of lignin-based materials. J Mol Catal B:Enzym,2009,61:143-149
    [28]K. Fackler, T. Kuncinger, T. Ters, E. Srebotnik. Laccase-catalyzed functionalization with 4-hydroxy-3-methoxybenzylurea significantly improves internal bond of particle boards. Holzforschung,2008,62:223-229
    [29]R. P. Chandra. Chemo-enzymatic modification of high-kappa kraft pulps with laccase. Ph.D. Thesis, Institute of Paper Science and Technology, Georgia Institute of Technology, 2003
    [30]N. Liu, S. Shi, Y. Gao, M. Qin. Fiber modification of kraft pulp with laccase in presence of methyl syringate. Enzyme Microb Technol,2009,44(2):89-95
    [31]R. P. Chandra, F. Wolfaardt, A. J. Ragauskas. Biografting of celestine blue onto a high kappa kraft pulp. ACS Sym Ser,2003,855:66-80
    [32]G. Elegir, D. Bussini, S. Antonsson et al. Laccase-initiated crosslinking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor. Appl Microbiol Biotechnol,2007,77:809-817
    [33]M. Lund, C. Felby. Wet-strength improvement of unbleached kraft pulp through laccase-catalyzed oxidation. Enzyme Microb Technol,2001,28:760-765
    [34]S. Witayakran, A. J. Ragauskas. Modification of high-lignin softwood kraft pulp with laccase and amino acids. Enzyme Microb Technol,2009,44:176-181
    [35]P. Widsten, S. Tuominen, P. Qvintus-Leino et al. The influence of high defibration temperature on the properties of medium-density fiberboard (MDF) made from laccase-treated softwood fibers. Wood Sci Technol,2004,38:521-528
    [36]C. Felby, L. G. Thygesen, A. Sanadi et al. Native lignin for bonding of fiber boards-evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica). Ind Crop Prod,2004,20:181-189
    [37]C. Felby, J. Hassingboe, M. Lund. Pilot-scale production of fiberboards made by laccase oxidized wood fibers:board properties and evidence for cross-linking of lignin. Enzyme Microb Technol,2002,31:736-741
    [38]S. Papic, N. Koprivanac, A. L. Bozic et al. Removal of some reactive dyes from synthetic wastewater by combined Al (III) coagulation/carbon adsorption process. Dyes Pigments, 2004,62:291-298
    [39]P. Pandit, S. Basu. Removal of organic dyes from water by liquid-liquid extraction using reverse micelles. J Colloid Interface Sci,2002,245(1):208-214
    [40]A. Mittal, L. Kurup, V. K. Gupta. Use of waste materials-bottom ash de-oiled Soya, as potential adsorbents for the removal of Amaranth from aqueous solution. J Hazard Mater, 2005,117:171-178
    [41]N. Aktas, A. Tanyolac. Kinetics of laccase-catalyzed oxidative polymerization of catechol. J Mol Catal B:Enzym,2003,22:61-69
    [42]L. Setti, S. Giuliani, G. Spinozzi et al. Laccase catalyzed-oxidative coupling of 3-methyl 2-benzothiazolinone hydrazone and methoxyphenols. Enzyme Microb Technol,1999, 25(3-5):285-289
    [43]K. H. M. G. Hossain, M. D. Gonzalez, G. R. Lozano et al. Multifunctional modification of wool using an enzymatic process in aqueous-organic media. J Biotechnol,2009,141: 58-63
    [44]S. Ncanana, S. Burton. Oxidation of 8-hydroxyquinoline catalyzed by laccase from Trametes pubescens yields an antioxidant aromatic polymer. J Mol Catal B:Enzym,2007, 44(2):66-71
    [45]N. E. Es-Safi, S. Ghidouche, P. H. Ducrot. Flavonoids:hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules,2007,12:2228-2258
    [46]D. Poeckel, T. H. J. Niedermeyer, H. T. L. Pham et al. Werz OInhibition of human 5-lipoxygenase and anti-neoplastic effects by 2-amino-1,4-benzoquinones. Med Chem, 2006,2:591-595
    [47]H. Agematu, T. Tsuchida, K. Kominato et al. Enzymatic dimerization of penicillin X. J Antibiot,1993,46:141-148
    [48]A. Mikolasch, T. H. J. Niedermeyer, M. Lalk et al. Novel penicillins synthesized by biotransformation using laccase from Trametes spec. Chem Pharm Bull,2006,54:632-638
    [49]A. Mikolasch, T. H. J. Niedermeyer, M. Lalk et al. Novel cephalosporins synthesized by amination of 2,5-dihydroxybenzoic acid derivatives using fungal laccases. Chem Pharm Bull,2007,55:412-416
    [50]A. Mikolasch, M. Wurster, M. Lalk et al. Novel β-lactam antibiotics synthesized by amination of catechols using fungal laccase. Chem Pharm Bull,2008,56:902-907
    [51]A. Zamorani, P. Spettoli, A. Lante et al. Immobilized laccase and tyrosinase:an approach for wine stabilization. Ital J Food Sci,1993,4:409-414
    [52]A. Zamorani. Enzymatic processing of musts and wines. In:Cantarelli C, Lanzarini G, editors. Biotechnology applications in beverage production. New York:Elsevier Applied Science,1989,223-246
    [53]C. Cantarelli, G. Giovanelli. Stabilization of pome and grape juice against phenolic deterioration by enzymic treatments. Inst Fruchtsaft-Union, Wiss-Tech Komm,1990,21: 35-57
    [54]R. S. Jackson. Wine science:principles and applications, third ed. London:Academic Press.2008
    [55]C. Cantarelli. Trattamenti enzimatici sui costituenti fenolici dei mosti come prevenzione della maderizzazione. Vini d'ltalia,1986,3:87-98
    [56]G. Maier, P. Mayer, H. Dietrich. Application of a polyphenoloxidase to stabilization of apple juices. Deustsche-Lebensmittel-Rundschau,1990,86:137-142
    [57]M. Servili, G. De Stefano, P. Piacquadio et al. A novel method for removing phenols from grape must. Am J Enol Viticult,2000,51:357-361
    [58]R. C. Minussi, M. Rossi, L. Bologna et al. Phenols removal in musts:strategy for wine stabilization by laccase. J Mol Catal B:Enzym,2007,45(3-4):102-107
    [59]E. Selinheimo, P. Lampila, M. L. Mattinen et al. Formation of protein-oligosaccharide conjugates by laccase and tyrosinase. J Agric Food Chem,2008,56:3118-3128
    [60]J. Abdullah, M. Ahmad, L. Y. Heng et al. An optical biosensor based on immobilization of laccase and MBTH in stacked films for the detection of catechol. Sensors,2007,7: 2238-2250
    [61]庞娅,曾光明,汤琳等.基于磁性碳纳米管和壳聚糖/二氧化硅凝胶的漆酶生物传感器及其制备方法和应用.201010157138.4.2010
    [62]M. Kurisawa, J. E. Chung, H. Uyama et al.Laccase-catalyzed synthesis and antioxidant property of poly(catechin).Macromol Biosci,2003,3(12):758-764
    [63]M. Schroeder, L. Pereira, S. R. Couto et al. Enzymatic synthesis of Tinuvin. Enzyme Microb Tech,2006,40:1748-1752
    [64]S. Witayakran, A. J. Ragauskas. Synthetic applications of laccase in green chemistry. Adv Synth Catal,2009,351:1187-1209
    [65]R. Bourbonnais, M. G. Paice. Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate). Appl Microbiol Biotechnol,1992,36:823-827
    [66]R. Bourbonnais, M. G. Paice, D. Leech et al. Reactivity and mechanism of laccase mediators for pulp delignification. Proc TAPPI Biol Sci Symp, San Francisco,19-23 October 1997,335-338
    [67]R. Bourbonnais, M. G. Paice. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett,1990,267:99-102
    [68]M. Solis-Oba, V. M. Ugalde-Saldivar, I. Gonzalez et al. An electrochemical spectrophoto metrical study of the oxidized forms of the mediator 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) produced by immobilized laccase. J Electroanal Chem,2005,579:59-66
    [69]H-P Call. Verfahren zur Veranderung, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ahnlichen Stoffen. Patent (International),1994, WO 94/29510
    [70]E. Srebotnik, K. E. Hammel. Degradation of nonphenolic lignin by the laccase/1-hydroxybenzotriazole system. J Biotechnol,2000,81:179-188
    [71]F. Xu, J. J. Kulys, K. Duke et al. Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds. Appl Environ Microbiol,2000,66:2052-2056
    [72]A. Calcaterra, C. Galli, P. Gentili. Phenolic compounds as likely natural mediators of laccase:A mechanistic assessment. Journal of Molecular Catalysis B-Enzymatic,2008,51: 118-120
    [73]S. Camarero, D. Ibarra, A. T. Martinez et al. Paper pulp delignification using laccase and natural mediators. Enzyme Microb Technol,2007,40:1264-1271
    [74]K. Murugesan, Y. Y. Chang, Y. M. Kim et al. Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Res,2010,44:298-308
    [75]M. A. Pickard, R. Roman, R. Tinoco et al. Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol,1999,65:3805-3809
    [76]J. R. Jeon, K. Murugesan, Y. M. Kim et al. Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Appl Microbiol Biotechnol, 2008,81:783-790
    [77]C. Felby, J. Hassingboe, M. Lund. Pilot-scale production of fiberboards made by laccase oxidized wood fibers:board properties and evidence for cross-linking of lignin. Enzyme and Microbial Technology,2002,31:736-741
    [78]朱家琪,史广兴.酶活化处理条件及其对松木纤维胶和性能的影响初探.林业科学,2004,4:153
    [79]C. Felby, L. G. Thygesen, A. Sanadi et al. Native lignin for bonding of fiber boards-evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech(Fagus sylvatica). Industrial Crops and Product,2004,20:181
    [80]S. Barsberg, G. T. Lisbeth. Spectroscopic properties of oxidation species generated in the lignin of wood fibers by a laccase catalyzed treatment:electronic hole state migration and stabilization in the lignin matrix. Biochimica et Biophysica Acta,1999,1472:625-642
    [81]段新芳,曹远林,曹永建等.漆酶活化处理对木材自由基变化的影响.林业科学,2007,43(3):134-136
    [82]S. Camarero, D. Ibarra, M. J. Martinez et al. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol,2005,71:1775-1784
    [83]A. Bruce, J. Palfreyman. Forest Products Biotechnology. Florida:CRC Press,1997
    [84]叶楚平,李陵岚,王念贵.天然胶黏剂.北京:化学工业出版社,2004
    [85]金春德,王进,周冠武等.漆酶活化处理条件对竹材活性氧类自由基变化的影响.林产工业,2008,35(6):32-36
    [86]李坚等.生物质复合材料学.北京:科学出版社,2008
    [87]李坚等.木材科学研究.北京:科学出版社,2009
    [88]李坚.木材科学(第二版).北京:高等教育出版社,2001
    [89]罗庆尧等.分光光度分析.北京:科学出版社,1998
    [90]徐秉玖.仪器分析.北京:北京大学医学出版社,2005
    [91]曹永健.漆酶活化木材生产人造板及其胶合机理研究.北京:北京林业大学,2005
    [92]周名成,俞汝勤.紫外与可见分光光度分析法.北京:化学工业出版社,1986
    [93]K. K. Pandey. Study of the effect of photo-irradiation on the surface chemistry of wood. Polymer Degradation and Stability,2005,90:9-20
    [94]S. Zahri, C. Belloncle, F. Charrier et al. UV light impact on ellagitannins and wood surface colour of European oak (Quercus petraea and Quercus robur). Applied Surface Science, 2007,253:4985-4989
    [95]K.Mitsui, S. Tsuchikawa. Low atmospheric temperature dependence on photodegradation of wood. Journal of Photochemistry and Photobiology B:Biology,2005,81:84-88
    [96]K.K. Pandey. A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polymer Degradation and Stability,2005,87:375-379
    [97]G. Papp, E. Barta, E. Preklet et al. Changes in DRIFT spectra of wood irradiated by UV laser as a function of energy. Journal of Photochemistry and Photobiology A:Chemistry. 2005,173:137-142
    [98]R. M. Rowell, S. Kawai, M. Inoue. Dimensional stabilized, very low density fiberboard. Wood Fiber Sci,1995,27(4):428-436
    [99]P. Chow, Z. Bao, J. A. Youngquist et al. Properties of hardboards made from acetylated aspen and southern pine. Wood Fiber Sci,1996,28(2):252-258
    [100]W. A. Press. Wax:types and applications. In:Proceedings of the NPA resin and blending seminar. National Particleboard Association, Gaithersburg, Maryland, USA, 1990,29-34
    [101]R. A. Garcia,Alain Cloutier,Bernard Riedl.Dimensional stability of MDF panels produced from fibres treated with maleated polypropylene wax. Wood Sci Technol,2005, 39:630-650
    [102]李巧霞,宋宝珍,仰振球等.香草醛交联的壳聚糖微囊的制备及表征.过程工程学报,2006,6(4):608-613
    [103]杨庆,梁伯润,窦丰栋等.以乙二醛为交联剂的壳聚糖纤维交联机理探索.纤维素科学与技术.2005,13(4):13-20
    [104]D. Fengel, M. Ludwig. Moglichkeiten und Grenzen der FTIR-Spektroskopie bei der Charakterisierung von Cellulose. Das Papier,1991,45 (2):45-51
    [105]E. Zavarin, S. J. Jones, L. G. Cool. Analysis of solid wood surfaces by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. J Wood Chem Technol, 1990,10:495-513
    [106]N. V. Ivanova, E. A. Korolenko, E. V. Korolik et al. Mathematical processing of IR-spectra of cellulose. Zurnal Prikladnoj Spektroskopii,1989,51:301-306
    [107]O. Faix. Classification of lignins from different botanical origins by FTIR spectroscopy. Holzforschung,1991,45 (Suppl):21-27
    [108]Y. Marechal, H. Chanzy. The hydrogen bond network in Ibeta cellulose as observed by infrared spectrometry. J Mol Struct,2000,523:183-196
    [109]宁永成.有机化合物结构鉴定与有机波谱学(第二版).北京:科学出版社,2000
    [110]彭云云,武书彬.蔗渣半纤维素的热裂解特性研究.中国造纸学报,2010,25(2):1-4
    [111]S. G. Burton. Laccases and phenol oxidases in organic synthesis-a review. Curr Org Chem,2003,7:1317-1331
    [112]C. Galli, P. Gentili. Chemical messengers:mediated oxidations with the enzyme laccase. J Phys Org Chem,2004,17:973-977
    [113]S. Witayakran, A. J. Ragauskas. Modification of high-lignin softwood kraft pulp with laccase and amino acids. Enzyme Microb Technol,2009,44:176-181
    [114]P. Baldrian. Fungal laccases-occurrence and properties. FEMS Microbiol Rev,2006, 30:215-242
    [115]F. Xu.Applications of oxidoreductases:recent progress. Ind Biotechnol,2005,1: 38-50
    [116]P. Alvira, E. Tomas-Pejo, M. Ballesteros et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:a review. Bioresour Technol,2010,101,4851-4861
    [117]S. Camarero, D. Ibarra, M. J. Martinez, et al. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol,2005,71:1775-1784
    [118]C. Galli, P. Gentili. Chemical messengers:mediated oxidations with the enzyme laccase. J Phys Org Chem,2004,17:913-911
    [119]M. Lahtinen, K. Kruus, P. Heinonen et al. On the Reactions of Two Fungal Laccases Differing in Their Redox Potential with Lignin Model Compounds:Products and Their Rate of Formation. J Agric Food Chem,2009,57:8357-8365
    [120]P. Nousiainen, P. Maijala, A. Hatakka et al. Syringyl-type simple plant phenolics as mediating oxidants in laccase catalyzed degradation of lignocellulosic materials:Model compound studies. Holzforschung,2009,63:699-704
    [121]Y. Marechal, H. Chanzy. The hydrogen bond network in Ibeta cellulose as observed by infrared spectrometry. J Mol Struct,2000,523:183-196
    [122]E. Pretsch, P. Buhlmann, C. Affolter. Structure Determinaton of Organic Compounds Tables of Spectral Data荣国斌译.上海:华东理工大学出版社,2002
    [123]K. Begg, S. Parkinson, R. Wilkinson. Maximizing GHG emissions reduction and sustainable development aspects in the clean development mechanism. World Resources Review,2001,13 (3):315-334
    [124]D. Cambria, D. Pierangeli. Application of a life cycle assessment to walnut tree (Juglans regia L.) high quality wood production:a case study in southern Italy. Journal of Cleaner Production,2012,23:37-46
    [125]S. G. Garci a, C. M. Gasol, R. G. Lozano et al. Assessing the global warming potential of wooden products from the furniture sector to improve their ecodesign. Science of the Total Environment,2011,410-411:16-25
    [126]G. S. Garcia, S. Berg, G. Feijoo et al. Comparative environmental assessment of wood transport models:A case study of a Swedish pulp mill. Science of the Total Environment, 2009,407:3530-3539
    [127]G. S. Garcia, A. Hospido, M. T. Moreira. Environmental impact assessment of total chlorine free pulp from Eucalyptus globulus in Spain. Journal of Cleaner Production,2009, 17:1010-1016
    [128]B. Rivela, M. T. Moreira, I. Munoz et al. Life cycle assessment of wood wastes:A case study of ephemeral architecture. Science of the Total Environment,2006,357:1-11
    [129]A. C. Dias, L. Arroja, I. Capela. Life cycle assessment of printing and writing paper produced in Portugal. International Journal of Life Cycle Assessment,2007,12:521-528
    [130]IPCC. Climate Change. In:The Science of Climate Change. Houghton JT, et al. (eds.) Cambridge:Cambridge University Press.1996
    [131]曹金珍.国外木材防腐技术和研究现状.林业科学,2006,42(7):120-126
    [132]李玉栋.木材防腐-延长木材使用寿命的有效措施.人造板通讯,2001,11:3-5
    [133]李坚.木材保护学.北京:科学出版社,2006
    [134]G. Wypych加速老化的相关性与使用寿命预测.环境技术,2001,4:23-26
    [135]许凤和,李晓骏,陈新文.复合材料老化寿命预测技术中大气环境当量的确定.复合材料学报,2001,18(2):93-96
    [136]余超,文庆珍,朱金华等.基于强韧度的特种氯丁橡胶使用寿命预测研究.弹性体,2011,21(1):15-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700