分离式拟质点方法的研究及纳米压痕多尺度模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近几十年大规模集成电路技术和纳米技术的迅猛发展,特别是当电路的特征宽度降低到纳米级之后,通过对各类电子部件压痕特性的分析以揭示其纳米尺度下的力学特性已成为当今应用研究的关注点之一。另一方面,诸如金在室温下可变为液态、绝缘体硅能变成导体等这些新颖的材料特性也强烈地激发着人们对纳米尺度下各类物理现象进行不断探索的热情。而所有这些问题的解决都离不开多尺度分析方法的发展与完善。尤其是跨原子/连续介质多尺度分析方法的研究在其中占据着重要地位。但目前常用的多尺度分析方法在连续介质区域一般采用有限元方法来加以模拟计算,这一处理方法容易在原子尺度和有限元尺度的边界处产生如“鬼力”等各类虚假的物理现象,从而导致两个尺度间的物理量并不能光滑无碍地相互传递。同时在有限元的某些区域,有限元节点间距几乎与原子间距相等。这又将消耗大量的存储空间和计算时间。最近几年,有研究者将连续介质尺度内的模型离散化,采用质点系统来代替以往的有限元系统,进而发展出一类被称之为原子/质点多尺度模拟方法。该类方法以其独特的几何构造和清晰的物理概念吸引着人们对其不断进行探索和完善。本论文在已有的原子/质点多尺度分析方法的基础上,从计算质点位置信息和受力信息的角度作为切入点,围绕原子与质点多尺度模拟方法的建立和应用等问题开展了以下几方面的研究:
     1.根据原子/质点模型的基本原理,建立了与面心立方晶胞相对应的新型二级拟质点三维空间几何模型,使得拟质点的空间位置分布更加符合材料的实际特点。并推导出该拟质点几何模型与面心立方晶胞之间的定量数值关系。同时在原子系统和拟质点系统的界面处分别构造出虚拟的原子区域和拟质点区域,从而将自然边界条件引入到分离式拟质点多尺度分析模型中。因此可以保证系统的位移和应力等物理量能无碍地在原子系统区和拟质点系统区之间互相传递。
     2.由平均加速度方法求解出此时的拟质点系统势能函数的参数,并将其应用于对拟质点的加速度、速度和位置等信息的计算中;基于能量守恒定律求解出拟质点系统另一组的势能函数参数,并将其应用于对各个拟质点系统受力信息的计算中。进而绕过牛顿第二定律,使拟质点的位置和受力等物理量与实际原子系统的物理信息保持一致。
     3.以单晶铜纳米丝模型为例,对比分析分离式拟质点多尺度方法、广义质点多尺度方法以及分子动力学方法在不同加载速率条件下模拟实验的结果,以验证分离式拟质点多尺度分析方法的正确性。
     4.采用分离式拟质点多尺度分析方法对含表面缺陷的单晶铜薄膜纳米压痕进行了模拟研究。分别讨论了缺陷与压头的距离取四种不同数值时,金属薄膜受压荷载与压头位移之间的变化规律。通过对模型x位移分布图以及Mises局部剪应变不变量分布图的分析比较,揭示了缺陷对材料内部原子微观结构的影响规律。并进一步计算和讨论了表面缺陷对材料内部Peierls应力的影响效果。
     5.应用本论文提出的新型多尺度分析方法分别对金属铜、铝和银的纳米压痕尺寸效应进行了模拟分析。根据对模拟得到的三种金属材料在四种试件长度和四种压头宽度条件下的荷载与位移响应曲线的分析与比较,揭示出材料各个物理参数对其内部位错形核的作用规律。绘制出各种情况下压头下方材料Mises局部剪切应变不变量分布图和沿x方向位移的分布图。从而直观地体现出压头加载过程中,材料内部微观结构的变化细节。将模拟计算得到的三种金属材料的硬度值与文献中的结果进行比较,证明了该多尺度分析方法的合理性。以金属铝薄膜纳米压痕为例,详细地讨论了位错形核时所对应的临界荷载与压头宽度的关系,并将计算得到的数据与理论值以及QC方法得到的模拟值比较,进一步验证了该分离式拟质点多尺度分析方法的正确性。
     综上所述,本文对一种新型的跨原子/质点的多尺度方法进行了理论研究。建立了该多尺度分析方法的几何模型及相关的动力学方程,并将其应用于各种金属薄膜的纳米压痕分析中,并希望本论文的工作能为纳米工程领域内的多尺度研究提供参考和帮助。
In recent decades, the very large-scale integrated circuits (VLSI) technology and nanotechnology have developed rapidly. Especially when the characteristic width of VLSI reduces to nanometer level, the study on indentation, which reveals the nano-scale mechanical properties in various types of electronic components, has become one focus of application researches. Furthermore, some new material properties, such as gold may become liquid at room temperature; insulator silicon may become the conductor, also strongly arouses the enthusiasm of scholars in exploring the surprising nano-scale phenomena. Yet the solving of the all problems is not separable in the development and perfection of multiscale methods. In especial, the multiscale method of cross atoms and continuum plays an important role in the multiscale analysis. However, the usual multiscale methods employ the finite element method for simulation in continuum region. The approach could easily produce some false phenomena (e.g. ghost force) at the boundary between atomic model and finite element model. It may case that the physical quantities do not pass through boundary smoothly. Meanwhile, the treatment that the distance of finite element nodes is equal to the one of adjacent atoms would consume a large amount of storage space and computation time. In the last years, researchers have made the model discretization in continuum scale, replaced the finite element system with particle system, and developed a new method, which is called as atomic/particle multiscale method. The kind of method that has its unique geometric construction and clear physical concept attracts researchers to develop and improve it continuously. In the present work, based on previous atomic/particle multiscale analysis methods, the calculation for quasi-particle position and quasi-particle interaction would be the basic breakthrough point. And the following aspects, focused on the establishment and applications of atomic/quasi-particle method, have been researched in detail.
     1. According to the basic principles of atom/particle model, the new three-dimensional geometric model of second-scale quasi-particles has been established in the correspondence of face-centered cubic crystal lattice of atom system so that the spatial distribution of quasi-particles could be more in line with the actual characteristics of the material. The quantitative relationship between quasi-particle geometry model and face-centered cubic crystal lattice has been proposed. Meanwhile, the construction of virtual quasi-particle and virtual atomic regions at both sides of atomic system and quasi-particle system introduces natural boundary conditions into the separate quasi-particle multiscale method to ensure the displacement, stress or other physical quantities could pass thought freely between atomic area and quasi-particle area.
     2. In the quasi-particle system, the parameters of potential function, which are solved by average acceleration method, are applied to calculate the quasi-particle acceleration, velocity and position. Furthermore, the parameters of other potential function are obtained by the law of conservation of energy. And they are used to calculate the interaction of quasi-particles. In above process, the position and force of quasi-particle system keep in step with actual physical information of atom system by avoiding introducing Newton's second law directly,
     3. To take the single-crystal copper nanowire for example, the simulation results of the separate quasi-particle method, generalized particle method and molecular dynamics method under different loading rates have been compared and analyzed to validate the correct for the separate quasi-particle method.
     4. The single crystal copper thin films with surface defects have been simulated by using the separate quasi-particle method. The variations between the load on thin film and the displacement of indenter are discussed when the distance between defect and indenter takes four different values. Meanwhile, by comparing to the x-direction displacement distribution and Mises local shear strain invariant distribution, the effects of defect on the material atomic system microstructure have been systematically revealed. And the influence of surface defect on the Peierls stress has been calculated and discussed.
     5. The size effect of copper, aluminum and silver nanoindentation has been studied by adopting the new multiscale method. According to the analysis and comparison of load-displacement cures for the three materials under the four specimens and four indenter widths, the effects of various physical parameters on the dislocation nucleation have been discussed. The Mises local shear strain invariant distribution and x-direction displacement distribution have been plotted to directly reflect the material details in the process of loading. Comparing the hardness values of the three materials with the result of the literature, the multiscale method has been proved correct. As an example, the nanoindentation at aluminum film is simulated in the discussion of relationship between critical load of dislocation nucleation and indenter width. The separate quasi-particle multiscale method is further proved to be correct with the comparison of results between the separate quasi-particle multiscale method, theoretical method and the QC method.
     In conclusion, a new multiscale method cross atom/particle have been proposed and studied systematically. The geometric model and dynamic equations for this method have been obtained and applied in the analysis of nanoindentation of some metal films, which hopefully would provide useful reference to the nanotechnology research and engineering problems.
引文
[1]何国威,夏蒙棼,柯孚久,白以龙.多尺度耦合现象:挑战和机遇.自然科学进展.2004,14(2):121-124页
    [2]Qiao R and Aluru N R. Atomistic simulation of KCl transport in charged silicon nanochannels:Interfacial effects. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2005,267(1-3):103-109P
    [3]Miller R E and Tadmor E B. The quasicontinuum method:overview, applications and current directions. Journal of Computer-Aided Materials Design.2002,9(3):203-239P
    [4]Rathmell A R, Bergin S M, Hua Yi-Lei and Li Zhi-Yuan. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Advanced Materials.2010,22(32):3558-3563P
    [5]Budroni G and Corma A. Gold and gold-platinum as active and selective catalyst for biomass conversion:Synthesis of y-butyrolactone and one-pot synthesis of pyrrolidone. Journal of Catalysis.2008,257(2):403-408P
    [6]Ebadat V and Prugh R W. Case study:Aluminum-dust explosion. Process Safety Progress.2007,26(4):324-329P
    [7]Young N P, van Huis M A, Zandbergen H W, Xu H and Kirkland A I. Transformations of gold nanoparticles investigated using variable temperature high-resolution transmission electron microscopy. Ultramicroscopy.2010,110(5):506-516P
    [8]Saif I M, Kobayashi N P and Wang Shih-Yuan. Novel nanowire integration schemes for massively parallel and manufacturable nanoscale electronics and photonics.2008 2nd IEEE International Nanoelectronics Conference.2008,1009-1014P
    [9]Gill Simon P A. A pseudo-atomistic model for nanoscale strain-controlled diffusion problems:The formation of heteroepitaxial alloyed quantum dot superlattices. Journal of Computational and Theoretical Nanoscience.2008,5(1):80-87P
    [10]James G and David H S. Multiscale science:a challenge for the twenty-first century. SIAM News.1997,30(8):1-7P
    [11]李静海,郭慕孙.过程工程量化的科学途径——多尺度法.自然科学进展.1999,9(12):1073-1078页
    [12]胡英,刘洪来,叶汝强.化学化工中结构的多层次和多尺度研究方法.大学化学.2002,17(1):12-20页
    [13]Takeda N, Ogihara S and Kobayashi A. Microscopic fatigue damage progress in CFRP cross-ply laminates. Composites.1995,26(12):859-867P
    [14]Lee J W and Daniel I M. Progressive transverse cracking of crossply composite laminates. Journal of Composite Materials.1990,24(11):1225-1243P
    [15]Berthelot J M. Analysis of the transverse cracking of cross-ply laminates:A generalized approach. Journal of Composite Materials.1997,31(18):1780-1805P
    [16]Hill R. Continuum micro-mechanics of elastoplastic polycrystals. Journal of the Mechanics and Physics of Solids.1965,13:89-101P
    [17]Berveiller M and Zaoui A. An extension of the self-consistent scheme to plastically-flowing polycrystals. Journal of the Mechanics and Physics of Solids.1978,26(5-6): 325-344
    [18]Fan J. A micro/macroscopic analysis for cyclic plasticity of dual-phase materials. Journal of Applied Mechanics.1999,66(1):124-137P
    [19]Mura T and Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica.1973,21(5):571-574P
    [20]Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Royal Society of London Proceedings Series A.1957,241(1226): 376-396P
    [21]Eshelby J D. The elastic field outside an ellipsoidal inclusion. Royal Society of London Proceedings Series A.1959,252(1271):561-569P
    [22]杜善义,王彪.复合材料细观力学.科学出版社.1998
    [23]胡更开,郑泉水,黄筑平.复合材料有效弹性性质分析方法.力学进展.2001,31(3):361-393页
    [24]Zhong Y, Wang J, Wu Y M and Huang Z P. Effective moduli of particle-filled composite with inhomogeneous interphase:Part Ⅱ-mapping method and evaluation. Composites Science and Technology.2004,64(9):1353-1362P
    [25]Brandt A. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation.1977,31(138):333-390P
    [26]Engquist B and Luo E. Convergence of a multigrid method for elliptic equations with highly oscillatory coefficients. SIAM Journal on Numerical Analysis.1997,34(6): 2254-2273P
    [27]Douglas C C. Multi-grid algorithms with applications to elliptic boundary-value problems. SIAM Journal on Numerical Analysis.1984,21(1):236-254P
    [28]Pantic D, Mijalkovic S and Stojadinovic N. Efficient simulation of point defects diffusion by an adaptive multigrid method. Microelectronic Engineering.1992,19(1-4): 789-794P
    [29]Marcus Sarkis. Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements. Numerische Mathematik.1997,77(3):383-406P
    [30]Chen Shanqin, Weinan E, Liu Yunxian and Shu Chi-wang. A discontinuous Galerkin implementation of a domain decomposition method for kinetic-hydrodynamic coupling multiscale problems in gas dynamics and device simulations. Journal of Computational Physics.2007,225(2):1314-1330P
    [31]Aarnes J and Thomas Y H. Multiscale domain decomposition methods for Elliptic Problems with high aspect ratios. Acta Mathematicae Applicatae Sinica.2002,18(1): 63-76P
    [32]Jenny P, Lee S H and Tchelepi H A. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. Journal of Computational Physics.2003, 187(1):47-67P
    [33]Jenny P, Lee S H and Tchelepi H A. Adaptive multiscale finite-volume method for multiphase flow and transport in porous media. Multiscale Modeling and Simulation. 2005,3(1):50-64
    [34]Tchelepi H A, Jenny P, Lee S H and Wolfsteiner C. An adaptive multiphase multiscale finite volume simulator for heterogeneous reservoirs. SPE Reservoir Simulation Symposium, Proceedings.2005,493-502P
    [35]He Xinguang and Li Ren. Finite volume multiscale finite element method for solving the groundwater flow problems in heterogeneous porous media. Water Resources Research,2005,41(10):W10417-1-W10417-15P
    [36]Weinan E and Yue X Y. Heterogeneous methods for lacally self-similar problems. Communications in Mathematical Sciences.2004,2(1):137-144P
    [37]Weiqing Ren and Weinan E. Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics. Journal of Computational Physics.2005,204:1-26
    [38]Weinan E. The heterogeneous multi-scale method:A mathematical framework for multi-scale modeling. AIChE Annual Meeting.2005,11380-11399P
    [39]Hughes T J R. Multiscale phenomena:Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering.1995,127(1-4):387-401
    [40]Holmen J, Hughes T J R, Oberai A A and Wells G N. Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow. Physics of Fluids. 2004,16(3):824-827P
    [41]Evans J A, Hughes T J R and Sangalli G. Enforcement of constraints and maximum principles in the variational multiscale method. Computer Methods in Applied Mechanics and Engineering.2009,199(1-4):61-76P
    [42]Babuska I and Osborn J. Generalized finite element methods:their performance and their relation to mixed methods. SIAM Journal on Numerical Analysis.1983,20(7): 510-536P
    [43]Allaire G and Brizzi R. A multiscale finite element method for numerical homogenization. Multiscale Modeling and Simulation.2005,4(3):790-812P
    [44]Chen J R and Cui J Z. A multiscale finite element method for elliptic problems with highly oscillatory coefficients. Applied Numerical Mathematics.2004,50(1):1-13P
    [45]He X G and Ren L. A modified multiscale finite element method for well-driven flow problems in heterogeneous porous media. Journal of Hydrology.2006,329(3-4):674-684P
    [46]Hou T Y, Wu X H and Zhang Y. Removing the cell resonance error in the multiscale finite element method via a Petrove-Galerkin formulation. Communications in Mathematical Sciences.2004,2(2):185-205P
    [47]Hou T Y, Wu Xiaohui and Cai Zhiqang. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Mathematics of Computation.1999,68(227):913-943P
    [48]Hou T Y and Wu Xiaohui. A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics.1997,134(1): 169-189P
    [49]Efendiev Y and Hou T Y. Multiscale finite element methods for porous media flows and their applications. Applied Numerical Mathematics,2007,57(5-7):577-596P
    [50]Aarnes J and Efendiev Y. Mixed multiscale finite element for stochastic porous media flows. SIAM Journal on Scientific Computing.2008,30(5):2319-2339P
    [51]Ganapathysubramanian B and Zabaras N. A stochastic multiscale framework for modeling flow through random heterogeneous porous media. Journal of Computational Physics.2009,228(2):591-618P
    [52]Ye Shujun, Xue Yuqun and Xie Chunhong. Application of the multiscale finite element method to flow in heterogeneous porous media. Water Resources Research. 2004,40(9):W0920201-W0920209P
    [53]Chen Zhangxin, Cui Ming, Savchuk T Y and Yu Xijun. The multiscale finite element method with nonconforming elements for elliptic homogenization problems. Multiscale Modeling and Simulation.2008 7(2):517-538P
    [54]Xu X F. A multiscale stochastic finite element method on elliptic problems involving uncertainties. Computer Methods in Applied Mechanics and Engineering.2007, 196(25-28):2723-2736P
    [55]郭慕孙等编著.物质转化过程中的多尺度效应(第一版).黑龙江教育出版社.2002
    [56]Abraham F F, Broughton J Q, Bernstein N and Kaxiras E. Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhysics Letters. 1998,44(6):783-787P
    [57]Landau D P. Handbook of materials modeling. New York, Springer.2004
    [58]Park D. Introduction to the quantum theory. New York, Mcgraw-Hill.1992
    [59]Rudd R E and Broughton J Q. Concurrent coupling of length scales in solid state systems. Physica Status Solidi (b).2000,217(1):251-291P
    [60]Tadmor E B, Ortiz M and Phillips R. Quasicontinuum analysis of defects in solids. Philosophical Magazine A.1996,73(6):1529-1563P
    [61]Shenoy V B, Miller R, Tadmor E B, Phillips R and Ortiz M. Quasicontinuum models of interfacial structure and deformation. Physical Review Letters,1998,08(4):742-745P
    [62]Miller R, Tadmor E B, Phillips R and Ortiz M. Quasicontinuum simulation of fracture at the atomic scale. Modelling and Simulation in Materials Science and Engineering. 1998,6(5):607-638P
    [63]Miller R, Ortiz M, Phillips R, Shenoy V and Tadmor E B. Quasicontinuum models of fracture and plasticity. Engineering Fracture Mechanics.1998,61(3-4):427-444P
    [64]Hai S and Tadmor E B. Deformation twinning at aluminum crack tips. Acta Materialia. 2003,51(1):117-131P
    [65]Picu R C. Atomistic-continuum simulation of nano-indentation in molybdenum. Journal of Computer-Aided Materials Design.2000,7(2):77-87P
    [66]Shenoy Vivek B, Phillips R and Tadmor E B. Nucleation of dislocations beneath a plane strain indenter. Journal of the Mechanics and Physics of Solids.2000,48(4): 649-673P
    [67]Smith G S, Tadmor E B and Kaxiras E. Multiscale Simulation of Loading and Electrical Resistance in Silicon Nanoindentation. Physical Review Letters.2000,84(6): 1260-1263P
    [68]Smith G S, Tadmor E B, Bernstein N and Kaxiras E. Multiscale simulations of silicon nanoindentation. Acta Materialia.2001,49(19):4089-4101P
    [69]Zeng Fanlin, Sun Yi. Quasicontinuum simulation of nanoindentation of Nickel film. Acta Mechanica Solida Sinica.2006,19(4):283-288P
    [70]Peng Qing, Zhang Xu, Huang Chen, Carter E A and Lu Gang. Quantum mechanical study of solid solution effects on dislocation nucleation during nanoindentation. Modelling and Simulation in Materials Science and Engineering.2010,18(7):1-14P
    [71]Debin Shan, Lin Yuan and Bin Guo. Quasicontinuum simulation of surface step effects on first dislocation emission in nanoindentation. Diffusion and Defect Data Pt.B:Solid State Phenomena.2007 121-123(2):1017-1020P
    [72]Dupont V and Sansoz F. Quasicontinuum study of incipient plasticity under nanoscale contact in nanocrystalline aluminum. Acta Materialia.2008,56(20):6013-6026P
    [73]Curtin W A and Miller R E. Atomistic/continuum coupling in computational materials science. Modelling and Simulation in Materials Science and Engineering.2003 11(3): R33-R68P
    [74]Park H S and Liu W K. An introduction and tutorial on multiple scale analysis in solids. Computer Methods in Applied Mechanics and Engineering.2004,193:1733-1772P
    [75]Shenoy V B, Miller R and Tadmor E B. An adaptive finite element approach to atomic-scale mechanics:the quasicontinuum method. Journal of the Mechanics and Physics of Solids.1999,47(3):611-642P
    [76]Knap J and Ortiz M. An analysis of the quasicontinuum method. Journal of the Mechanics and Physics of Solids.2001,49(9):1899-1923P
    [77]Shilkrot L E, Miller R E and Curtin W A. Coupled atomistic and discrete dislocation plasticity. Physical Review Letters.2002,89(2):255011-255014P
    [78]Shilkrot L E, Curtin W A and Miller R E. A coupled atomistic/continuum model of defects in solids. Journal of the Mechanics and Physics of Solids.2002,50(10):2085-2106P
    [79]Shilkrot L E, Miller R E and Curtin W A. Multiscale plasticity modeling:Coupled atomistics and discrete dislocation mechanics. Journal of the Mechanics and Physics of Solids.2004,52(4):755-787P
    [80]Xiao S P and Belytschko T. A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering.2004, 193(17-20):1645-1669P
    [81]Xiao S P, Belytschko T and Hou W Y. Bridging domain multiscale method.2007 NSTI Nanotechnology Conference and Trade Show.2007,1:544-547P
    [82]Rudd R E. Coarse-grained molecular dynamics for design of nanomechanical systems. 2003 Nanotechnology Conference and Trade Show.2003,3:500-503P
    [83]Kobayashi R, Nakamura T and Ogata S. Development and implementation of recursive coarse-grained particle method for meso-scale simulation. Materials Transactions.2008, 49(11):2541-2549P
    [84]Kobayashi R, Nakamura T and Ogata S. Development of hybrid atomistic/coarse-grained dynamic simulation approach. Journal of Computational and Theoretical Nanoscience.2008,5(8):1768-1771P
    [85]Rudd R E and Jeremy Q B. Coarse-grained molecular dynamics and the atomic limit of finite elements. Physical review B.1998,58(10):R5893-R5896P
    [86]Rudd R E and Jeremy Q B. Coarse-grained molecular dynamics:Nonlinear finite elements and finite temperature. Physical review B.2005,72(14):144104-144136P
    [87]Peter J B, John H, Anthony I, Syma K and Mark S P S. Coarse-grained molecular dynamics simulations of membrane proteins and peptides. Journal of Structural Biology.2007,157(3):593-605P
    [88]Shiari, B, Miller R E and Curtin W A. Coupled atomistic/discrete dislocation simulations of nanoindentation at finite temperature. Journal of Engineering Materials and Technology.2005,127(4):358-368P
    [89]Wernik J M and Meguid S A. Coupling atomistics and continuum in solids:Status, prospects, and challenges. International Journal of Mechanics and Materials in Design. 2009,5(1):79-110P
    [90]Wang Fujun, Mao Huaidong, Zhang Dawei, Zhao Xingyu and Shen Yu. Online study of cracks during laser cladding process based on acoustic emission technique and finite element analysis. Applied Surface Science.2008,255(5):3267-3275P
    [91]Sevier M, Yang H T Y, Lee S and Chandrasekar S. Severe plastic deformation by machining characterized by finite element simulation. Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science.2007,38(6): 927-938P
    [92]Laird D L, Montoya F C and Malcolm D J. Finite element modeling of wind turbine blades. Collection of the 2005 ASME Wind Energy Symposium Technical Papers at the 43rd AIAA Aerospace Sciences Meeting and Exhibit.2005,9-17P
    [93]Chrysafinos K. Moving mesh finite element methods for an optimal control problem for the advection-diffusion equation. Journal of Scientific Computing.2005,25(3): 401-421P
    [94]Kitamura T, Hirakata H, Itsuji T. Effect of residual stress on delamination from interface edge between nano-films. Engineering Fracture Mechanics.2003,70(15): 2089-2101P
    [95]Takahashi Y, Hirakata H and Kitamura T. Quantitative evaluation of plasticity of a ductile nano-component. Thin Solid Films,2008,516(8):1925-1930P
    [96]Hao Su, Liu W K, Moran B and Vernerey F. Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels. Computer Methods in Applied Mechanics and Engineering.2004,193(17-20):1865-1908P
    [97]Hao Su, Moran B, Liu W K and Olson G B. A hierarchical multi-physics model for design of high toughness steels. Journal of Computer-Aided Materials Design.2003, 10(2):99-142P
    [98]Belytschko T, Krongauz Y, Dolbow J and Gerlach C. On the completeness of meshfree particle methods. International Journal for Numerical Methods in Engineering.1998, 43(5):785-819P
    [99]Li Shaofan and Liu W K. Meshfree and particle methods and their applications. Applied Mechanics Reviews.200255(1):1-34P
    [100]Wu Y L and Liu G R. A meshfree formulation of local radial point interpolation method (LRPIM) for incompressible flow simulation. Computational Mechanics.2003, 30(5-6):355-365P
    [101]Liu W K, Han Weimin, Lu Hongsheng, Li Shaofan and Cao Jian. Reproducing kernel element method. Part I:Theoretical formulation. Computer Methods in Applied Mechanics and Engineering.2004,193(12-14):933-951P
    [102]Baskes M I. Many-body effects in fcc metals:a Lennard-Jones embedded-atom potential. Physical Review Letters.1999,83(13):2592-2595P
    [103]Fan J. Multiscale analysis of deformation and failure of materials.John Wiley & Sons, Ltd.2010
    [104]Fan Jinghong. Multiscale analysis across atoms/continuum by a generalized particle dynamics method. Multiscale Modeling & Simulation.2009,8(1):228-253P
    [105]Wang Z Q, Yang Z J, Wang Y J. The improvement of generalized particle method for nano-materials molecular dynamics simulation. Advanced Materials Research.2010, Vols.97-101:2159-2162P
    [106]Alder B J and Wainwright T E. Phase transition for a hard sphere system. Journal of Chemical Physics.1957,27(5):1208-1209P
    [107]Saether E, Pipes R B and Frankland S J V. Transverse mechanical properties of single-walled carbon nanotube crystals:Part I. Determination of elastic moduli. Composites Science and Technology.2003,63(11):1543-1550P
    [108]Rountree C L, Rajiv K K, Elefterios L, Aiichiro N, Laurent V B and Priya V. Atomistic aspects of crack propagation in brittle materials:multimillion atom molecular dynamics simulations. Annual Review of Materials Research.2002,32:377-400P
    [109]黄昭康,钟奉俄.工程系统分析力学.北京:高等教育出版社.1992
    [110]Swope W C, Anderson H C.110 106-particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid. Physical Review. 1990, B41:7042-7054P
    [111]Galan C A, Mulero A, Cuadros F. Calculation of the surface tension and the surface energy of Lennard-Jones fluids from the radial distribution function in the interface zone. Molecular Physics.2006,104(15):2457-2464P
    [112]Paluch M, Haracz S, Grzybowski A. A relationship between intermolecular potential, thermodynamics, and dynamic scaling for a supercooled ionic liquid. Journal of Physical Chemistry Letters.2010,1(6):987-992P
    [113]Morris J R, Song Xueyu. The anisotropic free energy of the Lennard-Jones crystal-melt interface. Journal of Chemical Physics.2003,119(7):3920-3925P
    [114]Mu Yan, Houk A, Song Xueyu. Anisotropic interfacial free energies of the hard-sphere crystal-Melt interfaces. Journal of Physical Chemistry B.2005,109(14):6500-6504P
    [115]Wang G, Ostoja-Starzewski M, Radziszewski P, Ourriban M. Particle modeling of dynamic fragmentation-Ⅱ:Fracture in single-and multi-phase materials. Computational Materials Science.2006,35(2):116-133P
    [116]Rudhart C, Trebin H R, Gumbsch P. Crack propagation in perfectly ordered and random tiling quasicrystals. Journal of Non-Crystalline Solids.2004,334-335:453-456P
    [117]Verlet L. Computer experiments on classical fluids. Ⅰ. thermodynamical properties of Lennard-Jones Molecules. Physical Review.1967,159(1):98-103P
    [118]Honeycutt R W. The potential calculation and some applications. Methods in Computational Physics.1970,9:136-211P
    [119]Swope W C, Anderson H C, Berens P H, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. The Journal of Chemical Physics.1982,76(1):637-649P
    [120]Saether E, Yamakov V, Glaessgen E H. An embedded statistical method for coupling molecular dynamics and finite elements analysis. International Journal for Numerical Methods in Engineering.2009,78:1292-1319P
    [121]刘其鹏,武文华.颗粒材料平均场理论的多尺度方法:理论方面.岩土力学.2009,30(4):879-884页
    [122]张玲,欧阳洁.颗粒系统的多尺度耦合方法.工程数学学报.2006,23(2):259-265页
    [123]孙其诚,金峰,王光谦.颗粒物质中的多尺度问题.力学与实践.2010,32(1):10-15页
    [124]Tadmor E B, Miller R, Phillips R, Ortiz M. Nanoindentation and incipient plasticity. Journal of Materials Research.1999,14(6):2233-2250P
    [125]Kosuqi T, Kino T. A New internal friction peak and the problem of the Peierls potential in f.c.c. metals. Materials Science and Engineering A.1993,A164(1-2):368-372P
    [126]黎军顽,倪玉山,林逸汉,罗诚,江五贵.Al薄膜纳米压痕过程的多尺度模拟.金属学报.2009,45(2):129-136页
    [127]Rice J R. Dislocation nucleation from a crack tip:an analysis based on the peierls concept. Journal of the Mechanics and Physics of Solids.1992,40(2):239-271P
    [128]Gerberich W W, Nelson J C, Lilleodden E T. Indentation induced dislocation nucleation:the initial yield point. Acta Materialia,1996,44:3585-3598P
    [129]Wang H T, Qin Z D, Ni Y S, Zhang W. Quasicontinuum simulation of indentation on FCC metals. Transactions of Nonferrous Metals Society of China.2008,18(5):1164-1171P
    [130]秦昭栋,王华滔,倪玉山.FCC铝纳米压痕的多尺度模拟.力学季刊.2007,28(1):46-53页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700