Chitinolyticbacter meiyuanensis的筛选鉴定及其发酵产几丁质酶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
几丁质是自然界含量仅次于纤维素的碳水化合物和仅次于蛋白质的含氮有机物,其水解产物N-乙酰-D-氨基葡萄糖、几丁寡糖及其衍生物在食品、医药、农业、化工等行业应用极为广泛。几丁质酶能催化水解N-乙酰葡萄糖胺基团糖苷键,降解几丁质,生成几丁寡糖、几丁二糖或N-乙酰-D-氨基葡萄糖等,因此,研究几丁质酶基因资源、产酶发酵及基因表达调控等具有一定的理论意义和潜在的应用价值。
     论文从废弃池塘底泥中筛选获得一株几丁质酶高产细菌,对该菌进行了鉴定,深入研究了其产酶条件、酶的分离纯化和酶学性质、几丁质酶的产生机理、几丁质酶的克隆与表达以及几丁质酶在水解几丁质方面的应用等,主要结果如下:
     1)利用透明圈法,从采自4省市的180余份土壤、枯枝、昆虫、甲壳动物尸体等样品中筛选出56株合成几丁质酶的细菌,其中有5株产酶能力较强;选择其中一株几丁质酶产量较高的菌株,从形态学、生理生化、脂肪酸组成、醌类、G+C含量及16S rRNA等方面进行了鉴定。确定该菌属变形菌纲(Proteobacteria)、奈瑟菌目(Neisseriales)、奈瑟菌科(Neisseriaceae)下的一个新属新种,命名为Chitinolyticbacter meiyuanensis SYBC-H1,并提交至中国普通微生物菌种保藏管理中心(菌株编号CGMCC 3438)和美国典型微生物菌种保藏中心(菌株编号ATCC BAA-2140)保藏。
     2)利用单因素实验和响应面分析法对C. meiyuanensis SYBC-H1的发酵培养基及培养条件进行了优化。利用单因素实验筛选出对几丁质酶产量影响较大的10个因子,利用Plackett-Burman Design实验筛选出影响几丁质酶合成的关键因子:菊芋粉、尿素及硫酸钠,再利用Central Composite Design建立模型,获得了最佳发酵培养基组成(g/L):菊粉3.55,尿素3.10,几丁质3.80,Na_2SO_4 0.32,K_2HPO_4·3H_2O 0.70,KH_2PO_4 0.30,MgSO_4·7H_2O 0.5,FeSO_4·7H_2O 0.01。利用Central Composite Design对几丁质酶合成的培养条件进行了优化,最优结果为:转速230 r/min,起始pH 6.4,温度26℃;在此条件下最大酶活为5.16 U/mL,几丁质酶活力比优化前提高6.21倍。
     3)通过硫酸铵分级盐析、DEAE-cellulose阴离子交换层析及Sephadex G-100分子筛层析三个步骤,得到一种分子量约为42 kDa电泳纯的几丁质酶,并在此基础上研究了几丁质酶的酶学性质。结果显示,C. meiyuanensis SYBC-H1几丁质酶的最适温度为40℃;最适pH为6.5;几丁质酶在45℃下比较稳定,55℃以上稳定性迅速下降;巯基乙醇(10 mmol/L)及EDTA(10 mmol/L)能有效提高几丁质酶的稳定性;Zn~(2+)、Cu~(2+)、Mn~(2+)、Fe~(2+)、Fe~(3+)(10 mmol/L)对丁质酶有不同程度的抑制作用,Na~+、K~+对几丁质酶有激活作用。该几丁质酶的Km为22.96 mmol/L,Vmax为9.066 U/mg。
     4)研究了C. meiyuanensis SYBC-H1在优化培养基与基础培养基发酵过程中胞内外酶活变化与氧化胁迫和抗氧化酶的关系。结果表明,在菌体高产几丁质酶时,其胞内外丙二醛、过氧化氢含量明显较高,Vc含量、超氧化物歧化酶和过氧化氢酶活性等明显上升;说明C. meiyuanensis SYBC-H1几丁质酶基因表达可能受氧化还原调控。
     5)在考察碳源对酶活的影响时发现,以果糖为碳源的酶活远高于以葡萄糖为碳源时的酶活,克隆了C. meiyuanensis SYBC-H1 ABC转运系统中ATP酶、细胞膜周质糖结合蛋白及氨基糖苷转运蛋白基因,研究了其在C. meiyuanensis SYBC-H1发酵产几丁质酶中的作用。结果表明,C. meiyuanensis SYBC-H1的ATP酶基因全长1236 bp,编码377个氨基酸残基;细胞膜周质空间糖结合蛋白基因全长1329 bp,编码292个氨基酸残基;氨基糖苷转运蛋白基因全长1027 bp,编码340个氨基酸残基。这些基因的表达与其胞外几丁质酶活性增高相关,说明了ABC转运系统在该菌几丁质酶合成中的可能作用,为该菌进一步的分子改造构建生物工程菌提供了理论依据。
     6)根据与C. meiyuanensis SYBC-H1遗传距离较近的微生物已经克隆出的几丁质酶基因设计17对引物,从C. meiyuanensis SYBC-H1基因组中克隆得到C. meiyuanensis SYBC-H1几丁质酶基因CHI1和CHI2,基因全长分别是497 bp和1151 bp,分别编码166 Aa残基和383 Aa残基的几丁质酶。通过Swiss-MODEL分别研究了其三维结构,结果表明,CHI1主要由5个α螺旋和3个β折叠组成;而CHI2则主要由12个α螺旋组成,无β折叠结构。构建了CHI2基因的表达载体pET28(a)-CHI2并在E.coli BL21中进行了表达。
     7)通过高效液相色谱(HLPC)及质谱(MS)鉴定了几丁质的水解产物,并对C. meiyuanensis SYBC-H1产几丁质酶降解几丁质的条件进行了研究。结果表明,在几丁质酶催化下,几丁质水解的主要产物是N-乙酰氨基葡萄糖,几丁二糖的量极小;100目的几丁质粉粒有利于几丁质酶的水解,但30-70目的几丁质粉粒粒径的大小对几丁质的水解没有明显影响。同时还利用麦夸特法(Levenberg-Marquardt)及通用全局优化法建立了几丁质酶水解几丁质模型,结果显示:温度37.5℃,pH为7.0时水解前13.5 h水解效率最高,此时水解液中糖浓度为90.4μmol/L。24 h内最大水解率为79%。
Chitin, an insoluble linearβ-1,4-linked polymer of N-acetylglucosamine (GlcNAc), is frequently regarded as the second most abundant carbohydrate after cellulose in nature,and the second most abundant nitrogen organic after protein. N-acetylglucosamine(GlcNAc), chitin oligosaccharide and its derivatives have a wide range of applications in industries of food, medical, agriculture, chemistry. As a group of enzymes capable of degrading N-acet- ylglucosamine monomers, chitinases hydrolyze chitin into chitin oligosaccharide, chitin disaccharide and N-acetylglucosamine.
     This dissertation reported a high chitinase-producing bacterium isolated from abandoned pond sediment. According to various characteristics, the bacterium was identified as a new species. The high chitinase-producing bacterium was deeply explored and researched, including strain isolation, optimization of chitinase-producing conditions, purification and characterization of chitinase, biosynthesis mechanism of chitinase, cloning and expresssion of chitinase gene, and its application in hydrolyzing chitin and shrimp by chitinase. The results were as follows:
     1)The 56 bacteria producing chitinase were isolated from 180 samples in four provinces through see-through circle way, including soil, insect, stricks and crustacean cadavers and so on. Among them, five bacteria have high chitinas-producing ability and one strain was selected and identified as a new species. According to the experiments of physiology and biochemistry, fatty acid composition, quinines, G+C content and 16S rRNA, it was named C. meiyuanensis SYBC-H1. The 16S rRNA has been submitted to GenBank (GQ981314). This bacterium was preserved in the China General Microbiological Culture Collection Center (CGMCC 3438)and American Type Culture Collection(ATCC BAA-2140).
     2)The submerged culture conditions and medium components of C. meiyuanensis SYBC-H1 were optimized. Effects of various carbon sources, nitrogen sources, metal ions and other factors were investigated firstly and ten important factors of chitinase production were screened. Furthermore some key factors for chitinase production were determined through Plackett-Burman design. The optimized medium (g/L) using central composite design were urea 3.1, inulin 3.55, chitin 3.80, Na_2SO_4 0.32, K_2HPO_4·3H_2O 0.70, KH_2PO_4 0.30, MgSO_4·7H_2O 0.5, FeSO_4·7H_2O 0.01. And then the optimum culture conditions were investigated through Central Composite Design,and the results optimum fermentration condition as rotate speed 233 r/min, initial pH 6.44 and temperature 26.21℃. The maximum enzyme activity was 5.16 U/mL while the tested enzyme activity was 5.20±0.32 U/mL. Meanwhile, the effects of cell age, inoculums size and surfactant on production of chitinase were studied.
     3)The crude chitinase was purified through three effective steps involving (NH_4)2SO_4 salt precipitation, DEAE-cellulose anion-exchange chromatography and Sephadex G-100 gel filtration. Pure electrophoresis grade chitinase was obtained. Enzymatic properties were studied,and its optimum temperature is 40℃, which aldso found that the enzyme activity decreases rapidly with rising temperature especially above 43℃. The chitinase activity with a wider range pH from 3.5 to 9.0 and the optimum pH of 6.5. Mercaptoethanol and EDTA effectively improved the stability of chitinase. Zn~(2+),Cu~(2+),Mn~(2+),Fe~(2+) and Fe(3+) have different inhibition degrees on chitinase , while Na~+ and K~+ stimulated it.
     4)The physiological characteristics of C. meiyuanensis SYBC-H1 during the chitinase production were investigated. It was found that secretion of chitinase and biomass had certain correlation. When the strain cultivated in the optimal medium, the oxidation level was relatively high, the contents of malondialdehyde, H2O2 and Vc were increased, and the activities of SOD and CAT were enhanced. These indicated that the strain was under oxidative stress during the chitinase production period.
     5)By observing the effect of carbon sources on enzyme activity, it was found that fructose as a kind of carbon source is far more effective than glucose. The cloning and expression experiment of chitinase gene enables us to clone and testify the ABC transportors system including ATPase, periplasmic sugar-binding protein and aminoglycoside transport protein. These offered theoretical base for further steps of molecule modification of this bacteria to design and construct bioengineering one.
     6)Two chitinase genes(CHI1,CHI2) were cloned and their full-length were 497 bp and 1151 bp. Three-dimensional structures were studied with Swiss-MODEL. E. coli expression vector pET28(a)-CHI2 was constructed and expressed into E. coli BL21 successfully. SDS-PAGE showed chitinase had significant expression but its activity was low, indicating that the expressed protein existed in the form of inclusion bodies.
     7)According to mass spectrometry (MS) and high performance liquid chromatography (HLPC) identification of hydrolysis products of chitin, there are mainly N acetyl glucosamine and few chitobiose. Chitinase degradation of chitin and dried small shrimps were investigated. Study showed that temperature, time, pH, beta mercaptoethanol, metal ions and oxygen supply affected the hydrolysis of chitin. Particle size of 100 hole of chitin powder was in favor of chitinase hydrolysis, but 30-70 chitin powder did not significantly affect. At the same time also we used Levenberg-Marquardt and general global optimization method to establish the chitinase hydrolysis chitin model, and the results showed that when the temperature was 37.5℃, pH 7.0 and the hydrolysis time 13.5 hours, the highest efficiency was reached, and sugar concentration was 90.4μmol / L.
引文
[1] Saito A, Fujii T, Shinya T, et al. The msiK gene, encoding the ATP-hydrolysing component of N, N-diacetylchitobiose ABC transporters, is essential for induction of chitinase production in Streptomyces coelicolor A3 (2) [J]. Microbiology, 2008, 154(11): 3358-3365.
    [2] Chern LL, Stackebrandt E, Lee SF, et al. Chitinibacter tainanensis gen. nov., sp nov., a chitin-degrading aerobe from soil in Taiwan [J]. Int J Syst Evol Microbiol, 2004, 54: 1387-1391.
    [3] Sato K, Kato Y, Taguchi G, et al. Chitiniphilus shinanonensis gen. nov., sp nov., a novel chitin-degrading bacterium belonging to Betaproteobacteria [J]. J Gen Appl Microbiol 2009, 55(2): 147-153.
    [4] Yang H, Im W, An D, et al. Silvimonas terrae gen. nov., sp. nov., a novel chitin-degrading facultative anaerobe belonging to the Betaproteobacteria [J]. Int J Syst Evol Microbiol, 2005, 55(6): 2329-2332.
    [5] Stackebrandt E, Lang E, Cousin S, et al. Deefgea rivuli gen. nov., sp. nov., a member of the class Betaproteobacteria [J]. Int J Syst Evol Microbiol, 2007, 57(3): 639-645.
    [6] Weon H, Kim B, Yoo S, et al. Andreprevotia chitinilytica gen. nov., sp. nov., isolated from forest soil from Halla Mountain, Jeju Island, Korea [J]. Int J Syst Evol Microbiol, 2007, 57(7): 1572-1575.
    [7]侯春林,顾其胜,刘万顺.几丁质与医学[M].上海科学技术出版社,上海, 2008.
    [8] Sitrit Y, Vorgias CE, Chet I, et al. Cloning and primary structure of the chiA gene from Aeromonas caviae [J]. J Bacteriol, 1995, 177(14): 4187-4189.
    [9] Mitsutomi M, Isono M, Uchiyama A, et al. Chitosanase activity of the enzyme previously reported as ?-1, 3-1, 4-glucanase from Bacillus circulans WL-12 [J]. Biosci Biotechnol Biochem, 1998, 62(11): 2107-2114.
    [10] Hong C, Ping L, Yao G, et al. Biological control of rice disease and insect by chitinase-producing bacterium X2-23 [J]. Chinese Rice Res Newslett, 2002, 10(3): 3-4.
    [11] Watanabe T, Kobori K, Miyashita K, et al. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity [J]. J Biol Chem, 1993, 268(25): 18567-18572.
    [12] Molise E and DRAKE CH. Chitinolysis by Serratiae including Serratia liquefaciens (Enterobacter liquefaciens) [J]. Int J Systemat Bacteriol, 1973, 23(3): 278-280.
    [13] Jones JDG, Grady KL, Suslow TV, et al. Isolation and characterization of genes encodingtwo chitinase enzymes from Serratia marcescens [J]. EMBO J, 1986, 5(3): 467-473.
    [14] Sundheim L, Poplawsky AR and Ellingboe AH. Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species [J]. Physiol Mol Plant Pathol, 1988, 33(3): 483-491.
    [15] Joshi S, Kozlowski M, Richens S, et al. Chitinase and chitobiase production during fermentation of genetically improved Serratia liquefaciens [J]. Enzyme Microb Technol, 1989, 11(5): 289-296.
    [16] Pelletier A and Sygusch J. Purification and characterization of three chitosanase activities from Bacillus megaterium P1 [J]. Appl Environ Microbiol, 1990, 56(4): 844-848.
    [17] Trachuk LA, Revina LP, Shemyakina TM, et al. Chitinases of Bacillus licheniformis B-6839: isolation and properties [J]. Can J Microbiol, 1996, 42(4): 307-315.
    [18] Leifert C, Li H, Chidburee S, et al. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45 [J]. J Appl Microbiol, 1995, 78(2): 97-108.
    [19] Nakada T, Kubota M, Sakai S, et al. Purification and characterization of two forms of maltotetraose-forming amylase from Pseudomonas stutzeri [J]. Agric Biol Chem, 1990, 54(3): 737-743.
    [20]顾真荣,吴畏,高新华.枯草芽孢杆菌G3菌株的抗菌物质及其特陛[J].植物病理学报, 2004, 34(2): 166-172.
    [21] Morimoto K, Karita S, Kimura T, et al. Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain [J]. J Bacteriol, 1997, 179(23): 7306-7314.
    [22] Bendt A, Hller H, Kammel U, et al. Cloning, expression, and characterization of a chitinase gene from the Antarctic psychrotolerant bacterium Vibrio sp. strain Fi: 7 [J]. Extremophiles, 2001, 5(2): 119-126.
    [23] Chernin L, Winson M, Thompson J, et al. Chitinolytic activity in Chromobacterium violaceum: Substrate analysis and regulation by quorum sensing [J]. J Bacteriol, 1998, 180(17): 4435-4441.
    [24] Horikoshi K, IIDA S. Effect of lytic enzyme from Bacillus circulans and chitinase from Streptomyces sp. on Aspergillus oryzae [J]. Nature, 1959, 183: 186-187.
    [25] El-Shafei HA. Influence of-sorbose and the cell-wall-lytic Micrococcus Sp. on the major polymers of Aspergillus fumigatus [J]. Polym Degrad Stabil, 1997, 57(2): 151-156.
    [26] Kumar V. The scanning electron microscopic study of the infection and conidial development of Aspergillus tamarii Kita on its host, the silkworm, Bombyx mori Linn [J].Cent Eur J Biol, 2007, 2(4): 574-587.
    [27] Fang W, Leng B, Xiao Y, et al. Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence [J]. Appl Environ Microbiol, 2005, 71(1): 363-370.
    [28] Fan Q, Tian S, Liu H, et al. Production ofβ-1,3-glucanase and chitinase of two biocontrol agents and their possible modes of action [J]. Chinese Sci Bull, 2002, 47(4): 292-296.
    [29] Droby S, Vinokur V, Weiss B, et al. Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila [J]. Phytopathol, 2002, 92(4): 393-399.
    [30] Monreal J , Reese ET. The chitinase of Serratia marcescens [J]. Can J Microbiol, 1969, 15(7): 689-696.
    [31] Raetz E, Leub J, Giambattista RDI, et al. Chitinolytic enzymes production by Penicillium janthinellum. EP Patent 0885954, European, 1998.
    [32] Cruz J, Hidalgogallego A, Lora JM, et al. Isolation and characterization of three chitinases from Trichoderma harzianum [J]. Eur J Biochem, 1992, 206(3): 859-867.
    [33] De Vries O, Wessels J. Release of protoplasts from Schizophyllum commune by combined action of purifiedβ-1,3-glucanase and chitinase derived from Trichoderma viride [J]. J Gen Microbiol, 1973, 76(2): 319-330.
    [34] Hara S, Yamamura Y, Fujii Y, et al. Purification and characterization of chitinase produced by Streptomyces erythraeus [J]. J Biochem, 1989, 105(3): 484-489.
    [35] Ralph Berger L, Reynold DM. The chitinase system of a strain of Streptomyces griseus [J]. Biochim Biophys Acta, 1958, 29(3): 522-534.
    [36] Blaak H, Schrempf H. Binding and substrate specificities of a Streptomyces olivaceoviridis chitinase in comparison with its proteolytically processed form [J]. Eur J Biochem, 1995, 229(1): 132-139.
    [37] Robbins PW, Albright C, Benfield B. Cloning and expression of a Streptomyces plicatus chitinase (chitinase-63) in Escherichia coli [J]. J Biol Chem, 1988, 263(1): 442-447.
    [38] Gupta R, Saxena R, Chaturvedi P, et al. Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis [J]. J Appl Microbiol, 1995, 78(4): 378-383.
    [39] Ueno H, Miyashita K, Sawada Y, et al. Purification and some properties of extracellular chitinases from Streptomyces sp. S-84 [J]. J Gen Appl Microbiol, 1990, 36(6): 377-392.
    [40] Hiramatsu S, Fujie M, Usami S, et al. Two catalytic domains of Chlorella virus CVK2 chitinase [J]. J Biosci Bioeng, 2000, 89(3): 252-257.
    [41] Rebers JE, Willis JH. A conserved domain in arthropod cuticular proteins binds chitin1 [J]. Insect Biochem Mol, 2001, 31(11): 1083-1093.
    [42] Nair MG, Gallagher IJ, Taylor MD. Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells [J]. Infect Immunol, 2005, 73(1): 385-394.
    [43] Oshima H, Miyazaki R, Ohe Y, et al. Isolation and sequence of a novel amphibian pancreatic chitinase [J]. Comparative Biochemistry and Physiology Part B: Biochem Mol Biol, 2002, 132(2): 381-388.
    [44] Cornelius C, Dandrifosse G, Jeuniaux C. Biosynthesis of chitinases by mammals of the order carnivora [J]. Biochem Syst Ecol, 1975, 3(2): 121-122.
    [45] Jeuniaux C, Cornelius. Distribution and activity of chitinolytic enzymes in the digestion tract of birds and mammals. In Proceedings of the first international conference on chitin/chitosan. 1978. pp. 542-549, Muzzarelli, R. A. A. and Pariser, E. R.(eds.), MIT Sea Grant Report MITSG, USA.
    [46]刘宝业,梁国鲁,张增艳.水稻几丁质酶的原核表达、复性及体外抑菌活性的研究[J].核农学报, 2009, 23(3): 369-374.
    [47] Zhu Q, Maher EA, Masoud S, et al. Enhanced protection against fungal attack by Constitutive Cocexpression of Chitinase and Glucanase Genes in Transgenic Tobacco [J]. Nature Biotechnol, 1994, 12(8): 807-812.
    [48]仲健,朱沙,张琦.葡萄几丁质酶基因在毕赤酵母中的表达及其生物活性研究[J].河南农业科学, 2009, 5: 90-93.
    [49] Fuchsr L. Properties of Chitinases from Serratia Marcescens [J]. Environ Microbiol, 1987, 53(7): 1718-1720.
    [50] Watanabe T, Suzuki K, Ohnishi K. Gene cloning of chitinase AI from Bacillus circulam W L-12 revealed its evolutionary relationship to Serratia Chitinase and to the type III homology units of frbronectin [J]. J Bio Chem, 1990, 265(26): 15659-15665.
    [51] Reid JD, Ogrydziak DM. Chitinase-overproducing mutant of Serratia marcescens [J]. Appl Environ Microbiol, 1981, 41(3): 664-669.
    [52] Haki G, Rakshit S. Developments in industrially important thermostable enzymes: a review [J]. Biores Technol, 2003, 89(1): 17-34.
    [53] Miyashita K, Fujii T, Sawada Y. Molecular cloning and characterization of chitinase genes from Streptomyces lividans 66 [J]. J Gen Microbiol, 1991, 137(9): 2065-2072.
    [54] Hideto U, Kiyotaka M, Yasuo S. Purification and some properties of Extracellular Chitinase from Streptomyces sp. S-84. [J]. J Gen Appl Microbiol, 1990, 36: 377-392.
    [55] Dickinson K, Keer V, Hitchcock CA, et al. Chitinase activity from Candida albicans andits inhibition by allosamidin [J]. J Gen Microbiol, 1989, 135(6): 1417-1421.
    [56] Chen JP, Lee MS. Enhanced production of Serratia marcescens chitinase in PEG/dextran aqueous two-phase systems [J]. Enzyme Microb Technol, 1995, 17(11): 1021-1027.
    [57] Brameld KA, Goddard III WA. Substrate distortion to a boat conformation at subsite-1 is critical in the mechanism of family 18 chitinases [J]. J Am Chem Soc, 1998, 120(15): 3571-3580.
    [58] Dahiya N, Tewari R, Tiwari RP, et al. Chitinase production in solid-state fermentation by Enterobacter sp. NRG4 using statistical experimental design [J]. Curr Microbiol, 2005, 51(4): 222-228.
    [59] Rattanakit N, Plikomol A, Yano S, et al. Utilization of shrimp shellfish waste as a substrate for solid-state cultivation of Aspergillus sp. S1-13: Evaluation of a culture based on chitinase formation which is necessary for chitin-assimilation [J]. J Biosci Bioeng, 2002, 93(6): 550-556.
    [60] Maizels RM, Blaxter ML, Scott AL. Immunological genomics of Brugia malayi: filarial genes implicated in immune evasion and protective immunity [J]. Parasite Immunol, 2001, 23(7): 327-344.
    [61] Benecke U. Bacillus chitinovorus eien chitin zersetzenden Spaltpilz [J]. Bot ztg, 1995, 63: 227-231.
    [62] Flach J, Pilet PE and Jolles P. What's new in chitinase research? [J]. Cell Mol Life Sci, 1992, 48(8): 701-716.
    [63] Flach J, Pilet PE, Jollès P. Hat's new in chitinase research? [J]. Experientia, 1992, 48: 701-716.
    [64]诸葛健,王正祥.工业微生物实验技术手册[M].中国轻工业出版社, 1994.
    [65] R.E.布坎南,N.E.吉本斯.伯杰细菌鉴定手册[M].科学出版社,北京, 1984.
    [66] Kmpfer P, Young CC, Sridhar K, et al. Transfer of [Flexibacter] sancti,[Flexibacter] filiformis,[Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov [J]. Int J Syst Evol Microbiol, 2006, 56(9): 2223-2228.
    [67] Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms [J]. J Mol Biol 1961, 3(2): 208-218.
    [68] Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+ C content of deoxyribonucleic acid by high-performance liquid chromatography [J]. Int J Syst Evol Microbiol, 1989, 39(2): 159-167.
    [69] Brosius J, Dull TJ, Sleeter DD, et al. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli1 [J]. J Mol Biol, 1981, 148(2): 107-127.
    [70] Saitou N and Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Mol Biol Evol, 1987, 4(4): 406-425.
    [71] Kimura M. A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences [J]. J Mol Evol, 1980, 16: 111-120.
    [72] Wayne L, Brenner D and Colwell R. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics [J]. Int J Syst Bacteriol 1987, 37: 463-464.
    [73] Krieger de Moraes C, Schrank A and Vainstein MH. Regulation of extracellular chitinases and proteases in the entomopathogen and acaricide Metarhizium anisopliae [J]. Curr Microbiol, 2003, 46(3): 205-210.
    [74] Elibol M. Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3 (2) with response surface methodology [J]. Process Biochem, 2004, 39(9): 1057-1062.
    [75] Makino A, Kurosaki K, Ohmae M, et al. Chitinase-catalyzed synthesis of alternatingly N-deacetylated chitin: A chitin-chitosan hybrid polysaccharide [J]. Biomacromolecules, 2006, 7(3): 950-957.
    [76] Pichyangkura R, Kudan S, Kuttiyawong K, et al. Quantitative production of 2-acetamido-2-deoxy-glucose from crystalline chitin by bacterial chitinase [J]. Carbohyd Res, 2002, 337(6): 557-559.
    [77] Vaidya R, Shah I, Vyas P, et al. Production of chitinase and its optimization from a novel isolate Alcaligenes xylosoxydans: potential in antifungal biocontrol [J]. World J Microbiol Biotechnol, 2001, 17(7): 691-696.
    [78] Suresh P and Chandrasekaran M.Utilization of prawn waste for chitinase production by the marine fungus Beauveria bassiana by solid state fermentation [J]. World J Microbiol Biotechnol, 1998, 14(5): 655-660.
    [79] Singh A, Mehta G and Chhatpar H. Optimization of medium constituents for improved chitinase production by Paenibacillus sp. D1 using statistical approach [J]. Lett Appl Microbiol, 2009, 49(6): 708-714.
    [80] Schlumbaum A, Mauch F, Vgeli U, et al. Plant chitinases are potent inhibitors of fungal growth [J]. Plant J, 1986, 3: 31-40.
    [81] Matsushima R, Ozawa R, Uefune M, et al. Intraspecies variation in the Kanzawa spider mite differentially affects induced defensive response in lima bean plants [J]. J Chem Ecol, 2006, 32(11): 2501-2512.
    [82] Collinge DB, Kragh KM, Mikkelsen JD, et al. Plant chitinases [J]. Plant J, 1993, 3(1): 31-40.
    [83] Boer H, Munck N, Natunen J, et al. Differential recognition of animal type N-β-4-galactosylated and |á3-fucosylated chito-oligosaccharides by two family 18 chitinases from Trichoderma harzianum [J]. Glycobiology, 2004, 14(12): 1303-1303.
    [84] Han B, Lee W and Jo D. Chitinolytic enzymes from the gizzard and the chyme of the broiler (Gallus gallus L.) [J]. Biotechnol Lett, 1997, 19(10): 981-984.
    [85] Bhushan B, Hoondal GS. Isolation, purification and properties of a thermostable chitinase from an alkalophilic Bacillus sp. BG-11 [J]. Biotechnol Lett, 1998, 20(2): 157-159.
    [86] Shigemasa Y, Saito K, Sashiwa H, et al. Enzymatic degradation of chitins and partially deacetylated chitins [J]. Int J Biol Macromol, 1994, 16(1): 43-49.
    [87] Hood M. Comparison of four methods for measuring chitinase activity and the application of the 4-MUF assay in aquatic environments [J]. J Microbiol Meth, 1991, 13(2): 151-160.
    [88] Dahiya N, Tewari R, Tiwari R, et al. Production of an antifungal chitinase from Enterobacter sp. NRG4 and its application in protoplast production [J]. World J Microbiol Biotechnol, 2005, 21(8): 1611-1616.
    [89] Akimoto C, Aoyagi H, Dicosmo F, et al. Synergistic effect of active oxygen species and alginate on chitinase production by Wasabia japonica cells and its application [J]. J Biosci Bioeng, 2000, 89(2): 131-137.
    [90] Legrand M, Kauffmann S, Geoffroy P, et al. Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases [J]. Proc National Acad Sci USA, 1987, 84(19): 6750-6754.
    [91] Heil M, Bostock RM. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences [J]. Ann Bot-London, 2002, 89(5): 503-512.
    [92] Shaikh S, Deshpande M. Chitinolytic enzymes: their contribution to basic and applied research [J]. World J Microbiol Biotechnol, 1993, 9(4): 468-475.
    [93] Fukamizo T. Chitinolytic enzymes catalysis, substrate Binding, and their application [J]. Curr Protein Pept Sc, 2000, 1(1): 105-124.
    [94] Vaidya R, Vyas P, Chhatpar H. Statistical optimization of medium components for the production of chitinase by Alcaligenes xylosoxydans [J]. Enzyme Microb Technol, 2003, 33(1): 92-96.
    [95] Nawani N, Kapadnis B. Optimization of chitinase production using statistics based experimental designs [J]. Process Biochem, 2005, 40(2): 651-660.
    [96] Wasli AS, Salleh MM, Abd-Aziz S, et al. Medium optimization for chitinase production from Trichoderma virens using central composite design [J]. Biotechnol Bioproc E, 2009,14(6): 781-787.
    [97] Rojas-Avelizapa L, Cruz-Camarillo R, Guerrero M, et al. Selection and characterization of a proteo-chitinolytic strain of Bacillus thuringiensis, able to grow in shrimp waste media [J]. World J Microbiol Biotechnol, 1999, 15(2): 299-308.
    [98] Ooijkaas L, Wilkinson E, Tramper J, et al. Medium optimization for spore production of Coniothyrium minitans using statisticallybased experimental designs [J]. Biotechnol Bioeng, 1999, 64(1): 92-100.
    [99] Elendt BP, Bias WR. Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing. Effects of the optimization of culture conditions on life history parameters of D. magna [J]. Water Research, 1990, 24(9): 1157-1167.
    [100] Fang TJ, Cheng YS. Improvement of astaxanthin production by Phaffia rhodozyma through mutation and optimization of culture conditions [J]. J Fermentation Bioeng, 1993, 75(6): 466-469.
    [101] Chandra P, Lecluyse EL, Brouwer KLR. Optimization of culture conditions for determining hepatobiliary disposition of taurocholate in sandwich-cultured rat hepatocytes [J]. In Vitro Cell Dev-An, 2001, 37(6): 380-385.
    [102] Bhuiyan M, Cho J, Jang G, et al. Effect of protein supplementation in potassium simplex optimization medium on preimplantation development of bovine non-transgenic and transgenic cloned embryos [J]. Theriogenol, 2004, 62(8): 1403-1416.
    [103] Li C, Bai J, Cai Z, et al. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology [J]. J Biotechnol, 2002, 93(1): 27-34.
    [104] Trupkin S, Levin L, Forchiassin F, et al. Optimization of a culture medium for ligninolytic enzyme production and synthetic dye decolorization using response surface methodology [J]. J Ind Microbiol Biotechnol, 2003, 30(12): 682-690.
    [105] Jones AM, Ingledew W. Fuel alcohol production: Optimization of temperature for efficient very-high-gravity fermentation [J]. Appl Environ Microbiol, 1994, 60(3): 1048.
    [106] Wang S, Ingledew W, Thomas K, et al. Optimization of fermentation temperature and mash specific gravity for fuel alcohol production [J]. Cereal Chemistry, 1999, 76(1): 82-86.
    [107] Ketchum R, Gibson D, Gallo LG. Media optimization for maximum biomass production in cell cultures of pacific yew [J]. Plant cell tissue organ culture, 1995, 42(2): 185-193.
    [108] Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization [J]. Biotechnol Bioeng, 2003, 84(6): 647-657.
    [109] Rao KJ, Kim CH,Rhee, SK. Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology [J]. Process Biochem, 2000, 35(7): 639-647.
    [110] Fussenegger M, Bailey JE, Hauser H, et al. Genetic optimization of recombinant glycoprotein production by mammalian cells [J]. Trend Biotechnol, 1999, 17(1): 35-42.
    [111] Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells [J]. Nature Biotechnol, 2004, 22(11): 1393-1398.
    [112]余龙江.发酵工程原理与技术应用[M].化学工业出版社,北京, 2006.
    [113] Watanabe T, Suzuki K, Oyanagi W, et al. Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the type III homology units of fibronectin [J]. J Biol Chem, 1990, 265(26): 15659.
    [114] Frndberg E and Schnrer J. Chitinolytic properties of Bacillus pabuli K1 [J]. J Appl Microbiol, 1994, 76(4): 361-367.
    [115] Miyashita K, Fujii T, Sawada Y. Molecular cloning and characterization of chitinase genes from Streptomyces lividans 66 [J]. Microbiol, 1991, 137(9): 2065-2072.
    [116] Troedsson U, Olsson P and Jarlsunesson C. Application of antisense transformation of a barley chitinase in studies of arbuscule formation by a mycorrhizal fungus [J]. Hereditas, 2005, 142(2005): 65-72.
    [117] Jacques P, Hbid C, Destain J, et al. Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design [J]. Appl Biochem Biotechnol, 1999, 77(1): 223-233.
    [118] Murata T, Aniaruine S, Hattori T, et al. Purification and characterization of a chitinase from Amycolatopsis orientalis with N-acetyllactosamine-repeating unit releasing activity [J]. Biochem Biophys Res Commun, 2005, 336(2): 514-520.
    [119] Xia WS, Chen X and Yu XB. Purification and characterization of two types of chitosanase from Aspergillus sp. CJ22-326 [J]. Food Res Int, 2005, 38(3): 315-322.
    [120] Park RD, Jung WJ, Kuk JH, et al. Purification and characterization of exo-beta-D-glucosaminidase from Aspergillus fumigatus S-26 [J]. Protein Expres Purif, 2006, 45(1): 125-131.
    [121] Sugita H, Konagaya Y and Tsuchiya C. Purification and characterization of chitinases from Clostridium sp. E-16 isolated from the intestinal tract of the South American sea lion (Otaria flavescens) [J]. Lett Appl Microbiol, 2006, 43(2): 187-193.
    [122]田亚平.生化分离技术[M].化学工业出版社,北京, 2006.
    [123] Minami M, Takahashi T, Maruyama W, et al. Allosteric effect of tetrahydrobiopterin cofactors on tyrosine hydroxylase activity [J]. Life Sci, 1992, 50(1): 15-20.
    [124] Trudel J, Asselin A. Detection of chitinase activity after polyacrylamide gel electrophoresis [J]. Anal Biochem, 1989, 178(2): 362-366.
    [125]王治伟,刘志敏.微生物几丁质酶研究进展[J].生物技术通讯, 2006, 17(3): 439-442.
    [126] Tsujibo H, Orikoshi H, Shiotani K, et al. Characterization of chitinase C from a marine bacterium, Alteromonas sp. strain O-7, and its corresponding gene and domain structure [J]. Appl Environ Microbiol, 1998, 64(2): 472-478.
    [127] Wang SL, Chang WT. Purification and characterization of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium [J]. Appl Environ Microbiol, 1997, 63(2): 380.
    [128] Park YI, Park JK, Kim WJ. Purification and characterization of an exo-type beta-N-acetylglucosaminidase from Pseudomonas fluorescens JK-0412 [J]. J Appl Microbiol, 2011, 110(1): 277-286.
    [129] Jiang ZQ, Kopparapu NK, Liu ZQ, et al. Purification and characterization of a chitinase (sAMC) with antifungal activity from seeds of Astragalus membranaceus [J]. Process Biochem, 2011, 46(6): 1370-1374.
    [130] Matsumiya M, Ikeda M, Miyauchi K, et al. Purification and characterization of chitinase from the stomach of silver croaker Pennahia argentatus [J]. Protein Expres Purif, 2009, 65(2): 214-222.
    [131] Mohanty AK, Pradeep MA, Jagadeesh J, et al. Purification, sequence characterization and effect of goat oviduct-specific glycoprotein on in vitro embryo development [J]. Theriogenol, 2011, 75(6): 1005-1015.
    [132] Hellmuth K, Pluschkell S, Jung JK, et al. Optimization of glucose oxidase production by Aspergillus niger using genetic-and process-engineering techniques [J]. Appl Microbiol Biotechnol, 1995, 43(6): 978-984.
    [133] Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a laboratory manual [M]. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982.
    [134] Georgiou CD. Lipid peroxidation in Sclerotium rolfsii: a new look into the mechanism of sclerotial biogenesis in fungi [J]. Mycol Res, 1997, 101(4): 460-464.
    [135]杜玉,娄红祥.天然植物抗氧化剂的作用机制研究概况[J].中药材, 2006, 29: 739-743.
    [136]黄进,杨国宇,李宏基.抗氧化剂作用机制研究进展[J].自然杂志, 2004, 26: 74-78.
    [137] Chiou TJ, Chu ST, Tzeng WF. Protection of cells from menadione-induced apoptosis by inhibition of lipid peroxidation [J]. Toxicol, 2003, 191(2-3): 77-88.
    [138] Janero DR, Hreniuk D, Sharif HM. Hydrogen peroxide?\induced oxidative stress to the mammalian heart muscle cell (cardiomyocyte): Lethal peroxidative membrane injury [J]. J Cell Physiol, 1991, 149(3): 347-364.
    [139] Miller N, Rice-Evans C, Davies M, et al. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates [J]. Clinical Science, 1993, 84(4): 407-412.
    [140] Srivastava AK, Sauer RT. Evidence for partial secondary structure formation in the transition state for arc repressor refolding and dimerization [J]. Biochemistry-Us, 2000, 39(28): 8308-8314.
    [141] Newton AC, Protein kinase C. structure, function, and regulation [J]. J Biol Chem, 1995, 270(48): 28495-28498.
    [142] Davidson AL, Maloney PC. ABC transporters: how small machines do a big job [J]. Trend Microbiol, 2007, 15(10): 448-455.
    [143] Xiao X, Wang F, Saito A, et al. The novel Streptomyces olivaceoviridis ABC transporter Ngc mediates uptake of N-acetylglucosamine and N, N'-diacetylchitobiose [J]. Mol Genet Genomics, 2002, 267(4): 429-439.
    [144] Saito A, Shinya T, Miyamoto K, et al. The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N, N'-diacetylchitobiose in Streptomyces coelicolor A3 (2) [J]. Appl Environ Microbiol, 2007, 73(9): 3000-3008.
    [145] Saito A, Schrempf H. Mutational analysis of the binding affinity and transport activity for N-acetylglucosamine of the novel ABC transporter Ngc in the chitin-degrader Streptomyces olivaceoviridis [J]. Mol Genet Genomics, 2004, 271(5): 545-553.
    [146]阳丽,杨萍,王曼莹.烟曲霉壳聚糖酶在毕赤酵母中的分泌表达[J].中国酿造, 2010, 223(10): 133-136.
    [147] Fuchs R, McPherson S, Drahos D. Cloning of a Serratia marcescens gene encoding chitinase [J]. Appl Environ Microbiol, 1986, 51(3): 504-509.
    [148] Terwisscha van Scheltinga AC, Armand S, Kalk KH, et al. Stereochemistry of chitin hydrolysis by a plant chitinase lysozyme and x-ray structure of a complex with allosamidin evidence for substrate assisted catalysis [J]. Biochemistry-Us, 1995, 34(48): 15619-15623.
    [149] Robbins PW, Albrigh, C, Benfield B. Cloning and expression of a Streptomyces plicatus chitinase (chitinase-63) in Escherichia coli [J]. J Biol Chem, 1988, 263(1): 443-447.
    [150] Watanabe T, Suzuki K, Oyanagi W, et al. Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the type III homology units of fibronectin [J]. J Biol Chem, 1990, 265(26): 15659-15665.
    [151] Tsujibo H, Orikoshi H, Tanno H, et al. Cloning, sequence, and expression of a chitinase gene from a marine bacterium, Alteromonas sp. strain O-7 [J]. J Bacteriol, 1993, 175(1): 176-181.
    [152] Sitrit Y, Vorgias CE, Chet I, et al. Cloning and primary structure of the chiA gene from Aeromonas caviae [J]. J Bacteriol, 1995, 177(14): 4187-4189.
    [153] Park JK, Okamoto T, Yamasaki Y, et al. Molecular cloning, nucleotide sequencing, and regulation of the chiA gene encoding one of chitinases from Enterobacter sp. G-1[J]. J Ferment Bioeng, 1997, 84(6): 493-501.
    [154] Yoshihara K, Hosokawa J, Kubo T, et al. Purification and properties of a chitosanase from Pseudomonas sp. H-14 [J]. Biosci Biotechnol Biochem, 1992, 56(6): 972-973.
    [155] Wu ML, Chuang YC, Chen JP, et al. Identification and characterization of the three chitin-binding domains within the multidomain chitinase Chi92 from Aeromonas hydrophila JP101 [J]. Appl Environ Microbiol, 2001, 67(11): 5100-5106.
    [156] Chernin LS, De La Fuente L, Sobolev V, et al. Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans [J]. Appl Environ Microbiol, 1997, 63(3): 834-839.
    [157] Shiro M, Ueda M, Kawaguchi T, et al. Cloning of a cluster of chitinase genes from Aeromonas sp. No. 10S-21 [J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1996, 1305(1-2): 44-48.
    [158] Broglie KE, Gaynor JJ, Broglie RM. Ethylene-regulated gene expression: molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris [J]. Proc Natl Acad Sci USA, 1986, 83(18): 6820-6824.
    [159] Kobayashi DY, Reedy RM, Bick JA, et al. Characterization of a chitinase gene from Stenotrophomonas maltophilia 34S1 and its involvement in biological control [J]. Appl Environ Microbiol, 2002, 68(3): 1047-1054.
    [160] Barboza-Corona JE, Nieto-Mazzocco E, Velazquez-Robledo R, et al. Cloning, sequencing, and expression of the chitinase gene chiA74 from Bacillus thuringiensis [J]. Appl Environ Microbiol, 2003, 69(2): 1023-1029.
    [161] Usharani TR, Gowda TKS. Cloning of chitinase gene from Bacillus thuringiensis [J]. Indian J Biotechnol, 2011, 10(3): 264-269.
    [162] Zhang XX, Liang ZP, Chen XH. Molecular characterization and genetic organization of the BamHI-C fragment of Clostera anachoreta granulovirus [J]. Virus Genes, 2011, 42(1): 150-152.
    [163] Yamamoto-Tamura K, Ohno M, Kataoka S, et al. Biological Control of Rhizoctonia damping-off of Cucumber by a Transformed Pseudomonas putida Strain Expressing aChitinase from a Marine Bacterium [J]. Jarq-Jpn Agr Res Q, 2011, 45(1): 91-98.
    [164] Shen BA, Wu Y, Liu F, et al. Identification of chitinases Is-chiA and Is-chiB from Isoptericola jiangsuensis CLG and their characterization [J]. Appl Microbiol Biot, 2011, 89(3): 705-713.
    [165]闫军,遇晓杰,汤岩等.金黄色葡萄球菌在生乳中生长预测模型的建立[J].中国食品卫生杂志, 2010, 22(6): 502-505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700