载银壳聚糖基层状硅酸盐纳米复合材料的结构组装与抗菌机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米银溶胶颗粒(Ag NP)是目前使用最广泛的纳米产品原料之一,其最常用的制备方法是化学还原法,然而所用的化学稳定剂与还原剂在一定程度上对人体或环境都有危害,且其难以与Ag NP彻底分离,这限制了Ag NP在医学及生物催化等领域的应用。因此,寻找绿色还原剂及稳定剂,开发简单、高效的Ag NP制备方法是纳米金属工业急需解决的问题之一。天然高分子壳聚糖是具有多羟基的大分子,由于分子间和分子内氢键的作用形成了分子水平上的独立空间,为纳米粒子的成长提供了良好的模板。蒙脱土等层状硅酸盐因层状空间的限域效应素有二维“纳米反应器”之称,被认为是纳米颗粒理想的稳定载体。壳聚糖基层状硅酸盐(CLS)纳米复合材料是壳聚糖或其衍生物在外力驱动下插层进入层状硅酸盐的层间而获得的结合了壳聚糖和无机硅酸盐优异性能的杂化材料。目前关于CLS纳米复合材料的研究甚多,但还未见关于以其为载体制备金属纳米颗粒的报道。
     本文采用高效快速的微波辐射法制备了壳聚糖衍生物和有机层状硅酸盐、CLS纳米复合材料和剥离型的含纳米银CLS纳米复合材料;并探讨了插层机制、抗菌机理及多功能化的应用。本文主要研究内容及结论如下:
     1.水溶性壳聚糖衍生物的微波辐射法快速制备及其性能研究
     (1)快速制备不同取代度的壳聚糖衍生物
     微波辐射条件下,在水相中快速制备壳聚糖水溶性衍生物——壳聚糖季铵盐(QCS)、羧甲基壳聚糖季铵盐(QCMC)和羧甲基壳低聚糖季铵盐(QCMCO)。微波辐射法可以在短时间内快速得到与传统加热法结构一致且取代度更高的QCS。通过改变微波时间、功率和改性剂用量,可以控制QCMC中羧甲基和季铵基的取代度,在最适宜条件下,羧甲基取代度(DSCM)和季铵基取代度(DSQ)最高分别为82%和48%。
     (2)壳聚糖衍生物的性能研究
     制备的QCS有诱导CaCO3悬浊液絮凝的能力,其絮凝行为与取代度成正比,与分子量成反比,QCS的最佳絮凝浓度为6mg/L。
     QCMCO具有良好的抗氧化性,且与其浓度成正比,与DSCM和DSQ密切相关,当其浓度仅为5mg/mL时,·OH的清除率最高可达到63.6%,Fe~(2+)螯合能力最高为81.98%。
     2.微波辐射法快速制备有机蒙脱土并研究其吸附性能
     在微波辐射条件下,利用新型双链阳离子表面活性剂烷基Gemini和酯基季铵盐作为改性剂快速地制备大层间距的Gemini-蒙脱土(GMMT)和酯基蒙脱土(EMMT)。Gemini和酯基季铵盐的饱和插层量分别为0.5CEC和0.8CEC,有机蒙脱土GMMT和EMMT的最大层间距分别为2.31nm和2.41nm。此外,微波辐射法得到的GMMT层间距(2.31nm)大于传统加热法得到GMMT(2.23nm)。Gemini与MMT之间以静电作用连接,通过插层、插层-吸附和吸附等三种方式结合;然而,即使酯基季铵盐插层饱和,其依然可以通过吸附的方式与MMT结合,同时EMMT的层间距保持不变。
     GMMT和EMMT的表面均为疏水性、结构粗糙蓬松,因此两者均有卓越的吸附能力。GMMT对甲基橙的吸附随Gemini分子链长的增加而增强,最高实际吸附量为48mg/g;EMMT对TCS的吸附遵循Langmuir吸附等温模型,最高理论吸附量达133mg/g。
     3.分子参数对CLS纳米复合材料结构与性能的影响研究
     (1)壳聚糖衍生物含量对插层过程的影响
     DSCM和DSQ分别为56.3%和74.6%、分子量为2.9×105的QCMC与OMMT插层复合时,羧甲基壳聚糖季铵盐/有机蒙脱土(QCOM)纳米复合材料的层间距与QCMC的含量成正比。DSCM和DSQ分别为88%和75%、分子量为2×104的QCMCO与有机累托石(OREC)插层复合时,羧甲基壳低聚糖季铵盐/有机累托石(QCOOR)纳米复合材料的层间距随着QCMCO的含量的增加而呈先升后降的趋势。
     (2)取代度对插层过程的影响
     由分子量为2.6×105~3.0×105的QCMC获得的QCOM纳米复合材料中,高的DSQ可以促进插层反应的进行,增加QCOM纳米复合材料的层间距:当DSCM约为30%,DSQ从29.6%增加到73.9%时,QCOM纳米复合材料的层间距从3.70nm增加到4.50nm。但是,QCOM纳米复合材料的层间距随着DSCM的增加而先升后降:当DSQ约为30%,DSCM从30.4%增加到85.2%时,QCOM纳米复合材料的层间距从3.70nm增加到4.22nm再降到3.79nm。
     由分子量为8×103~2.0×104的QCMCO获得的QCOOR纳米复合材料中,增加DSCM有利于插层反应的进行,可以得到更大层间距的纳米复合材料。当DSQ约为45%,DSCM从23%增加到91%时,QCOOR纳米复合材料的层间距从4.37nm增加到4.78nm;但是DSQ对QCOOR纳米复合材料层间距影响较小。
     (3)剥离型CLS纳米复合材料的制备
     对于分子量为2.6×105~3.0×105的QCMC,当DSCM和DSQ分别为53.6%和41.3%,且QCMC与OMMT质量比为8:1时,可以得到剥离型的QCOM纳米复合材料;对于分子量为8×103~2.0×104的QCMCO,当DSCM和DSQ分别为88%和75%时,且QCMCO与OREC质量比为4:1,可以得到剥离型的QCOOR纳米复合材料;分子量为8.28×104、DSCM和DSQ分别为72%和80%的QCMC,在与REC的质量比不小于4:1时,可以得到剥离型的羧甲基壳聚糖季铵盐/累托石(QCR)纳米复合材料。
     4. CLS纳米复合材料的性能研究
     (1)CLS纳米复合材料的絮凝行为
     壳聚糖季铵盐/有机蒙脱土(QOM)纳米复合材料耦合了QCS和OMMT的优异性能,具有良好的絮凝性,在用量仅仅为0.005mg/L时,QOM纳米复合材料对CaCO3悬浮液的絮凝效率大于70%,仅是阳离子淀粉等传统絮凝剂用量的千分之一。
     (2)CLS纳米复合交联微球的控释行为
     羧甲基壳聚糖季铵盐/有机蒙脱土(QCOM)纳米复合材料与海藻酸钠交联微球(AQCOM)的溶胀行为和控释行为受OMMT影响显著。随着QCOM纳米复合材料中QCMC与OMMT的质量比从1:1增加到8:1,交联微球的溶胀率从44%增加到197%;增加QCMC的含量和QCOM纳米复合材料的层间距有助于提高AQCOM交联微球的包封率;适量OMMT对于药物控释有积极的效果,但是当OMMT的含量过高时,会降低交联微球的控释能力。此外,豚鼠的主动皮肤过敏实验表明,AQCOM交联微球不会引起过敏反应,是一种安全的药物载体。
     (3)CLS纳米复合材料的抗菌性能
     与QCMCO相比,与累托石(REC)插层复合后的羧甲基壳低聚糖季铵盐/累托石(QCOR)纳米复合材料的抗菌性提高。经过QCOR纳米复合材料处理过后的革兰氏阳性菌和革兰氏阴性菌的细菌表面出现塌陷和变形、细菌细胞壁破裂有细胞内容物渗出,而真菌的孢子破裂,正常生理活动受到抑制。此外,QCOR纳米复合材料对革兰氏阳性菌的抑制效果优于革兰氏阴性菌和真菌。
     5.载银的CLS纳米复合材料的结构组装与抗菌机理研究
     (1)用Tollens试剂法制备壳聚糖基纳米银复合材料
     利用羧甲基和季铵基的还原能力,在微波辐射条件下快速地获得粒径均一、单分散的球形Ag NP,升高反应温度或延长反应时间均有利于Ag NP的生成。羧甲基壳聚糖(CMC)、QCS和QCMC制备Ag NP的活化能分别为69.7、62.8和103.7kJ/mol。与羧甲基相比,季铵基更利于Ag NP的制备,CMC-Ag、QCS-Ag和QCMC-Ag的含银量分别是0.67‰、4.85‰和5.57‰,Ag NP粒径主要分布在60~80nm、40~60nm和5~12nm范围内。FT-IR和NMR证明,在反应过程中壳聚糖分子链结构保持完整并且羧甲基和季铵基不能完全反应用于制备Ag NP,残留的壳聚糖衍生物可能形成网状结构包裹生成的纳米银颗粒并防止其团聚。通过TEM观察,Ag NP主要为球形,有少量方形和棒状。此外,壳聚糖基纳米银复合材料的热稳定性均高于壳聚糖衍生物
     (2)载银CLS纳米复合材料的组装机制
     初始QCS与Ag+比例从100mg:0.1mmol增加到100mg:1mmol时,载银壳聚糖季铵盐/蒙脱土(QMAg)纳米复合材料和载银壳聚糖季铵盐/有机蒙脱土(QOMAg)纳米复合材料中银的含量分别从0.07‰增加到14.14‰、0.61‰增加到33.21‰;层状硅酸盐用量从5mg提高到20mg时,载银羧甲基壳聚糖季铵盐/累托石(QCRAg)纳米复合材料和载银羧甲基壳聚糖季铵盐/有机累托石(QCORAg)纳米复合材料中银的含量分别从0.16‰增加到7.75‰、0.91‰增加到12.04‰。
     有机层状硅酸盐中含有的表面活性剂并没有参与到制备Ag NP的化学反应中,但是可以提高Ag NP的生成量。TEM研究表明,干燥的载银CLS纳米复合材料中Ag NP颗粒依然是球形,保持着良好的分散状态且粒径均一,而且剥离的硅酸盐片层均匀地分布在壳聚糖基体中作为Ag NP的生长模板。载银的CLS纳米复合材料具有良好的热稳定性,且随着Ag+和层状硅酸盐用量的增加而增强。
     (3)载银的CLS纳米复合材料的抗菌机理
     抗菌实验结果表明,载银的CLS纳米复合材料具有卓越的抗菌性,且随着Ag NP含量的增加而提高。QMAg和QOMAg纳米复合材料最低抑菌浓度(MIC)分别为0.0005%和0.00001%(wt.),仅是QM和QOM纳米复合材料的1/2000和1/200。其抗菌过程如下:首先,具有大比表面积的MMT具有吸附和固定细菌的作用,QCS与Gemini的疏水基团与细胞壁中脂蛋白、脂多糖和磷脂等亲脂性化合物发生作用,从而更好地吸附和固定细菌;其次,QCS和Gemini中季铵基与细胞表面形成复合物,改变细胞膜的通透性,扰乱细胞膜的正常生理活动;第三,Ag NP可以与细菌细胞壁和细胞质中含S、P的化合物作用,影响细胞的渗透和分裂,从而导致细菌的死亡。
Silver nanoparticle (Ag NP) is one of the most widely used nanophase materials, which iscommonly prepared via chemical reduction method. However, the additional reducing andstabilizing agents are harmful to human or enviroment in some extent, and they cannot beseparated completely from Ag NP, which limits its applications in medicine and biocatalysisareas. Therefore, it is urgent to find the green reducing and stabilizing agents and developefficient preparation method of Ag NP for nano metal industry. Chitosan is a naturalbiopolymer with many hydroxyl groups. The intermolecular and intramolecular hydrogenbonds in chitosan result in its independent space on the molecular level, which can provide agood template for the growth of nanoparticles. Due to the confinement effect of the layerspace, layered silicate such as montmorillonite is known as two dimension nano-reactor, andconsidered to be the perfect stability carrier for nanoparticles. Chitosan-based layered silicate(CLS) nanocomposites are synthesized by chitosan or its derivatives intercalation into theinterlayer of layered silicate under an external force, they are hybrid materials which cancombine the excellent capability of chitosan and silicate. At present, CLS nanocompositeshave been studied extensively, however, few researches are about the preparation of metalnanoparticles by using CLS nanocomposites as carrier.
     The objectives of the present study were to prepare chitosan derivatives, organic layeredsilicate, CLS nanocomposites and exfoliated Ag NP loaded CLS nanocomposites undermicrowave irradiation, and the intercalation mechanisms, antibacterial mechanisms andfunctional applications were investigated. The results are listed as follow:
     1. Rapid preparation of water-soluble chitosan derivatives xia microwave irradiationmethod and their properties
     (1) Rapid preparation of chitosan derivatives with various degree of substitution
     Water-soluble chitosan derivatives such as quaternized chitosan (QCS), quaternizedcarboxymethyl chitosan (QCMC) and quaternized carboxymethyl chitosan oligosaccharides(QCMCO) were rapidly prepared under microwave irradiation in the aqueous solution. TheQCS obtained by microwave irradiation method had similar structure and higher degree ofsubstitution (DS) as compared to those obtained by traditional heating method. The degree ofsubstitution of carboxymethyl (DSCM) or quarternary ammonium (DSQ) groups of QCMC canbe controlled by changing the microwave time, microwave power and the dosage of modified agents, the highest DSCMand DSQof82%and48%respectively were obtained in theappropriate conditions.
     (3) Study on the properties of chitosan derivatives
     The obtained QCS could flocculate CaCO3suspension. The flocculation behavior of QCSwas directly proportional to its DS and inversely proportional to the molecular weight, withthe best flocculation concentration of6mg/L.
     QCMCO had excellent oxidation resistance, which was positively proportional to itsconcentration and closely related to DSCMand DSQ. When the concentration of QCMCO wasonly5mg/mL, the scavenging rate on OH was63.6%, and the Fe~(2+)chelating ability was81.98%.
     2. Rapid preparation of organic montmorillonite by microwave irradiation methodand their adsorption properties
     Gemini-MMT (GMMT) and ester-MMT (EMMT) with large layer spacing were quicklyprepared by using new cationic surfactants of Gemini and Esterquat as modifier undermicrowave irradiation condition. With the saturated intercalation dosage of Gemini andEsterquat of0.5CEC and0.8CEC, the largest layer spacing of GMMT and EMMT was2.31nm and2.41nm respectively. In addition, the layer spacing of GMMT obtained by microwaveirradiation method (2.31nm) was larger than that by traditional heating method (2.23nm).Gemini was connected with MMT by electrostatic interaction, with combination ways ofintercalation, intercalation-adsorption and adsorption. However, even if the intercalation ofEsterquat was saturated, it was still combined with MMT by adsorption with the unchangedlayer spacing.
     The surface of GMMT and EMMT was hydrophobic, rough and fluffy. Therefore,bothGMMT and EMMT had excellent adsorption ability. The adsorption ability of GMMTincreased with increasing chain length of Gemini molecules, with the maximum actualadsorption capacity of48mg/g. The adsorption process of EMMT for triclosan was followedas the Lange Samuel isothermal adsorption equation, with the maximum theoreticaladsorption capacity of133mg/g.
     3. The effect of molecular parameters on the structure and properties of CLSnanocomposites
     (1) The effect of dosage on the intercalation process
     The layer spacing of carboxymethyl quaternized chitosan/organic montmorillonite (QCOM)nanocomposites was proportional to the dosage of QCMC, when the DSCMand DSQof QCMCwas56.3%and74.6%respectively and its weight molecular weight (Mw) was2.9×105. Thelayer spacing of carboxymethyl quaternized chitosan oligosaccharide/organic rectorite(QCOOR) nanocomposites showed a firstly raised and then decreased trend with theincreasing dosage of QCMC, which the DSCMand DSQof QCMCO was88%and75%respectively and its Mwwas2×104.
     (2) The effect of DS on the intercalation process
     In the QCOM nanocomposites which obtained by the QCMC with Mwof2.6×105~3.0×105,the higher DSQcould promote the intercalation reaction, and extend the layer spacing ofQCOM nanocomposites. For example, when DSCMwas about30%, DSQincreased from29.6%to73.9%, the layer spacing of QCOM nanocomposites increased from3.70nm to4.50nm. But, the layer spacing of QCOM nanocomposites showed firstly increased and thendecreased trend with the increasing DSCMof QCMC. For example, when DSQwas about30%,DSQincreased from30.4%to85.2%, the layer spacing of QCOM nanocomposites increasedfrom3.70nm to4.22nm, and then decreased to3.79nm.
     In the QCOOR nanocomposites obtained by the QCMCO with Mwof8×103~2.0×104, theenhancemnt of the DSCMwas benefit for intercalation reaction, and getting larger layerspacing. For example, when DSQwas about45%, DSQincreased from23%to91%, the layerspacing of QCOOR nanocomposites increased from4.37nm to4.78nm. But DSQhad littleimpact on the layer spacing of QCOOR nanocomposites.
     (3) Preparation of exfoliated CLS nanocomposites
     The exfoliated QCOM nanocomposites can be obtained when Mwof QCMC was2.6×105~3.0×105, its DSCMand DSQwas53.6%and41.3%respectively, and the mass ratio ofQCMC to OMMT was8:1. But the exfoliated QCOOR nanocomposite was obtained whenMwof QCMCO was8×103~2.0×104, its DSCMand DSQwas88%and75%respectively, andthe mass ratio of QCMCO to OREC was4:1. Besides, the exfoliated quaternizedcarboxymethyl chitosan/rectorite (QCR) nanocomposite was obtained when Mwof QCMCwas8×103~2.0×104, its DSCMand DSQwas72%and80%respectively, and the quality ratio of QCMC to REC was above4:1.
     4. Study on the performance of CLS nanocomposites
     (1) Flocculation behavior of CLS nanocomposites
     Quaternized chitosan/organic montmorillonite (QOM) nanocomposites which combined theexcellent performance of QCS and OMMT showed good flocculation capacity. Theflocculation efficiency of QOM nanocomposite on CaCO3suspension was more than70%,when its dosage was0.005mg/L, which was only one-thousandth dosage of the traditionalflocculant such as cationic starch.
     (2) The controlled-release behavior of CLS crosslinked nanocomposite microsphere
     The swelling behavior of quaternized carboxymethyl chitosan/organic montmorillonite(QCOM) nanocomposite (AQCOM) microsphere crosslinked with alginate was significantlyaffected by OMMT. With the mass ratios of QCMC to OMMT increased from1:1to8:1inQCOM nanocomposites, the swelling ratios of AQCOM microspheres was reached from44%to197%. The encapsulation efficiency of AQCOM microspheres increased with increasingcontent of QCMC and the layer spacing of QCOM nanocomposites. An appropriate dosage ofOMMT could be contributed to the controlled-release behavior of AQCOM microspheres, butexcessive levels of OMMT could destroy the behavior. In addition, the in vitro activecutaneous anaphylaxis test was carried out on guinea pigs, which revealed that AQCOMmicrosphere did not cause anaphylaxis.
     (3) The antibacterial behavior of CLS nanocomposites
     The antibacterial activity of quaternized carboxymethyl chitosan oligosaccharides/rectorite(QCOR) nanocomposites was better than that of QCMCO. The Gram-positive bacteria andGram-negative bacteria which treated by QCOR nanocomposite had following phenomenon:the surface was collapse and deformation, the bacterial cell walls even ruptured and the cellcontents seep away, while the fungal spores burst and their normal physiological activity wasinhibited. In addition, the inhibitory effect of QCOR nanocomposite on the Gram-positivebacteria was better than that of Gram-negative bacteria and Fungi.
     5. Study on the structural assembly and antibacterial mechanism of Ag NP loadedCLS nanocomposites
     (1) Preparation of Ag NP loaded chitosan-based nanocomposites by Tollen method
     The spherical Ag NP with uniform size was quickly obtained under microwave irradiationby utilizing the reducing capacity of carboxymethyl groups and quaternary ammonium groups.The elevating reaction temperature or prolonging the reaction time was conducive to theformation of Ag NP. The preparation activation energy of carboxymethyl chitosan (CMC),QCS and QCMC was69.7,62.8and103.7kJ/mol, respectively. Compared withcarboxymethyl groups, quaternary ammonium groups are more beneficial to prepare Ag NP.The silver content of CMC-Ag, QCS-Ag and QCMC-Ag was0.67‰,4.85‰and5.57‰respectively, and particle size of Ag NPs was mainly in the range of60-80nm,40-60nm and5-12nm, respectively. The results of FT-IR and NMR revealed that not all the carboxymethylgroups and quaternary ammonium groups were reducted for synthesizing Ag NP, and theremaining chitosan chain might form networks to wrap Ag NP and prevent their reunion.TEM micrographs showed that Ag NP was in mainly spherical, and few square or bar form. Inaddition, the thermal stability of Ag NP loaded chitosan-based composites was higher thanthat of chitosan derivatives.
     (2) The assembly mechanism of Ag NP loaded CLS composites
     When the mass ratio of initial quaternized chitosan to Ag+increased from100mg:0.1mmol to100mg:1mmol, the silver content in Ag NP loaded quaternizedchitosan/montmorillonite (QMAg) nanocomposites and Ag NP loaded quaternizedchitosan/organic montmorillonite (QOMAg) nanocomposites increased from0.07‰to14.14‰and0.61‰to33.21‰, respectively. And when the dose ratio of clay increased from5mg to20mg, the silver content in Ag NP loaded quaternized carboxymethylchitosan/rectorite (QCRAg) nanocomposites and Ag NP loaded quaternized chitosan/organicrectorite (QCORAg) nanocomposites increased from0.16‰to7.75‰and0.91‰to12.04‰,respectively.
     The surfactant in the organic clay did not take part in the chemical reaction of Ag NPpreparation, but it could increase the yield of Ag NP. TEM micrographs showed that Ag NPmaintained spherical in drying Ag NP loaded CLS nanocomposites, with uniformity size anddispersion, and the exfoliated silicate layers were evenly distributed in chitosan derivativesmatrix as the growth template of Ag NP. Ag NP loaded CLS nanocomposites showedexcellent thermal stability, which enhanced with increasing amount of Ag+and clay.
     (3) The antimicrobial mechanism of Ag NP loaded CLS nanocomposites
     QMAg and QOMAg nanocomposites had excellent antibacterial activity which wasincreased with increasing Ag NP content, and the minimum inhibitory concentration (MIC)was0.0005%and0.00001%(wt.) respectively, which was only1/2000and1/200time thanQM and QOM nanocomposites. The antimicrobial course may be the following: firstly, MMTwith large specific surface area had the capacity of adsorption and immobilization onmictobes, hydrophobic groups in QCS and Gemini can also be associated with the cell wall oflipoprotein, lipopolysaccharide and phospholipids and other lipophilic compounds, whichresulted in better adsorption and immobilization on bacteria; secondly, quaternary ammoniumgroups in QCS and Gemini can form complexes with cell surface, thereby the permeability ofcell membrane was changed, cell membrane of normal physiological activity was disrupted;thirdly, Ag NP can be associated with bacterial cell wall and cytoplasm containing S, Pcompound, which can affect cell infiltration and split, resulting in the death of bacteria.
引文
[1] Fernandes S C M, Freire C S R, Silvestre A J D, et al. Novel materials based on chitosanand cellulose [J]. Polymer International,2011,60(6):875-882.
    [2] Jayakumar R, Prabaharan M, Nair S V, et al. Novel carboxymethyl derivatives of chitinand chitosan materials and their biomedical applications [J]. Progress in MaterialsScience,2010,55(7):675-709.
    [3] Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan [J].Advanced Drug Delivery Reviews,2010,62(1):3-11.
    [4] Dash M, Chiellini F, Ottenbrite R M, et al. Chitosan-Aversatile semi-synthetic polymerin biomedical applications [J]. Progress in Polymer Science,2011,36(8):981-1014.
    [5] Aranaz I, Harris R, Heras A. Chitosan amphiphilic derivatives: Chemistry andapplications [J]. Current Organic Chemistry,2010,14(3):308-330.
    [6]马宁,汪琴,孙胜玲,等.甲壳素和壳聚糖化学改性研究进展[J].化工进展,2004,16(4):643-653.
    [7] Sajomsang W. Synthetic methods and applications of chitosan containing pyridylmethylmoiety and its quaternized derivatives: A review [J]. Carbohydrate Polymers,2010,80(3):631-647.
    [8] Sun L P, Du Y M, Fan L H, et al. Preparation, characterization and antimicrobial activityof quaternized carboxymethyl chitosan and application as pulp-cap [J]. Polymer,2006,47(6):1796-1804.
    [9] Cai Z S, Song Z Q, Shang S B, et al. Study on the flocculating properties of quaternizedcarboxymethyl chitosan [J]. Polymer Bulletin,2007,59(5):655-665.
    [10] Guo Z, Xing R, Liu S, et al. Synthesis and hydroxyl radicals scavenging activity ofquaternized carboxymethyl chitosan [J]. Carbohydrate Polymers,2008,73(1):173-177.
    [11] Liang X F, Wang H J, Luo H, et al. Characterization of novel multifunctional cationicpolymeric liposomes formed from octadecyl quaternized carboxymethylchitosan/cholesterol and drug encapsulation [J]. Langmuir,2008,24(14):7147-7153.
    [12]陈煜,唐焕林,孟薇薇,等.新型两性聚电解质型壳聚糖衍生物CMCTS-g-GDDA的制备及性能初探[J].高校化学工程学报,2009,23(5):906-910.
    [13] Xu T, Xin M, Li M, et al. Synthesis, characteristic and antibacterial activity ofN,N,N-trimethyl chitosan and its carboxymethyl derivatives [J]. Carbohydrate Polymers,2010,81(4):931-6.
    [14] Cai Z S, Song Z Q, Yang C S, et al. Synthesis, characterization and antibacterial activityof quaternized N,O-(2-carboxyethyl) chitosan [J]. Polymer Bulletin,2009,62(4):445-756.
    [15] Sun L P, Du Y M, Shi X W, et al. A new approach to chemically modified carboxymethylchitosan and study of its moisture-absorption and moisture-retention abilities [J]. Journalof Applied Polymer Science,2006,102(2):1303-1309.
    [16] Cai Z S, Yang C S, Zhu X M. Preparation of quaternized carboxymethyl chitosan and itscapacity to flocculate COD from printing wastewater [J]. Journal of Applied PolymerScience,2010,118(1):299-305.
    [17]张惠欣,葛丽环,周宏勇,等.羧烷基-季铵两性壳聚糖的制备及其阻垢杀菌性能[J].化工进展,2011,30(9):2055-2059.
    [18] Pavlidou S, Papaspyrides C D. A review on polymer-layered silicate nanocomposites [J].Progress in Polymer Science,2008,33(12):1119-1198.
    [19] Pagacz J, Pielichowski K. Preparation and characterization of PVC/montmorillonitenanocomposites-a review [J]. Journal of Vinyl and Additive Technology,2009,15(2):61-76.
    [20] Park J H, Jana S C. Mechanism of exfoliation of nanoclay particles in epoxy-claynanocomposites [J]. Macromolecules,2003,36(8):2758-68.
    [21] Haq M, Burgueno R, Mohanty A K, et al. Processing techniques for bio-basedunsaturated-polyester/clay nanocomposites: Tensile properties, efficiency, and limits [J].Composites Part A-Applied Science and Manufacturing,2009,40(4):394-403.
    [22] Matero R, Rahtu A, Ritala M. In situ quadrupole mass spectrometry and quartz crystalmicrobalance studies on the atomic layer deposition of titanium dioxide from titaniumtetrachloride and water [J]. Chemistry of Materials,2001,13(12):4506-4511.
    [23] Vaia R A, Giannelis E P. Lattice model of polymer melt intercalation inorganically-modified layered silicates [J]. Macromolecules,1997,30(25):7990-7999.
    [24] Wang Y Q, Wu Y P, Zhang H F, et al. Preparation, structure, and properties of a novelrectorite/nitrile butadiene rubber (NBR) nanocomposites [J]. Polymer Journal,2005,37(3):154-61.
    [25]王小英,杜予民,孙润仓,等.壳聚糖基层状硅酸盐纳米复合材料[J].化学进展,2009,21(7):1507-1514.
    [26] Darder M, Colilla M, Ruiz-Hitzky E. Biopolymer-clay nanocomposites based onchitosan intercalated in montmorillonite [J]. Chemistry of Materials,2003,15(20):3774-3780.
    [27] Kamo M, Sato Y, Matsumoto S, et al. Diamond synthesis from gas phase in microwaveplasma [J]. Journal of Crystal Growth,1983,62(3):642–644.
    [28] Adam D. Microwave chemistry: Out of the kitchen [J]. Nature,2003,421(6923):571-572.
    [29] Kabiri K, Mirzadeh H, Zohuriaan-Mehr M J. Highly rapid preparation of a bio-modifiednanoclay with chitosan [J]. Iranian Polymer Journal,2007,16(3):147-151.
    [30] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwavefrequencies [J]. Science,2006,314(5801):977-980.
    [31] Varma R S. Solvent-free organic syntheses-using supported reagents and microwaveirradiation [J]. Green Chemistry,1999,1(1):43-55.
    [32] Liu A, Berglund L A. Clay nanopaper composites of nacre-like structure based onmontmorrilonite and cellulose nanofibers-Improvements due to chitosan addition [J].Carbohydrate Polymers,2012,87(1):53-60.
    [33] Joshi G V, Kevadiya B D, Mody H M, et al. Confinement and controlled release ofquinine on chitosan-montmorillonite bionanocomposites [J]. Journal of Polymer SciencePart A-Polymer Chemistry,2012,50(3):423-430.
    [34] Ennajih H, Bouhfid R, Essassi E M, et al. Chitosan-montmorillonite bio-based aerogelhybrid microspheres [J]. Microporous and Mesoporous Materials,2012,152:208-213.
    [35] Wang X, Liu B, Wang X, et al. Amphoteric polymer-clay nanocomposites withdrug-controlled release property [J]. Current Nanoscience,2011,7(2):183-190.
    [36] Pandey S, Mishra S B. Organic-inorganic hybrid of chitosan/organoclaybionanocomposites for hexavalent chromium uptake [J]. Journal of Colloid and InterfaceScience,2011,361(2):509-520.
    [37] Li X, Li X, Ke B, et al. Cooperative performance of chitin whisker and rectorite fillerson chitosan films [J]. Carbohydrate Polymers,2011,85(4):747-752.
    [38] Yuan Q, Shah J, Hein S, et al. Controlled and extended drug release behavior ofchitosan-based nanoparticle carrier [J]. Acta Biomaterialia,2010,6(3):1140-1148.
    [39] Wang X, Strand S P, Du Y, et al. Chitosan-DNA-rectorite nanocomposites: Effect ofchitosan chain length and glycosylation [J]. Carbohydrate Polymers,2010,79(3):590-596.
    [40] Wang X, Liu B, Ren J, et al. Preparation and characterization of new quaternizedcarboxymethyl chitosan/rectorite nanocomposite [J]. Composites Science andTechnology,2010,70(7):1161-1167.
    [41] Wang X Y, Tang Y F, Li Y, et al. The rheological behaviour and drug-delivery property ofchitosan/rectorite nanocomposites [J]. Journal of Biomaterials Science-Polymer Edition,2010,21(2):171-184.
    [42] Lavorgna M, Piscitelli F, Mangiacapra P, et al. Study of the combined effect of both clayand glycerol plasticizer on the properties of chitosan films [J]. Carbohydrate Polymers,2010,82(2):291-298.
    [43] Khunawattanakul W, Puttipipatkhachorn S, Rades T, et al. Chitosan-magnesiumaluminum silicate nanocomposite films: Physicochemical characterization and drugpermeability [J]. International Journal of Pharmaceutics,2010,393(1-2):219-229.
    [44] Hua S, Yang H, Wang W, et al. Controlled release of ofloxacin fromchitosan-montmorillonite hydrogel [J]. Applied Clay Science,2010,50(1):112-117.
    [45] Han Y S, Lee S H, Choi K H, et al. Preparation and characterization of chitosan-claynanocomposites with antimicrobial activity [J]. Journal of Physics and Chemistry ofSolids,2010,71(4):464-467.
    [46] Gaharwar A K, Schexnailder P J, Jin Q, et al. Addition of chitosan to silicate cross-linkedpeo for tuning osteoblast cell adhesion and mineralization [J]. Applied Materials andInterfaces,2010,2(11):3119-3127.
    [47] Chaudhary D, Went M R, Nakagawa K, et al. Molecular pore size characterization withinchitosan biopolymer using positron annihilation lifetime spectroscopy [J]. MaterialsLetters,2010,64(23):2635-2637.
    [48] Bleiman N, Mishael Y G. Selenium removal from drinking water by adsorption tochitosan-clay composites and oxides: Batch and columns tests [J]. Journal of HazardousMaterials,2010,183(1-3):590-595.
    [49] Anirudhan T S, Rijith S, Tharun A R. Adsorptive removal of thorium(IV) from aqueoussolutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix:Process design and equilibrium studies [J]. Colloids and Surfaces A-Physicochemicaland Engineering Aspects,2010,368(1-3):13-22.
    [50] Zheng Y, Wang A. Evaluation of ammonium removal using a chitosan-g-poly (acrylicacid)/rectorite hydrogel composite [J]. Journal of Hazardous Materials,2009,171(1-3):671-677.
    [51] Wang X Y, Du Y M, Sun R C, et al. Antimicrobial activity of quaternizedchitosan/organic rectorite nanocomposite [J]. Journal of Inorganic Materials,2009,24(6):1236-1242.
    [52] Park J H, Lee H W, Chae D K, et al. Electrospinning and characterization of poly(vinylalcohol)/chitosan oligosaccharide/clay nanocomposite nanofibers in aqueous solutions[J]. Colloid and Polymer Science,2009,287(8):943-950.
    [53] Liang S, Liu L, Huang Q, et al. Unique rheological behavior of chitosan-modifiednanoclay at highly hydrated state [J]. Journal of Physical Chemistry B,2009,113(17):5823-5828.
    [54] Kabiri K, Mirzadeh H, Zohuriaan-Mehr M J, et al. Chitosan-modifiednanoclay-poly(AMPS) nanocomposite hydrogels with improved gel strength [J].Polymer International,2009,58(11):1252-1259.
    [55] Jin Q, Schexnailder P, Gaharwar A K, et al. Silicate cross-linked bio-nanocompositehydrogels from PEO and chitosan [J]. Macromolecular Bioscience,2009,9(10):1028-1035.
    [56] Depan D, Kumar A P, Singh R P. Cell proliferation and controlled drug release studies ofnanohybrids based on chitosan-g-lactic acid and montmorillonite [J]. Acta Biomaterialia,2009,5(1):93-100.
    [57] Choudhari S K, Kariduraganavar M Y. Development of novel composite membranesusing quaternized chitosan and Na+-MMT clay for the pervaporation dehydration ofisopropanol [J]. Journal of Colloid and Interface Science,2009,338(1):111-120.
    [58] Wang X Y, Pei X F, Du Y M, et al. Quaternized chitosan/rectorite intercalative materialsfor a gene delivery system [J]. Nanotechnology,2008,19(37):doi:10.1088/0957-4484/19/37/375102
    [59] Wang X Y, Du Y M, Luo J W. Biopolymer/montmorillonite nanocomposite: Preparation,drug-controlled release property and cytotoxicity [J]. Nanotechnology,2008,19(6):doi:10.1088/0957-4484/19/6/065707
    [60] Wang L, Zhang J, Wang A. Removal of methylene blue from aqueous solution usingchitosan-g-poly (acrylic acid)/montmorillonite superadsorbent nanocomposite [J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2008,322(1-3):47-53.
    [61] Tang C, Xiang L, Su J, et al. Largely improved tensile properties of chitosan film viaunique synergistic reinforcing effect of carbon nanotube and clay [J]. Journal of PhysicalChemistry B,2008,112(13):3876-3881.
    [62] Tan W, Zhang Y, Szeto Y S, et al. A novel method to prepare chitosan/montmorillonitenanocomposites in the presence of hydroxy-aluminum oligomeric cations [J].Composites Science and Technology,2008,68(14):2917-2921.
    [63] Shi Q, Li Q, Shan D, et al. Biopolymer-clay nanoparticles composite system(Chitosan-laponite) for electrochemical sensing based on glucose oxidase [J]. MaterialsScience and Engineering C-Biomimetic and Supramolecular Systems,2008,28(8):1372-1375.
    [64] Katti K S, Katti D R, Dash R. Synthesis and characterization of a novelchitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering [J].Biomedical Materials,2008,3(3): doi:10.1088/1748-6041/3/3/034122
    [65] Wang X Y, Du Y M, Yang J, et al. Preparation, characterization, and antimicrobialactivity of quaternized chitosan/organic montmorillonite nanocomposites [J]. Journal ofBiomedical Materials Research Part A,2008,84A(2):384-390.
    [66] Liu K H, Liu T Y, Chen S Y, et al. Drug release behavior of chitosan-montmorillonitenanocomposite hydrogels following electro stimulation [J]. Acta Biomaterialia,2008,4(4):1038-45.
    [67] Chang M Y, Kao H C, Juang R S. Thermal inactivation and reactivity of beta-glucosidaseimmobilized on chitosan-clay composite [J]. International Journal of BiologicalMacromolecules,2008,43(1):48-53.
    [68] Depan D, Kumar B, Singh R P. Preparation and characterization of novel hybrid ofChitosan-g-PDMS and sodium montmorrilonite [J]. Journal of Biomedical MaterialsResearch Part B-Applied Biomaterials,2008,84B(1):184-190.
    [69] Zhuang H, Zheng J P, Gao H, et al. In vitro biodegradation and biocompatibility ofgelatin/montmorillonite-chitosan intercalated nanocomposite [J]. Journal of MaterialsScience-Materials in Medicine,2007,18(5):951-957.
    [70] Zheng J P, Wang C Z, Wang X X, et al. Preparation of biornimetic three-dimensionalgelatin/montmorillonite-chitosan scaffold for tissue engineering [J]. Reactive andFunctional Polymers,2007,67(9):780-788.
    [71] Wang X Y, Du Y M, Luo J W, et al. Chitosan/organic rectorite nanocomposite films:Structure, characteristic and drug delivery behaviour [J]. Carbohydrate Polymers,2007,69(1):41-49.
    [72] Wang L, Wang A Q. Removal of Congo red from aqueous solution using achitosan/organo-montmorillonite nanocomposite [J]. Journal of Chemical Technologyand Biotechnology,2007,82(8):711-20.
    [73] Kun H L, Ting Y L, San Y C, et al. Effect of clay content on electrostimulus deformationand volume recovery behavior of a clay-chitosan hybrid composite [J]. ActaBiomaterialia,2007,3(6):919-926.
    [74] Chang M Y, Juang R S. Use of chitosan-clay composite as immobilization support forimproved activity and stability of beta-glucosidase [J]. Biochemical Engineering Journal,2007,35(1):93-98.
    [75] An J H, Dultz S. Adsorption of tannic acid on chitosan-montmorillonite as a function ofpH and surface charge properties [J]. Applied Clay Science,2007,36(4):256-264.
    [76] Wang X Y, Du Y M, Yang H, et al. Preparation, characterization and antimicrobialactivity of chitosan/layered silicate nanocomposites [J]. Polymer,2006,47(19):6738-6744.
    [77] Rhim J W, Hong S I, Park H M, et al. Preparation and characterization of chitosan-basednanocomposite films with antimicrobial activity [J]. Journal of Agricultural and FoodChemistry,2006,54(16):5814-5822.
    [78] Depart D, Kumar A P, Singh R P. Preparation and characterization of novel hybrid ofchitosan-g-lactic acid and montmorillonite [J]. Journal of Biomedical Materials ResearchPart A,2006,78A(2):372-382.
    [79]Wang S F, Shen L, Tong Y J, et al. Biopolymer chitosan/montmorillonite nanocomposites:Preparation and characterization [J]. Polymer Degradation and Stability,2005,90(1):123-131.
    [80] Frattini A, Pellegri N, Nicastro D, et al. Effect of amine groups in the synthesis of Agnanoparticles using aminosilanes [J]. Mater Chem Phys,2005,94(1):148-152.
    [81] Belloni J. Photography: Enhancing sensitivity by silver-halide crystal doping [J].Radiation Physics and Chemistry,2003,67(3-4):291-296.
    [82] Tao A, Sinsermsuksakul P, Yang P D. Polyhedral silver nanocrystals with distinctscattering signatures [J]. Angewandte Chemie International Edition,2006,45(28):4597-4601.
    [83] Nickel U, Castell A Z, Poppl K, et al. A silver colloid produced by reduction withhydrazine as support for highly sensitive surface-enhanced Raman spectroscopy [J].Langmuir,2000,16(23):9087-9091.
    [84] Wiley B, Sun Y G, Mayers B, et al. Shape-controlled synthesis of metal nanostructures:The case of silver [J]. Chemistry-A European Journal,2005,11(2):454-463.
    [85] Kapoor S, Lawless D, Kennepohl P, et al. Reduction and aggregation of silver ions inaqueous gelatin solutions [J]. Langmuir,1994,10(9):3018-3022.
    [86] Tessier P M, Velev O D, Kalambur A T, et al. Assembly of gold nanostructured filmstemplated by colloidal crystals and use in surface-enhanced raman spectroscopy [J].Journal of the American Chemical Society,2000,122(39):9554-9555.
    [87] Gutierrez M, Henglein A. Formation of colloidal silver by push-pull reduction of Ag+[J].The Journal of Physical Chemistry A,1993,97(44):11368-11370.
    [88] Creighton J A, Blatchford C G, Albrecht M G. Plasma resonance enhancement oframan-scattering by pyridine adsorbed on silver or gold sol particles of size comparableto the excitation wavelength [J]. Journal of the Chemical Society-Faraday Transactions II,1979,75:790-798.
    [89] Lee P C, Meisel D. Adsorption and surface-enhanced raman of dyes on silver and goldsols [J]. The Journal of Physical Chemistry,1982,86(17):3391-5.
    [90] Rivas L, Sanchez-Cortes S, Garcia-Ramos J V, et al. Growth of silver colloidal particlesobtained by citrate reduction to increase the Raman enhancement factor [J]. Langmuir,2001,17(3):574-577.
    [91] Raveendran P, Fu J, Wallen S L. Completely―green‖synthesis and stabilization of metalnanoparticles [J]. Journal of American Chemical Society,2003,125(46):13940-13949.
    [92] Sharma V K, Yngard R A, Lin Y. Silver nanoparticles: Green synthesis and theirantimicrobial activities [J]. Advances in Colloid and Interface Science,2009,145(1-2):83-96.
    [93]徐峰,彭长兰,吕宏霞.多糖在金属纳米材料合成中的应用[J].化学进展,2008,20(2-3):273-279.
    [94] Amanullah M, Yu L. Environment friendly fluid loss additives to protect the marineenvironment from the detrimental effect of mud additives [J]. Journal of PetroleumScience and Engineering,2005,48(3-4):199-208.
    [95] Vigneshwaran N, Nachane R P, Balasubramanya R H, et al. A novel one-pot―green‖synthesis of stable silver nanoparticles using soluble starch [J]. Carbohydrate Research,2006,341(12):2012-2018.
    [96] Tai C Y, Wang Y H, Liu H S. A green process for preparing silver nanoparticles usingspinning disk reactor [J]. AIChE Journal,2008,54(2):445-452.
    [97] Huang H Z, Yang X R. Synthesis of polysaccharide-stabilized gold and silvernanoparticles: A green method [J]. Carbohydrate Research,2004,339(15):2627-2631.
    [98] Rodriguez-Arguelles M C, Sieiro C, Cao R, et al. Chitosan and silver nanoparticles aspudding with raisins with antimicrobial properties [J]. Journal of Colloid and InterfaceScience,2011,364(1):80-84.
    [99] Yin Y D, Li Z Y, Zhong Z Y, et al. Synthesis and characterization of stable aqueousdispersions of silver nanoparticles through the Tollens process [J]. Journal of MaterialsChemistry,2002,12(3):522-527.
    [100] Panacek A, Kvitek L, Prucek R, et al. Silver colloid nanoparticles: Synthesis,characterization, and their antibacterial activity [J]. Journal of Physical Chemistry B,2006,110(33):16248-16253.
    [101] Soukupova J, Kvitek L, Panacek A, et al. Comprehensive study on surfactant role onsilver nanoparticles (NPs) prepared via modified Tollens process [J]. MaterialsChemistry and Physics,2008,111(1):77-81.
    [102] Yu D B, Yam V W W. Hydrothermal-induced assembly of colloidal silver spheres intovarious nanoparticles on the basis of HTAB-modified silver mirror reaction [J].Journal of Physical Chemistry B,2005,109(12):5497-5503.
    [103] Abid J P, Wark A W, Brevet P F, et al. Preparation of silver nanoparticles in solutionfrom a silver salt by laser irradiation [J]. Chemical Communications,2002,7:792-793.
    [104] Sudeep P K, Kamat P V. Photosensitized growth of silver nanoparticles under visiblelight irradiation: A mechanistic investigation [J]. Chemistry of Materials,2005,17(22):5404-5410.
    [105] Chen J, Wang J, Zhang X, et al. Microwave-assisted green synthesis of silvernanoparticles by carboxymethyl cellulose sodium and silver nitrate [J]. MaterialsChemistry and Physics,2008,108(2-3):421-424.
    [106] Hu B, Wang S B, Wang K, et al. Microwave-assisted rapid facile―Green‖synthesis ofuniform silver nanoparticles: Self-assembly into multilayered films and their opticalproperties [J]. The Journal of Physical Chemistry C,2008,112(30):11169-11174.
    [107] Henglein A. Physicochemical properties of small metal particles in solution-microelectrode reactions, chemisorption, composite metal particles, and theatom-to-metal transition [J]. The Journal of Physical Chemistry,1993,97(21):5457-5471.
    [108] Pillai Z S, Kamat P V. What factors control the size and shape of silver nanoparticlesin the citrate ion reduction method?[J]. The Journal of Physical Chemistry B,2004,108(3):945-951.
    [109] Jin R C, Cao Y C, Hao E C, et al. Controlling anisotropic nanoparticle growth throughplasmon excitation [J]. Nature,2003,425(6957):487-490.
    [110] Xie J P, Lee J Y, Wang D I C, et al. Silver nanoplates: From biological to biomimeticsynthesis [J]. ACS Nano,2007,1(5):429-39.
    [111] Shankar S S, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silvernanoparticles [J]. Biotechnology Progress,2003,19(6):1627-1631.
    [112] Mantion A, Guex A G, Foelske A, et al. Silver nanoparticle engineering via oligovalineorganogels [J]. Soft Matter,2008,4(3):606-617.
    [113] Troupis A, Hiskia A, Papaconstantinou E. Synthesis of metal nanoparticles by usingpolyoxometalates as photocatalysts and stabilizers [J]. Angewandte ChemieInternational Edition,2002,41(11):1911-1920.
    [114] Zhang G, Keita B, Dolbecq A, et al. Green chemistry-type one-step synthesis of silvernanostructures based on Mo-V-Mo-VI mixed-valence polyoxometalates [J]. Chemistryof Materials,2007,19(24):5821-5823.
    [115] Hirai T, Okubo H, Komasawa I. Size-selective incorporation of CdS nanoparticles intomesoporous silica [J]. The Journal of Physical Chemistry B,1999,103(21):4228-4230.
    [116] Arumugam S K, Sastry T P, Sreedhar B, et al. One step synthesis of silver nanorods byautoreduction of aqueous silver ions with hydroxyapatite: An inorganic-inorganichybrid nanocomposite [J]. Journal of Biomedical Materials Research Part A,2007,80A(2):391-398.
    [117] Chapman R, Mulvaney P. Electro-optical shifts in silver nanoparticle films [J].Chemical Physics Letters,2001,349(5-6):358-362.
    [118] Sarkar A, Kapoor S, Mukherjee T. Preparation, characterization, and surfacemodification of silver nanoparticles in formamide [J]. The Journal of PhysicalChemistry B,2005,109(16):7698-7704.
    [119] Razzak M T, Zainuddin, Erizal, et al. The characterization of dressing componentmaterials and radiation formation of PVA-PVP hydrogel [J]. Radiation Physics andChemistry,1999,55(2):153-165.
    [120] Stepanov A L, Popok V N, Khaibullin I B, et al. Optical properties ofpolymethylmethacrilate with implanted silver nanoparticles [J]. Nuclear Instrumentsand Methods in Physics Research Section B: Beam Interactions with Materials andAtoms,2002,191(1-4):473–477.
    [121] Hong K H, Park J L, Sul I H, et al. Preparation of antimicrobial poly(vinyl alcohol)nanofibers containing silver nanoparticles [J]. Journal of Polymer Science Part B:Polymer Physics,2006,44(17):2468-2474.
    [122] Beecroft L L, Ober C K. Nanocomposite materials for optical applications [J].Chemistry of Materials,1997,9(6):1302-1317.
    [123] Yu D G, Lin W C, Lin C H, et al. An in situ reduction method for preparing silver/poly(vinyl alcohol) nanocomposite as surface-enhanced raman scattering (SERS)-activesubstrates [J]. Materials Chemistry and Physics,2007,101(1):93-98.
    [124] Khanna P K, Singh N, Charan S, et al. Synthesis and characterization of Ag/PVAnanocomposite by chemical reduction method [J]. Materials Chemistry and Physics,2005,93(1):117-121.
    [125] Korchev A S, Konovalova T, Cammarata V, et al. Radical-induced generation of smallsilver particles in SPEEK/PVA polymer films and solutions: UV-vis, EPR, and FT-IRstudies [J]. Langmuir,2006,22(1):375-384.
    [126] Mbhele Z H, Salemane M G, Van Sittert C, et al. Fabrication and characterization ofsilver-polyvinyl alcohol nanocomposites [J]. Chemistry of Materials,2003,15(26):5019-5024.
    [127] Clemenson S, Leonard D, Sage D, et al. Metal nanocomposite films prepared in suitefrom PVA and silver nitrate. Study of the nanostructuration process and morphology asa function of the in suite routes [J]. Journal of Polymer Science Part A: PolymerChemistry,2008,46(6):2062-2071.
    [128] Clemenson S, David L, Espuche E. Structure and morphology of nanocomposite filmsprepared from polyvinyl alcohol and silver nitrate: Influence of thermal treatment [J].Journal of Polymer Science Part A: Polymer Chemistry,2007,45(13):2657-2672.
    [129] Drury J L, Mooney D J. Hydrogels for tissue engineering: Scaffold design variablesand applications [J]. Biomaterials,2003,24(24):4337-4351.
    [130] Sokmen M, Degerli S, Aslan A. Photocatalytic disinfection of Giardia intestinalis andAcanthamoeba castellani cysts in water [J]. Experimental Parasitology,2008,119(1):44-48.
    [131] Zheng J Y, Yu H, Li X J, et al. Enhanced photocatalytic activity of TiO2nano-structured thin film with a silver hierarchical configuration [J]. Applied SurfaceScience,2008,254(6):1630-1635.
    [132] Nino-Martinez N, Martinez-Castanon G A, Aragon-Pina A, et al. Characterization ofsilver nanoparticles synthesized on titanium dioxide fine particles [J]. Nanotechnology,2008,19(6): doi:10.1088/0957-4484/19/6/065711
    [133] Guin D, Manorama S V, Latha J N L, et al. Photoreduction of silver on bare andcolloidal TiO2Nanoparticles/Nanotubes: Synthesis, characterization, and tested forantibacterial outcome [J]. The Journal of Physical Chemistry C,2007,111(36):13393-13397.
    [134] Alt V, Bechert T, Steinrucke P, et al. An in vitro assessment of the antibacterialproperties and cytotoxicity of nanoparticulate silver bone cement [J]. Biomaterials,2004,25(18):4383-4391.
    [135] Lee H Y, Park H K, Lee Y M, et al. A practical procedure for producing silvernanocoated fabric and its antibacterial evaluation for biomedical applications [J].Chemical Communications,2007,28:2959-2961.
    [136] Chou W L, Yu D G, Yang M C. The preparation and characterization of silver-loadingcellulose acetate hollow fiber membrane for water treatment [J]. Polymers forAdvanced Technologies,2005,16(8):600-607.
    [137] Morones J R, Elechiguerra J L, Camacho A, et al. The bactericidal effect of silvernanoparticles [J]. Nanotechnology,2005,16(10): doi:10.1088/0957-4484/16/10/059.
    [138] Gupta A, Maynes M, Silver S. Effects of halides on plasmid-mediated silver resistancein Escherichia coli [J]. Applied and Environmental Microbiology,1998,64(12):5042-5045.
    [139] Feng Q L, Wu J, Chen G Q, et al. A mechanistic study of the antibacterial effect ofsilver ions on Escherichia coli and Staphylococcus aureus [J]. Journal of BiomedicalMaterials Research Part B: Applied Biomaterials,2000,52(4):662-668.
    [140] Zhang Y W, Peng H S, Huang W, et al. Hyperbranched poly(amidoamine) as thestabilizer and reductant to prepare colloid silver nanoparticles in situ and theirantibacterial activity [J]. The Journal of Physical Chemistry C,2008,112(7):2330-2336.
    [141] Thiel J, Pakstis L, Buzby S, et al. Antibacterial properties of silver-doped titania [J].Small,2007,3(5):799-803.
    [142] Henglein A. Colloidal silver nanoparticles: Photochemical preparation and interactionwith O2, CCl4, and some metal ions [J]. Chemistry of Materials,1998,10(1):444-450.
    [143] Pal S, Tak Y K, Song J M. Does the antibacterial activity of silver nanoparticlesdepend on the shape of the nanoparticle? A study of the gram-negative bacteriumEscherichia coli [J]. Applied and Environmental Microbiology,2007,73(6):1712-1720.
    [144]温昕,安胜军,侯志飞,等.载银缓释型抗菌敷料[J].化学进展,2009,21(7-8):1644-1654.
    [145] Roe D, Karandikar B, Bonn-Savage N, et al. Antimicrobial surface functionalizationof plastic catheters by silver nanoparticles [J]. Journal of Antimicrobial Chemotherapy,2008,61(4):869-876.
    [146] Yoon K Y, Byeon J H, Park C W, et al. Antimicrobial effect of silver particles onbacterial contamination of activated carbon fibers [J]. Environmental Science andTechnology,2008,42(4):1251-1255.
    [147] Shahverdi A R, Minaeian S, Shahverdi H R, et al. Rapid synthesis of silvernanoparticles using culture supernatants of Enterobacteria: A novel biologicalapproach [J]. Process Biochemistry,2007,42(5):919-923.
    [148] Sun R W Y, Chen R, Chung N P Y, et al. Silver nanoparticles fabricated in Hepesbuffer exhibit cytoprotective activities toward HIV-1infected cells [J]. ChemicalCommunications,2005,40:5059-5061.
    [149] Main C E. Aerobiological, ecological, and health linkages [J]. EnvironmentInternational,2003,29(2-3):347-349.
    [150] Park S J, Jang Y S. Preparation and characterization of activated carbon fiberssupported with silver metal for antibacterial behavior [J]. Journal of Colloid andInterface Science,2003,261(2):238-243.
    [151] Kumar R, Munstedt H. Silver ion release from antimicrobial polyamide/silvercomposites [J]. Biomaterials,2005,26(14):2081-2088.
    [152] Liau S Y, Read D C, Pugh W J, et al. Interaction of silver nitrate with readilyidentifiable groups: Relationship to the antibacterial action of silver ions [J]. Letters inApplied Microbiology,1997,25(4):279-283.
    [153] De Azeredo H M C. Nanocomposites for food packaging applications [J]. FoodResearch International,2009,42(9):1240-1253.
    [154] An J, Zhang M, Wang S, et al. Physical, chemical and microbiological changes instored green asparagus spears as affected by coating of silver nanoparticles-PVP [J].Lwt-Food Science and Technology,2008,41(6):1100-1107.
    [155] Aymonier C, Schlotterbeck U, Antonietti L, et al. Hybrids of silver nanoparticles withamphiphilic hyperbranched macromolecules exhibiting antimicrobial properties [J].Chemical Communications,2002,24:3018-3019.
    [156] Damm C, Muenstedt H, Roesch A. The antimicrobial efficacy of polyamide6/silver-nano-and microcomposites [J]. Materials Chemistry and Physics,2008,108(1):61-66.
    [157] Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study onE-coli as a model for Gram-negative bacteria [J]. Journal of Colloid and InterfaceScience,2004,275(1):177-182.
    [158] Tankhiwale R, Bajpai S K. Graft copolymerization onto cellulose-based filter paperand its further development as silver nanoparticles loaded antibacterialfood-packaging material [J]. Colloids and Surfaces B-Biointerfaces,2009,69(2):164-168.
    [159] Yoksan R, Chirachanchai S. Silver nanoparticle-loaded chitosan-starch based films:Fabrication and evaluation of tensile, barrier and antimicrobial properties [J].Materials Science and Engineering C-Materials for Biological Applications,2010,30(6):891-897.
    [160] Rabea E I, Badawy M E T, Stevens C V, et al. Chitosan as antimicrobial agent:Applications and mode of action [J]. Biomacromolecules,2003,4(6):1457-1465.
    [161] Fernandez A, Picouet P, Lloret E. Cellulose-silver nanoparticle hybrid materials tocontrol spoilage-related microflora in absorbent pads located in trays of fresh-cutmelon [J]. International Journal of Food Microbiology,2010,142(1-2):222-228.
    [162] Liu H J, Yang F, Zheng Y M, et al. Improvement of metal adsorption ontochitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology [J].Water Research,2011,45(1):145-154.
    [163] Muzzarelli R A A, Tanfani F, Emanuelli M, et al. Sulfated N-(carboxymethyl)chitosans-novel blood anticoagulants [J]. Carbohydrate Research,1984,126(2):225-231.
    [164] Krishnapriya K R, Kandaswamy M. Synthesis and characterization of a crosslinkedchitosan derivative with a complexing agent and its adsorption studies toward metal(II)ions [J]. Carbohydrate Research,2009,344(13):1632-1638.
    [165] Ge H C, Pang W, Luo D K. Graft copolymerization of chitosan with acrylic acid undermicrowave irradiation and its water absorbency [J]. Carbohydrate Polymers,2006,66(3):372-378.
    [166] Liao L Q, Zhang C, Gong S Q. Microwave-assisted synthesis and characterization ofpoly(epsilon-caprolactone)/montmorillonite nanocomposites [J]. MacromolecularChemistry and Physics,2007,208(12):1301-1309.
    [167] Liu L, Li Y P, Li Y, et al. Rapid N-phthaloylation of chitosan by microwave irradiation[J]. Carbohydrate Polymers,2004,57(1):97-100.
    [168] Muzzarelli R A A, Giacomelli G. The blood anticoagulant activity ofN-carboxymethylchitosan trisulfate [J]. Carbohydrate Polymers,1987,7(2):87-96.
    [169] Ge H C, Luo D K. Preparation of carboxymethyl chitosan in aqueous solution undermicrowave irradiation [J]. Carbohydrate Research,2005,340(7):1351-6.
    [170] Feng T, Du Y M, Li J, et al. Enhancement of antioxidant activity of chitosan byirradiation [J]. Carbohydrate Polymers,2008,73(1):126-132.
    [171] Cai Z S, Song Z Q, Yang C S, et al. Synthesis, characterization and antibacterialactivity of quaternized N,O-(2-carboxyethyl) chitosan [J]. Polymer Bulletin,2009,62(4):445-456.
    [172] Cai Z S, Song Z Q, Shang S B, et al. Study on the flocculating properties ofquaternized carboxymethyl chitosan [J]. Polymer Bulletin,2007,59:655-665.
    [173] Cao Z B, Sun Y Y. N-Halamine-based chitosan: Preparation, characterization, andantimicrobial function [J]. Journal of Biomedical Materials Research Part A,2008,85A(1):99-107.
    [174] Li J, Du Y M, Liang H B. Low molecular weight water-soluble chitosans: Preparationwith the aid of cellulase, characterization, and solubility [J]. Journal of AppliedPolymer Science,2006,102(2):1098-1105.
    [175] Lewandowska K. Miscibility and thermal stability of poly(vinyl alcohol)/chitosanmixtures [J]. Thermochimica Acta,2009,493(1-2):42-48.
    [176] Choudhari S K, Kariduraganavar M Y. Development of novel composite membranesusing quaternized chitosan and Na+-MMT clay for the pervaporation dehydration ofisopropanol [J]. Journal of Colloid and Interface Science,2009,338(1):111-120.
    [177] Johns J, Rao V. Thermal stability, morphology, and X-ray diffraction studies ofdynamically vulcanized natural rubber/chitosan blends [J]. Journal of MaterialsScience,2009,44(15):4087-4094.
    [178] Saboktakin M R, Tabatabaie R M, Maharramov A, et al. Synthesis and in vitroevaluation of carboxymethyl starch-chitosan nanoparticles as drug delivery system tothe colon [J]. International Journal of Biological Macromolecules,2011,48(3):381-385.
    [179] Park S H, Seo S Y, Na H N, et al. Preparation of a visible light-reactive lowmolecular-O-carboxymethyl chitosan (LM-O-CMCS) derivative and applicability asan anti-adhesion agent [J]. Macromolecular Research,2011,19(9):921-927.
    [180] Ignatova M, Starbova K, Markova N, et al. Electrospun nano-fibre mats withantibacterial properties from quaternised chitosan and poly(vinyl alcohol)[J].Carbohydrate Research,2006,341(12):2098-2107.
    [181] Guo Z, Liu H, Chen X, et al. Hydroxyl radicals scavenging activity of N-substitutedchitosan and quaternized chitosan [J]. Bioorganic and Medicinal Chemistry Letters,2006,16(24):6348-6350.
    [182] Mourya V K, Inamdar N N, Choudhari Y M. Chitooligosaccharides: Synthesis,characterization and applications [J]. Polymer Science Series A,2011,53(7):583-612.
    [183] Li S Q, Zhou P J, Yao P J, et al. Preparation of O-carboxymethyl-N-trimethyl chitosanchloride and flocculation of the wastewater in sugar refinery [J]. Journal of AppliedPolymer Science,2010,116(5):2742-2748.
    [184] Gao Q W, Shao Z Z, Sun Y Y, et al. Complex formation of silk fibroin withpoly(acrylic acid)[J]. Polymer Journal,2000,32(3):269-274.
    [185] Qin C Q, Du Y M, Xiao L. Effect of hydrogen peroxide treatment on the molecularweight and structure of chitosan [J]. Polymer Degradation and Stability,2002,76(2):211-218.
    [186] Guo Z Y, Xing R E, Liu S, et al. The synthesis and antioxidant activity of the schiffbases of chitosan and carboxymethyl chitosan [J]. Bioorganic and MedicinalChemistry Letters,2005,15(20):4600-4603.
    [187] Feng T, Du Y, Li J, et al. Enhancement of antioxidant activity of chitosan byirradiation [J]. Carbohydrate Polymers,2008,73(1):126-132.
    [188] Shimada K, Fujikawa K, Yahara K, et al. Antioxidative properties of xanthan on theautoxidation of soybean oil in cyclodextrin emulsion [J]. Journal of Agricultural andFood Chemistry,1992,40(6):948-956.
    [189] Zhou L M, Chen H, Jiang X H, et al. Modification of montmorillonite surfaces using anovel class of cationic gemini surfactants [J]. Journal of Colloid and Interface Science,2009,332(1):16-21.
    [190] Bouberka Z, Khenifi A, Mahamed H A, et al. Adsorption of Supranol Yellow4GLfrom aqueous solution by surfactant-treated aluminum/chromium-intercalatedbentonite [J]. Journal of Hazardous Materials,2009,162(1):378-385.
    [191] Hoshino J, Limpanart S, Khunthon S, et al. Adsorption of single-strandalkylammonium salts on bentonite, surface properties of the modified clay andpolymer nanocomposites formation by a two-roll mill [J]. Materials Chemistry andPhysics,2010,123(2-3):706-713.
    [192] Joo P. Electrochemical permeability measurements of hydrophilic and hydrophobizedmontmorillonite films-Part I. Characteristics of diffusional transport: Kinetics ofbreak-in/leach-out processes [J]. Colloids and Surfaces A-Physicochemical andEngineering Aspects,2003,229(1-3):107-119.
    [193] Tcheumi H L, Tonle I K, Ngameni E, et al. Electrochemical analysis ofmethylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode[J]. Talanta,2010,81(3):972-979.
    [194] Kloprogge J T, Weier M L, Duong L V, et al. Microwave-assisted synthesis andcharacterisation of divalent metal tungstate nanocrystalline minerals: Ferberite,hubnerite, sanmartinite, scheelite and stolzite [J]. Materials Chemistry and Physics,2004,88(2-3):438-443.
    [195] Xi Y F, Frost R L, He H P. Modification of the surfaces of Wyoming montmorilloniteby the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methylammonium bromides [J]. Journal of Colloid and Interface Science,2007,305(1):150-158.
    [196] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: Preparation,properties and uses of a new class of materials [J]. Materials Science and EngineeringR-Reports,2000,28(1-2):1-63.
    [197] Annadurai G, Juang R S, Lee D J. Use of cellulose-based wastes for adsorption of dyesfrom aqueous solutions [J]. Journal of Hazardous Materials,2002,92(3):263-274.
    [198] Zhang X, Xu Z. The effect of microwave on preparation ofkaolinite/dimethylsulfoxide composite during intercalation process [J]. MaterialsLetters,2007,61(7):1478-1482.
    [199] Sarkar B, Xi Y, Megharaj M, et al. Synthesis and characterisation of novelorganopalygorskites for removal of p-nitrophenol from aqueous solution: Isothermalstudies [J]. Journal of Colloid and Interface Science,2010,350(1):295-304.
    [200] Zheng Q, Xu B, Song Y H, et al. Interlayer structure of organically modifiedmontmorillonites: Effect of surfactant loading [J]. Journal of Materials Research,2005,20(2):357-363.
    [201] Zhu R L, Wang T, Zhu J X, et al. Structural and sorptive characteristics of thecetyltrimethylammonium and polyacrylamide modified bentonite [J]. ChemicalEngineering Journal,2010,160(1):220-225.
    [202] Rodriguez Y M V, Beltran H I, Vazquez-Labastida E, et al. Synthesis andcharacterization of montmorillonite clays with modulable porosity induced with acidsand superacids [J]. Journal of Materials Research,2007,22(3):788-800.
    [203] Xi Y F, Frost R L, He H P, et al. Modification of Wyoming montmorillonite surfacesusing a cationic surfactant [J]. Langmuir,2005,21(19):8675-8680.
    [204] Zulfiqar S, Sarwar M I. Effect of thermally stable oligomerically modified clay on theproperties of aramid-based nanocomposite materials [J]. Journal of Materials Research,2008,23(12):3330-3338.
    [205] Feng J L, Shan M, Du H H, et al. In vitro adsorption of zearalenone by cetyltrimethylammonium bromide-modified montmorillonite nanocomposites [J]. Microporous andMesoporous Materials,2008,113(1-3):99-105.
    [206] Aloisi G G, Elisei F, Nocchetti M, et al. Clay based polymeric composites: Preparationand quality characterization [J]. Materials Chemistry and Physics,2010,123(2-3):372-377.
    [207] Wang Y P, Liang Y, Chen J C, et al. Utilisation of potato leaves and organophilicmontmorillonite for the preparation of superabsorbent composite under microwaveirradiation [J]. Polymers and Polymer Composites,2009,17(7):423-430.
    [208] Jarraya I, Fourmentin S, Benzina M, et al. VOC adsorption on raw and modified claymaterials [J]. Chemical Geology,2010,275(1-2):1-8.
    [209] Olu-Owolabi B I, Unuabonah E I. Kinetic and thermodynamics of the removal of Zn2+and Cu2+from aqueous solution by sulphate and phosphate-modified Bentonite clay[J]. Journal of Hazardous Materials,2010,184(1-3):731-738.
    [210] Shabestary N, Parker T J, Parikh N H. Application of clay supported Geminisurfactants in triphase catalysis [J]. Abstracts of Papers of the American ChemicalSociety,2008,235
    [211] Rhim J W, Hong S I, Park H M, et al. Preparation and characterization ofchitosan-based nanocomposite films with antimicrobial activity [J]. Journal ofAgricultural and Food Chemistry,2006,54(16):5814-5822.
    [212] Darder M, Colilla M, Ruiz-Hitzky E. Chitosan-clay nanocomposites: Application aselectrochemical sensors [J]. Applied Clay Science,2005,28(1-4):199-208.
    [213] Darder M, Lopez-Blanco M, Aranda P, et al. Microfibrous chitosan-sepiolitenanocomposites [J]. Chemistry of Materials,2006,18(6):1602-1610.
    [214] Chivrac F, Pollet E, Ave Rous L. Progress in nano-biocomposites based onpolysaccharides and nanoclays [J]. Materials Science and Engineering R: Reports,2009,1-17.
    [215] Wang X Y, Du Y M, Yang H H, et al. Preparation, characterization and antimicrobialactivity of chitosan/layered silicate nanocomposites [J]. Polymer,2006,47(19):6738-6744.
    [216] Ray S S, Okamoto M. Polymer/layered silicate nanocomposites: A review frompreparation to processing [J]. Progress in Polymer Science,2003,28(11):1539-1641.
    [217] Chivrac F, Pollett E, Schmutz M, et al. New approach to elaborate exfoliatedstarch-based nanobiocomposites [J]. Biomacromolecules,2008,9(3):896-900.
    [218] Chivrac F, Pollet E, Dole P, et al. Starch-based nano-biocomposites: Plasticizer impacton the montmorillonite exfoliation process [J]. Carbohydrate Polymers,2010,79(4):941-947.
    [219] Wang X Y, Liu B, Ren J L, et al. Preparation and characterization of new quaternizedcarboxymethyl chitosan/rectorite nanocomposite [J]. Composites Science andTechnology,2010,70(7):1161-1167.
    [220] Gopakumar T G, Lee J A, Kontopoulou M, et al. Influence of clay exfoliation on thephysical properties of montmorillonite/polyethylene composites [J]. Polymer,2002,43(20):5483-5491.
    [221] Meng X Y, Wang Z, Du X H, et al. Exfoliation of organically modifiedmontmorillonite driven by molecular diffusion in maleated polypropylene [J]. Journalof Applied Polymer Science,2009,113(1):678-684.
    [222] Kabiri K, Mirzadeh H, Zohuriaan-Mehr M J. Chitosan modified MMT-Poly(AMPS)nanocomposite hydrogel: Heating effect on swelling and rheological behavior [J].Journal of Applied Polymer Science,2010,116(5):2548-2556.
    [223] Han Y S, Lee S H, Choi K H, et al. Preparation and characterization of chitosan-claynanocomposites with antimicrobial activity [J]. Journal of Physics and Chemistry ofSolids,2010,71(4):464-467.
    [224] Li H B, Du Y M, Wu X J, et al. Effect of molecular weight and degree of substitutionof quaternary chitosan on its adsorption and flocculation properties for potentialretention-aids in alkaline papermaking [J]. Colloids and Surfaces A-Physicochemicaland Engineering Aspects,2004,242(1-3):1-8.
    [225]黎厚斌.壳聚糖类造纸湿部助留助滤剂的界面行为及应用研究[D],武汉:武汉大学,2004.
    [226] Lincoln D M, Vaia R A, Krishnamoorti R. Isothermal crystallization ofnylon-6/montmorillonite nanocomposites [J]. Macromolecules,2004,37(12):4554-4561.
    [227] Clemencon I, Gerli A. The effect of flocculant/microparticles retention programs onfloc properties [J]. Nordic Pulp and Paper Research Journal,1999,14(1):23-29.
    [228] Yang Z H, Huang J, Zeng G M, et al. Optimization of flocculation conditions forkaolin suspension using the composite flocculant of MBFGA1and PAC by responsesurface methodology [J]. Bioresource Technology,2009,100(18):4233-4239.
    [229] Wang X Y, Pei X F, Du Y M, et al. Quaternized chitosan/rectorite intercalativematerials for a gene delivery system [J]. Nanotechnology,2008,19(37):doi:10.1088/0957-4484/19/37/375102
    [230] Frost R L, Kloprogge J T. Vibrational spectroscopy of ferruginous smectite andnontronite [J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2000,56(11):2177-2189.
    [231] Dean K M, Do M D, Petinakis E, et al. Key interactions in biodegradablethermoplastic starch/poly(vinyl alcohol)/montmorillonite micro-and nanocomposites[J]. Composites Science and Technology,2008,68(6):1453-1462.
    [232] Golebiewski J, Galeski A. Thermal stability of nanoclay polypropylene composites bysimultaneous DSC and TGA [J]. Composites Science and Technology,2007,67(15-16):3442-3447.
    [233] Xi Y F, Mallavarapu M, Naidu R. Adsorption of the herbicide2,4-D onorgano-palygorskite [J]. Applied Clay Science,2010,49(3):255-261.
    [234] Dong Z, Wang Q, Du Y. Alginate/gelatin blend films and their properties for drugcontrolled release [J]. Journal of Membrane Science,2006,280(1-2):37-44.
    [235] Fang Y Y, Wang L J, Li D, et al. Preparation of crosslinked starch microspheres andtheir drug loading and releasing properties [J]. Carbohydrate Polymers,2008,74(3):379-384.
    [236] Wang X Y, Liu B, Wang X H, et al. Amphoteric polymer-clay nanocomposites withdrug-controlled release property [J]. Current Nanoscience,2011,7(2):183-190.
    [237] Sirousazar M, Kokabi M, Hassan Z M. In Vivo and cytotoxic assays of a poly(vinylalcohol)/clay nanocomposite hydrogel wound dressing [J]. Journal of BiomaterialsScience-Polymer Edition,2011,22(8):1023-1033.
    [238] Wang X Y, Du Y M, Yang J H, et al. Preparation, characterization, and antimicrobialactivity of quaternized chitosan/organic montmorillonite nanocomposites [J]. Journalof Biomedical Materials Research Part A,2008,84A(2):384-390.
    [239] Watthanaphanit A, Supaphol P, Tamura H, et al. Wet-spun alginate/chitosan whiskersnanocomposite fibers: Preparation, characterization and release characteristic of thewhiskers [J]. Carbohydrate Polymers,2010,79(3):738-746.
    [240] Mi F L, Tan Y C, Liang H C, et al. In vitro evaluation of a chitosan membranecross-linked with genipin [J]. Journal of Biomaterials Science-Polymer Edition,2001,12(8):835-850.
    [241] Wang Q, Zhang J, Wang A. Preparation and characterization of a novel pH-sensitivechitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead forcontrolled release of diclofenac sodium [J]. Carbohydrate Polymers,2009,78(4):731-737.
    [242] Tavakol M, Vasheghani-Farahani E, Dolatabadi-Farahani T, et al. Sulfasalazine releasefrom alginate-N,O-carboxymethyl chitosan gel beads coated by chitosan [J].Carbohydrate Polymers,2009,77(2):326-330.
    [243] Zia K M, Zuber M, Barikani M, et al. XRD pattern of chitin based polyurethanebio-nanocomposites [J]. Carbohydrate Polymers,2010,80(2):539-543.
    [244] Di Gianni A, Amerio E, Monticelli O, et al. Preparation of polymer/clay mineralnanocomposites via dispersion of silylated montmorillonite in a UV curable epoxymatrix [J]. Applied Clay Science,2008,42(1-2):116-124.
    [245] Zhao F, Bao X, Mclauchlin A R, et al. Effect of POSS on morphology and mechanicalproperties of polyamide12/montmorillonite nanocomposites [J]. Applied Clay Science,2010,47(3-4):249-256.
    [246] Hashemifard S A, Ismail A F, Matsuura T. Effects of montmorillonite nano-clay fillerson PEI mixed matrix membrane for CO2removal [J]. Chemical Engineering Journal,2011,170(1):316-325.
    [247] Luo J W, Wang X Y, Xia B, et al. Preparation and characterization of quaternizedchitosan under microwave irradiation [J]. Journal of Macromolecular Science PartA-Pure and Applied Chemistry,2010,47(9):952-956.
    [248] Gonzalez-Rodriguez M L, Holgado M A, Sanchez-Lafuente C, et al. Alginate/chitosanparticulate systems for sodium diclofenac release [J]. International Journal ofPharmaceutics,2002,232(1-2):225-234.
    [249] Wang J, Yang F, Tan J J, et al. Pickering emulsions stabilized by a lipophilic surfactantand hydrophilic platelike particles [J]. Langmuir,2010,26(8):5397-404.
    [250] Henglein A. Small-particle research-physicochemical properties of extremely smallcolloidal metal and semiconductor particles [J]. Chemical Reviews,1989,89(8):1861-1873.
    [251] Panyala N R, Pena-Mendez E M, Havel J. Silver or silver nanoparticles: A hazardousthreat to the environment and human health [J]. Journal of Applied Biomedicine,2008,6(3):117-129.
    [252] Navaladian S, Viswanathan B, Varadarajan T K, et al. Microwave-assisted rapidsynthesis of anisotropic Ag nanoparticles by solid state transformation [J].Nanotechnology,2008,19(4): doi:10.1088/0957-4484/19/04/045603.
    [253] Al-Said S A F, Hassanien R, Hannant J, et al. Templating Ag on DNA/polymer hybridnanowires: Control of the metal growth morphology using functional monomers [J].Electrochemistry Communications,2009,11(3):550-553.
    [254] Chen K, Leona M, Vo-Dinh K C, et al. Application of surface-enhanced Ramanscattering (SERS) for the identification of anthraquinone dyes used in works of art [J].Journal of Raman Spectroscopy,2006,37(4):520-527.
    [255] Hortigueela M J, Aranaz I, Gutierrez M C, et al. Chitosan gelation induced by the insitu formation of gold nanoparticles and its processing into macroporous scaffolds [J].Biomacromolecules,2011,12(1):179-186.
    [256] Ma M G, Li S M, Jia N, et al. Fabrication and characterization of Ag/calcium silicatecore-shell nanocomposites [J]. Materials Letters,2011,65(19-20):3069-3071.
    [257] Shameli K, Bin Ahmad M, Zargar M, et al. Synthesis and characterization ofsilver/montmorillonite/chitosan bionanocomposites by chemical reduction method andtheir antibacterial activity [J]. International Journal of Nanomedicine,2011,6:271-284.
    [258] Shameli K, Ahmad M B, Yunus W M Z W, et al. Green synthesis ofsilver/montmorillonite/chitosan bionanocomposites using the UV irradiation methodand evaluation of antibacterial activity [J]. International Journal of Nanomedicine,2010,5:875-887.
    [259] Bin Ahmad M, Shameli K, Darroudi M, et al. Synthesis and characterization ofsilver/ciay/chitosan bionanocomposites by uv-irradiation method [J]. AmericanJournal of Applied Sciences,2009,2030-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700