高性能导航接收机基带处理算法与实现技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球卫星导航系统的广泛应用,各个领域对导航接收机在捕获性能、多径抑制及实现复杂度等方面提出了更高的要求。现有研究主要在捕获算法、多径抑制算法等计算方法层面来开展优化研究,而本文结合电路实现约束来开展量化分析与优化方法研究,为导航接收机基带芯片设计提供更具指导性的优化设计方法。
     论文主要针对制约导航接收机基带芯片关键性能的四个方面开展了研究工作:
     1、信号捕获是导航接收机基带处理中计算复杂度最大、实时性要求最高的环节,其性能直接决定接收机的首次定位时间、接收灵敏度等关键指标。已有研究对捕获方法硬件实现复杂度缺乏准确和系统的定量分析,本文在统一的信号捕获模型下,系统地比较了时域、频域、时频域等信号捕获方法的硬件复杂度和实现约束条件,给出了量化的分析结论,为基带芯片设计的实现复杂度评估提供了系统性的量化分析方法。
     2、伪码相位误差、载波频偏以及伪码频偏均会导致捕获性能严重恶化,而已有的捕获方法通常没有对它们的影响进行处理或补偿。针对伪码相位误差和载波频偏引起的相干处理损耗,提出了基于相邻检测量组合判决的检测方法,可显著提高系统的检测概率,在常规搜索步进条件下,最大可使检测器的等效信噪比提高3.8dB。针对伪码频偏问题,提出了一种基于信号采样分数抽取的伪码频偏补偿技术,避免了因修改本地码采样频率而带来的工程实现难题,在5倍码率的采样率条件下最大伪码频偏损耗小于0.5dB、峰值偏移小于0.1个码元宽度,可以满足大多数高动态捕获系统的要求。在此基础上,提出了一种基于匹配滤波频域并行FFT捕获的改进捕获方案,并优化了匹配滤波器的设计和频率搜索策略。
     3、多径效应是影响导航接收机定位精度的主要因素之一,在一些高精度测量应用中甚至是最主要的误差源,多径问题也是当前高性能导航接收机的一个研究热点。针对导航接收机中多径抑制算法性能和资源占用量之间的矛盾,提出了一种基于FIR滤波器模型的多径抑制方法,其性能与基于最大似然估计的MEDLL算法相当,但优点是计算量与多径信号数量无关,可大大减小存在多个路径信号时的硬件实现复杂性。针对高分辨率多相关器的实现问题,提出一种基于本地伪码差分的实现结构,在相关器间隔为1/16码元宽度条件下,其计算量只有传统结构的1/32,硬件规模只有传统结构的1/8。
     4、通过建立多任务划分的导航接收机基带处理模型,提出了一种基于多处理器协同工作的芯片架构,用多个协处理器对多任务进行并行处理,克服了传统基带接收机集中式单一处理器的资源占用高、调度复杂、计算实时性要求高等缺点,简化了基带芯片设计,同时兼顾了基带处理的灵活性和处理效率。针对芯片开发过程中仿真验证耗时长、工作量大等问题,研究了基于Palladium仿真加速器仿真流程和基于FPGA的芯片原型验证方法,直接应用于导航基带芯片开发,并通过实际样片测试,在功耗、处理性能方面充分验证了上述技术研究的有效性。
     论文的研究成果已经应用于我国自主卫星导航系统接收机和基带芯片的设计中,并取得了良好的应用效果。相关方法和结论也可应用于其他扩频系统的测距接收机设计。
As GNSS (Global Navigation Satellite System) is widely used all around the world, various fields have more requirements for navigation receiver, such as acquisition performance and multipath mitigation. Existing researches mainly pay attention to the algorithm for acquition and multipath mitigation. But quantitative analysis and optimized method combined with the restrictions of hardware implementation are developed in this dissertation, which is more directive for the design of navigation baseband chip.
     This dissertation is mainly focused on four crucial topics which restrict the promotion of the receiver’s performance:
     1. Signal acquisition has the most computational complexity and maxim requirements for realtime processing in the navigation baseband processing, and its performance has direct influence on time to first fix, receiver sensitivity and some other key indexes. There is a lack of quantitative analysis of hardware complexity of acquisition methods in existing researches. Based on the uniform signal acquisition model, the hardware complexity and restrictions are compared between different aqutition methods, and quantitative analysis is presented. The systemic method of quantitative analysis is afforded to evaluate the implementation complexity of baseband chip.
     2. Pseudo-code phase error, carrier frequency offset and pseudo-code frequency offset will all give rise to serious deterioration of performance of acquisition, while traditional acquisition methods usually haven’t dealt with the effects or compensated. Considering the coherent processing loss caused by pseudo-code phase error and carrier frequency offset, detection based on combinatory and judgment of adjacent detection limit is proposed, which can dramatically increase the probability of detection of system. Under the general conditions for the search step, equivalent signal to noise ratio of detectors can be maximally increased by 3.8dB. In view of pseudo-code frequency offset, an approach to compensating pseudo-code frequency offset based on decimation of signal fractional sampling is presented, so some engineering implementation problems caused by modification of frequency of sampling local codes are avoided. In the condition that the sampling rate is 5 times of code rate, the maximum pseudo-code frequency offset loss is less than 0.5dB and peak shift is also less than one tenth of chip width, being able to satisfy the requirements of most high dynamic capture systems. Based on this, a revised acquisition proposal on the basis of frequency domain of matched filter and FFT acquisition in parallel is put forward, and the design of matched filter and strategy of frequency search is also improved.
     3. Multipath effect is one of the main factors that affect the accuracy of position of navigation receivers. It is even the most primary error source in some application of high-accuracy survey. In consideration of the contradiction between performance of multi-path mitigation algorithm and resource consumption in navigation receivers with high performance, a multipath mitigation technique based on FIR model is put forward. Its performance is similar to that of MEDLL based on maximum likelihood estimate, but it has advantages that its computation complexity is independent of the amount of multipaths and hardware complexity can be reduced in the existence of multiple paths. As for implementation of high resolution multi-correlator, an implement architecture based on local pseudo-code differential is presented. Under the condition that correlator interval is one sixteenth of chip width, the computation and hardware scale is only one thirty-second and one eighth of traditional architectures respectively.
     4. A chip architecture based on the cooperation of multi-correlator is put forward, by establishing the multiple tasks model of navigation baseband processing. The conventional receivers which use single processor request a mass of resources, complicated scheduling and high realtime processing. Using the proposed architecture, multiple tasks are performed by multiple processors, so the shortcoming of the conventional receivers is conquered and the design of baseband chip is simplified. Also the chip is flexible and efficient simultaneity. In the view of some problems as the long consuming time and the heavy workload of simulation verification in chip development, simulation process based on Palladium simulation accelerator and prototype chip verification method based on FPGA is researched. These techniques are directly applied to developing the baseband chip. The above-mentioned reserchs are fully verified by actual tests in the aspects of power and performance.
     The researches have been used in Chinese autonomous satellite navigation system receiver and design of baseband chip and have obtained favorable effects in engineering application. Related methods and conclusions can also be applied in design of ranging receiver in other spread spectrum systems.
引文
[1]李跃,邱致和.导航与定位-信息化战争的北斗星[M].北京,国防工业出版社, 2000.
    [2]吴广华,张杏谷.卫星导航[M].北京,人民交通出版社, 1998.
    [3]魏二虎,柴华,刘经南.关于GPS现代化进展及关键技术探讨[J].测绘通报, 2005, 12: 5-7.
    [4]王晓明,殷耀国,杨自明.全球导航卫星系统的现代化进展[J].全球定位系统, 2006, 4: 39-42.
    [5]徐渊.世界卫星导航系统发展现状[J].国际航空, 2006, 12: 61-63.
    [6]钱天爵,瞿学林著. GPS全球定位系统及其应用[M],北京:海潮出版社, 1993.
    [7]高星伟.全球导航卫星系统(GLONASS)[J].测绘通报. 2001. 3: 6.
    [8]李洲,尹照平,张帆. GLONASS系统的发展[J].飞行器测控学报. 2002. 21(3): 81-86.
    [9]边少锋,李文魁编.卫星导航系统概论[M].北京:电子工业出版社, 2005.
    [10]王小金,王霞.浅谈主动式区域性静止卫星定位导航系统[J].天津航海. 2001. (4): 41-42.
    [11]司德平,王彦海.北斗导航系统与全球卫星定位系统[J].现代物理知识. 2001. 13(6): 39-40.
    [12] G.X. Gao, A. Chen, etc. GNSS over China: The Compass MEO Satellite Codes[J]. InsideGNSS. 2007. 7/8: 37-43.
    [13] T. Grelier, J. Dantepal, etc. Initial Observations and Analysis of Compass MEO Satellite Signals[J]. InsideGNSS. 2007. 5/6: 39-43.
    [14]张杏谷.民用卫星导航系统——Galileo(伽利略)[J].世界海运. 2001. 24(6): 39-40.
    [15]高建新编译.欧洲“伽利略”卫星导航计划[J].测绘信息与工程. 2001. (1): 53-54.
    [16]过静珺,卢建刚等.欧洲伽利略导航系统的发展[J].测绘通报. 2002. (2): 51-52.
    [17] GPS JOINT PROGRAM OFFICE. Navstar GPS Space Segment/Navigation User Interfaces(Revision D,IRN-200D-001)[S].2006.05
    [18] B.W. Parkinson, J.J. Spilker. Global Positioning System Theory and Applications[M]. Vol. I, 1996.
    [19]王梦丽.现代化GNSS接收机信息处理技术研究[D].长沙:国防科学技术大学, 2008.
    [20]袁俊.远程攻击导弹的发展特点及趋势[M].中国航天, 1998(8): 38~43.
    [21]邱致和.导航军事引用发展[C].军事电子信息系统专题技术文选,第十一分册─空中交通管制/管理系统, 2001: 249~253.
    [22] Erickson D, Taylor C. Pacify the Power: GPS Harness for Large Area Electrical Grid[J]. GPS World. 2005. 4.
    [23]陈豫德.全球GPS市场研发现况与趋势分析[EB/OL]. 2005
    [24] A. J. Van Dierendonck, Gary A. McGraw, etc. Cross-Correlation of C/A Codes in GPS/WASS Receivers. ION GPS, Nashville,1999.
    [25] Y. T. Jade Morton, James B. Y. Tsui等. Assessment and Handling of CA Code Self-Interference during Weak GPS Signal Acquisition[C]. ION GNSS, Portland, 2003.
    [26] Zhen Zhu, Frank van Graas. Operational Considerations for C/A Code Tracking Errors Due to Cross Correlation[C]. ION GNSS, Long Beach, 2005.
    [27] Suman Ganguly, etc. Self-Calibrating Receivers for Precision Phase Observations. ION GNSS, Fort Worth, 2006.
    [28]邱致和.导航军事引用发展[C].军事电子信息系统专题技术文选,第十一分册─空中交通管制/管理系统. 2001: 249~253
    [29] G. B. Green, P. Axelrad. Space application of GPS[J]. Navigation. 1989. 36(3):239~251.
    [30] R Landry, L Lestarquit, J L Issler, A. Benhallam. Studies on acquisition and tracking threshold's reduction for GPS spaceborne and aeronautical receivers[C]. ION GPS, Nashville, 1998
    [31] A Van Leeuwen, E. Rosen and L. Carrier. The global positioning system and its application in spacecraft navigation[J]. Navigation,1979,26(2):118~135
    [32] Elliott D.Kaplan, Christopher J.Hegarty. Understanding GPS Principles and Applications[M]. Second Edition. Boston: ARTECH HOUSE, 2006
    [33] M.K. Simon, J.K. Omura.扩频通信技术教程(英文版)[M],北京:人民邮电出版社, 2002
    [34] A Polydoros, C L Weber. A unified approach to serial search spread-spectrum code acquisition - Part I: General Theory[J]. IEEE Transactions on Communications. 1984. CM-32(5): 542-549.
    [35] G.F. Sage. Serial Synchronization of Pseudonoise System[J]. IEEE Transactions on Communications. 1964, 12: l23-127.
    [36] A. Polydoros, C.L. Weber. Unified Approach to Serial Search Spread Spectrum Code Acquisiton-Part II: a Matched-Filter Receiver[J]. IEEE Transactions on Communications, 1984, CM-32(5): 550-560.
    [37] D. J. R. van Nee, A. H. R. M. Coenen. New fast GPS code acquisition technique using FFT. Electronics Letters, 1991, 27(2) :158–160.
    [38] Tsui. J.B.Y., Fundamentals of Global Positioning System Receivers, A Software Approach, J. Wiley & Sons, New York, 2000.
    [39]黄磊,张其善,寇艳红. GPS信号FFT捕获算法的有限字长效应分析[J].宇航学报, 2006, 27(5): 1029-1033.
    [40] H. Mathis, P. Flammant. An analytic way to optimize the detector of a post-correlation FFT acquisition algorithm. ION/GNSS, Portland, 2003.
    [41]华涛,丁阳,石玉.基于FFT伪码快速捕获方法及性能分析[J].现代电子技术. 2007, 23: 42-44.
    [42] S.Yoon, I. Song, C.H. Park. Optimal and Suboptimal Decision Rules for Parallel Code Acquisition in Chip-Asynchronous DS/SS Systems[J]. IEEE Signal Processing Letters, 2002, 9(7): l89-192.
    [43] K.K. Chawla, D.V. Sarwate. Parallel Acquisition of PN Sequences in DS/SS Systems[J]. IEEE Transactions on Communications, l994, 42(5): 2l55-2l64.
    [44]黄磊,张其善,寇艳红.基于差分码和块处理方法的GPS信号快速捕获算法[J].通信学报. 2006, 27(8): 93-97.
    [45] Y.T. Su. Rapid Code Acquisition Algorithms Employing PN Matched Filters[J]. IEEE Transactions on Communications, 1988, 36(6): 724-733.
    [46] W.H. Sheen, J.K. Tzeng, C.K. Tzou. New Analysis of Matched Filter Pseudo-Noise Code Acquisition for Direct Sequence Spread Spectrum System[C]. IEEE International Symposium on Spread Spectrum Techniques & Applications, 1996: 151-155.
    [47] Kuang-Chan Liu, Wun-Chang Lin, Chorng-Kuang Wang. A pipelined digital differential matched filter FPGA implementation & VLSI design[C]. Custom Integrated Circuits Conference, Proceedings of the IEEE. San Diego, 1996: 75-78.
    [48] LIN W.C., LIU K.C., WANG C.K.. Differential matched filter architecture for spread spectrum communication systems[J]. Electronics Letters, 1996, 32(17): 1539-1540.
    [49] Y.Chun. Fast Code Acquisition with FFT and its Sampling Schemes[C]. ION GPS. 1997.
    [50]金俊坤,吴嗣亮,李菊.基于基2-FFT的伪码快速捕获实现新算法[J].系统工程与电子技术, 2005, 27(11): 1957-1960.
    [51]李菊,陈禾,金俊坤,吴嗣亮.基于FFT的两种伪码快速捕获方案的研究与实现[J].电子与信息学报, 2006, 28(10): 1778-1781.
    [52] C Yang, M Vasquez, J Chaffee. Fast Direct P(Y)-Code Acquisition Using XFAST[A]. Proceedings of ION GPS[C]. The Institude of Navigation, Nashville, 1999: 317-324.
    [53] C Yang, J Chaffee, J Abel, M Vasquez. Extended replica folding for direct acquisition of GPS P-code and its performance analysis[A]. Proceedings of ION GPS[C]. The Institude of Navigation, Salt Lake City, 2000: 317-324.
    [54] Z Zhu. Averaging Correlation for Weak Global Positioning Sysmm Signal Processing[D]. Ohio: Ohio University, 2002.
    [55] J Pang. Direct global positioning system P-code acquisition field programmable gate array prototyping[D]. Ohio: Ohio University, 2003.
    [56] K.V. Ravi, R.F. Ormondroyd. Simulation performance of a quantized log-likelihood sequential detector for PN code acquisition in the presence of data modulation and Doppler shift[A]. IEEE MILCOM’91[C], 1991: 798~803
    [57] Alfred W. Fuxjaeger, Ronald A. Iltis. Acquisition of timing and Doppler-shift in a direct-sequence spread-spectrum system[J]. IEEE trans on Communications, 1994, 42(10): 2870-2880.
    [58] Ing.Petr Bezucha. Mean acquisition times of serial spread spectrum PN acquisition system in the presence of code Doppler[A]. IEEE 7th Int. Sym. On Spread-Spectrum Tech. & App[C]. Prague, 2002: 750~755.
    [59] Unjeng Cheng, William J. Hurd, J.I. Statman. Spread-spectrum code acquisition in the presence of Doppler shift and Data Modulation[J]. IEEE Trans. on Communications, 1990, 38(2): 241-250.
    [60]李春霞.高动态条件下伪码相关特性及其应用研究[D].长沙:国防科学技术大学, 2005.
    [61] Szu-Lin Su, Nan-Yang Yen, Sheng-Cheng Hsieh. Code acquisition of direct-sequence spread spectrum communication with Doppler shift[A]. IEEE International Conference on Communications[C], 1995, 3: 1663~1667.
    [62] Povey G.J.R., Talvitie J. Doppler compensation and code acquisition techniques for LEO satellite mobile radio communications[A]. The 5th International Conference on Satellite Systems for Mobile Communications and Navigation[C], 1996: 16~19.
    [63]王君,安建平,宋淑娟.一种新的高动态直扩接收机快速码捕获方法[J].北京理工大学学报, 2004, 24(5): 430-441.
    [64]李继忠,李巍.高动态GPS接收机中伪码捕获问题研究[J].现代雷达, 2006, 28(12): 104-106.
    [65] M.M. Chansarkar, L. Garin. Acquisition of GPS Signals at Very Low Signal to Noise Ratio[A]. Proc. ION NTM 2000. Anaheim, CA. 2000. 731-737
    [66] D.M. Lin, J.B. Tsui. An Efficient Weak Signal Acquisition Algorithm for a Software GPS Receiver[A]. Proc. ION GPS. Salt Lake City, UT. 2001. 115-119
    [67] M.L. Psiaki. Block Acquisition of Weak GPS signals in a Software Reciever[A]. Proceedings of ION GPS[C], The Institude of Navigation, 2001: 2838-2850.
    [68] N.I. Ziedan. GNSS Receivers for Weak Signals[M]. Artech House, 2006.
    [69] Polydoros A. & Weber C.L, A unified approach to serial search acquisition-partⅡ:A matched-filter receiver,IEEE Trans. on Commun.,1984,32(5):550~560
    [70] Candida L Spillard,Sascha M Spangenberg,Gordon J R Povey,A serial-parallel FFT correlator for PN code acquisition from LEO satellites,IEEE ISSSTA 1998,1998: 446~448
    [71]王君,安建平,宋淑娟.一种新的高动态直扩接收机快速码捕获方法[J].北京理工大学学报, 2004, 24(5): 439-441.
    [72]李继忠,李巍.高动态GPS接收机中伪码捕获问题研究[J]. 2006, 28(12): 104-106.
    [73]秦勇,张邦宁,郭道省,叶展.低信噪比高动态条件下P码直接捕获技术研究[J].宇航学报, 2009, 30(2): 760-764.
    [74]宋成.辅助型GPS定位系统关键技术研究[D].长沙:国防科学技术大学, 2009.
    [75]许晓勇.卫星导航接收机高精度建模、分析及优化设计技术研究[D].长沙:国防科学技术大学, 2008.
    [76] James M.Tranquilla, Hussain M. Al-Rizzo. Analysis of a Choke Ring Groundplane for Multipath Control in Global Positioning System(GPS) Applications[J]. IEEE Trans. on Aerospace and Electronic Systems, 1994, 42(7): 905-911.
    [77] Alison Brown. Multipath rejection through spatial processing[A]. Proceedings of ION GPS[C]. The Institude of Navigation, Salt Lake City, 2000: 2330-2337.
    [78] A.J.Van Dierendonck, Pat Fenton, Tom Ford. Theory and Performance of Narrow Correlator Spacing in a GPS Receiver[J]. Naviation, 1992, 39(3): 265-283.
    [79] Bryan R. Townsend, Patrick C. Fenton. A Practical Approach to the Reduction of Pseudorange Multipath Errors in a Ll GPS Receiver[A]. Proceedings of ION GPS[C]. The Institude of Navigation, Salt Lake City, 1994.
    [80] Jason Jones, Pat Fenton, Brian Smith. Theory and Performance of the Pulse Aperture Correlator[R]. Novatel Corporation, 2004.
    [81] Garin L., Van Diggelen F., J.M. Rousseau. Strobe and Edge Correlator Multipath Mitigation for Code[C]. Proceedings of ION GPS. The Institude of Navigation, Kansas City, 1996.
    [82] Gary A. McGraw, Michael S. Braasch. GNSS Multipath Mitigation Using Gated and High Resolution Correlator Concepts[C]. Proceedings of ION NTM. The Institude of Navigation, San Diego, 1999.
    [83] D.J.R VAN NEE. Multipath and Multi-Transmitter Interference in Spread-Spectrum Communication and Navigation Systems[D]. Delft: DelftUniversity, 1995.
    [84] Lawrence R. Weill. Multipath Mitigation Using Modernized GPS Signals: How Good Can it Get[A]. Proceedings of ION GPS. The Institude of Navigation, Portland, 2002: 493-505.
    [85] Sahmoudi M., M.G. Amin. Fast Iterative Maximum-Likelihood Algorithm (FIMLA) for Multipath Mitigation in Next Generation of GNSS Receivers[J]. IEEE Trans. On Wireless Communication, 2008, 7(11)
    [86] Sahmoudi M., RenéJr. Landry. Multipath Mitigation Techniques Using Maximum Likelihood Principle[J]. InsideGNSS, 2008, 11.
    [87] Steven M.Kay著,罗鹏飞等译.统计信号处理基础——估计与检测理论[M].北京:电子工业出版社, 2003.
    [88] Chung-Liang Chang, Jyh-Ching Juang. An Adaptive MultipathMitigation Filter for GNSS Applications[J]. EURASIP Journal on Advances in Signal Processing, 2008.
    [89] Jean-Marie Sleewaegen, Frank Boon. Mitigating Short-Delay Multipath:a Promising New Technique[C]. Proceedings of ION GPS. The Institude of Navigation, Salt Lake City, 2001: 204-213
    [90] Z. Zhang, C. L. Law. Short-Delay Multipath Mitigation Technique Based on Virtual Multipath[J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2005, 4: 344-348.
    [91] Lao Sheng Lin. Applying Multipath Template Technique to Improve the Real-Time Ionospheric Delay Estimation Accuracy[C]. Proceedings of ION GPS. The Institude of Navigation, Portland, 2002: 1872-1880.
    [92]张锴.高精度导航接收机多径抑制研究[D].长沙:国防科学技术大学, 2008.
    [93] Yunchun Yang, Ronald R. Hatch, Richard T. Sharpe. GPS Multipath Mitigation in Measurement Domain and Its Applications for High Accuracy Navigation[C]. Proceedings of ION GNSS. The Institude of Navigation, Long Beach, 2004: 1124-1130.
    [94] Audrey Giremus, Jean-Yves Tourneret, Vincent Calmettes. A Particle Filtering Approach for Joint Detection/Estimation of Multipath Effects on GPS Measurements[J]. IEEE Trans. on Signal Processing, 2007, 55(4): 1275-1285.
    [95] James BAO-YEN TSUI. Fundamentals of Global Positioning Systems Receivers: A Software Approach(Second Edition)[M]. John Wiley & Sons Inc, 2005.
    [96]寇艳红,沈吉,张其善. GPS接收机专用芯片组技术发展[J].全球定位系统, 2005(2): 15-19.
    [97] http://www.gpsbaby.com/other/sirf.html
    [98] http://www.gpsbaby.com/products.html
    [99] U-blox. UBX G6010ST Product summary [EB/OL]. http://www.u-blox.com/ products
    [100] JAVAD. TRIUMPH Spetifications[EB/OL].http://www.javad.com/jgnss/products /triumph.html
    [101] NovAtel. NovAtel GNSS Products[EB/OL]. http://www.novatel.com/products
    [102] SIRF. GSD4t product[EB/OL]. http://www.sirf.com/products
    [103] Broadcom. BCM4760 Product Brief[EB/OL]. http://pdf.eccon.com/pdfs/ datasheets/ broadcom / bcm4760.pdf
    [104]徐峰,邵定蓉,李署坚.一种高动态直扩接收机快速码捕获方法[J].北京航空航天大学学报, 2007, 33(6): 672-676.
    [105]王飞雪,郭桂蓉.二相编码信号分段相关-视频积累的最优中频积累时间[J].国防科技大学学报, 1999 , 21(1): 71-75.
    [106]谢钢. GPS原理与接收机设计[M].北京,电子工业出版社, 2009.
    [107] David K.Barton. Radar System Analysis and Modeling. Norwood: ARTECH HOUSE, 2005.
    [108]唐小妹.基于精确模型的高性能卫星导航弱信号接收机技术研究[D].长沙:国防科学技术大学, 2010.
    [109] J.G. Porakis. Digital Communications(Fourth Edition)[M].北京:电子工业出版社, 2006.
    [110]朱近康. CDMA通信技术[M].北京:人民邮电出版社, 2001.
    [111] Daniele Borio. A Statistical Theory for GNSS Signal Acquisition[D]. POLITECNICO DI TORINO, 2008.
    [112]李素芝,万建伟.时域离散信号处理[M].长沙:国防科技大学, 1994.
    [113]张弛平等.计算方法[M].哈尔滨:哈尔滨工业大学出版社, 2000.
    [114] A.V. Oppenheim. Discrete-time Signal Processing Second Edition[M].北京:清华大学出版社, 2005.
    [115] Friedrich Kromberg. Doppler effect[EB/OL]. http://netsciencet.univie.at/Nets/gps /wien-bg8/schuelerweb/GPSde.html
    [116]吴诩,朱炬波等.关于多普勒频率转换成距离变化率的讨论[J].中国空间科学技术, 1997(6): 45~49.
    [117]许晓勇,王飞雪,庄钊文.卫星导航系统信号的多普勒特性分析[J].国防科技大学学报, 2003, 25(5): 48-51.
    [118]刘荟萃.扩频测距系统中多径消除算法研究[D].长沙:国防科技大学, 2005.
    [119]黄维彬.近代平差理论及其应用[M].北京:解放军出版社, 1992.
    [120] Robert Eric Phelts. Multicorrelator Techniques for Robust Mitigation of Threats to GPS Signal Quality[D]. Stanford CA : Stanford University, 2001.
    [121] Phani K. Sagiraju, Pradeep Kashyap, and David Akopian. Block Correlator for Tracking GPS/GNSS Signals[C]. Proceedings of ION GNSS. The Institude of Navigation, Savannah, 2008: 229-235.
    [122]刘荟萃.卫星导航系统中的多径误差分析与抑制技术研究[D].长沙:国防科技大学, 2010.
    [123] Tikhonov A. N. and Vasiliy Y. Arsenin,“Solution of Ill-posed Problems”,Washington, DC: Winston, 1977.
    [124] Hansen P.C.,“Truncated Singular Decomposition Solutions to Discrete Ill-posed Problems with Ill-Determined Numerical Rank”, SIAM, J. Sci. Comput. Vol. 11, No.3, May,1990, pp.503-518.
    [125] Golub Gene H. and Urs Von Matt,“Generalized Cross-Validation for Large Scale Problems”Technical Report, TR-96-28, Swiss Center for Scientific Computing, September1996.
    [126] Hansen P.C.,“Analysis of Discrete Ill-posed Problems by Means of the L-Curve”SIAM Review,Vol.34, No. 4, 1992, pp561-580.
    [127] Golub Gene H., Per Christian Hansen,and Dianne P. O’Leary,“Tikhonov Regularization and Total Least Squares”, SIAM J. Matrix Anal. Appl. Vol. 21, No.1,1999,pp.185-194.
    [128]胡志刚等.利用最优正则化方法确定Tikhonov正则化参数[J].测绘科学,2010,35(2).
    [129]朱南海等.基于遗传算法的Tikhonov正则参数优化计算[J].工程力学,2009,26(5).
    [130]谢钢. GPS原理与接收机设计[M].北京:电子工业出版社, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700