益气解毒方通过上调miR-200b杀灭鼻咽癌干细胞的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]
     益气解毒方对鼻咽癌细胞以及其裸鼠移植瘤均具有较强的抑制作用,联合运用顺铂能进一步增强其抑瘤率,有效提高荷瘤裸鼠治疗后的生存质量。益气解毒方可通过激活DC而增强T细胞的增殖反应,强化CTL对鼻咽癌靶细胞的杀伤活性。肿瘤干细胞是肿瘤中具有自我更新能力并能产生异质性肿瘤细胞的瘤细胞群体。尽管肿瘤干细胞数目很少,却具有强大的恶性增殖能力,决定了肿瘤生长速度及治疗后复发与转移潜能。若要彻底治愈肿瘤,必须清除这类细胞。迄今为止,研究鼻咽癌干细胞的报道却不多。miRNA是由一类内源性具有调控功能的非编码RNA,与靶基因的3’UTR区结合后,在转录后水平抑制蛋白的翻译而发挥负调控靶基因表达的作用。
     本课题运用益气解毒方药物血浆分别处理鼻咽癌干细胞CNE2-SC(CNE2-SC/QBTRF)和对照细胞CNE2-SC/control,然后进行miRNA芯片分析,筛选受益气解毒方调控的差异miRNA,从miRNA角度探讨益气解毒方杀灭鼻咽癌干细胞以及抑制鼻咽癌肿瘤生长增殖与侵袭的作用。
     [CD133和CD44在鼻咽癌不同临床进展阶段的表达分析]
     许多文献提示,CD133和CD44与多种肿瘤的发生有关,是多种肿瘤干细胞的标志物。因此,我们选择这两个肿瘤干细胞标志物在鼻咽癌组织和细胞中的表达活性进行验证与分析。首先采用免疫组化分析CD133、CD44在鼻咽癌组织中的表达活性改变与鼻咽癌临床进展阶段的相关性。结果显示,CD133和CD44在鼻咽癌肿瘤组织中的表达明显高于正常鼻咽上皮,且与临床分期相关。紧接着,运用流式细胞术与干细胞成球实验检测益气解毒方对肿瘤干细胞标志物CD133、CD44的表达活性的影响以及对鼻咽癌干细胞CNE2-SC的杀伤作用。结果显示,益气解毒方可显著抑制鼻咽癌干细胞CNE2-SC的成球能力,并下调CD133的表达水平,但对CD44表达活性无显著作用。
     [益气解毒方调控的差异miRNA在鼻咽癌组织和细胞中的表达活性检测]
     miRNA芯片结果经qRT-PCR验证发现,益气解毒方处理鼻咽癌干细胞CNE2-SC后,表达活性上调2倍以上的miRNA有4个(miR-200b, miR-29b, miR-34a, miR-101).运用qRT-PCR检测益气解毒方上调的miRNA在鼻咽癌细胞中的表达,以正常鼻咽上皮细胞NP-69为对照,结果显示,miR-200b在鼻咽癌CNE2、CNE1、6-10B、5-8F细胞中的表达活性都出现下调,且miR-200b在鼻咽癌干细胞CNE2-SC几乎不表达。于是选择miR-200b在53例鼻咽癌组织中进行进一步验证。qRT-PCR结果显示,miR-200b在鼻咽癌组织中表达显著下调,且随着鼻咽癌的临床进展而进一步下调。这些结果提示,miR-200b可能作为抑瘤miRNA参与鼻咽癌的发生发展过程。体内实验也证实,益气解毒方可显著上调CNE2鼻咽癌细胞裸鼠移植瘤组织中miR-200b的表达水平。因此,益气解毒方可能通过上调miR-200b的表达杀灭肿瘤干细胞,进而抑制鼻咽癌的生长增殖速度与侵袭潜能。[miR-200b是鼻咽癌治疗的潜在生物靶点,miR-200b通过抑制靶基因CD133杀灭鼻咽癌干细胞,抑制鼻咽癌细胞的生长增殖与侵袭潜能,对鼻咽癌的发生发展过程发挥重要的影响]
     miRNA在肿瘤的发生发展中可充当抑瘤基因的作用。干细胞成球实验证实,miR-200b能抑制鼻咽癌干细胞CNE2-SC的成球能力。MTT、Transwell等实验证实,miR-200b可以抑制鼻咽癌细胞的生长、迁徙和侵袭能力,而干扰miR-200b则能促进鼻咽癌细胞的生长、运动和侵袭能力;体内实验表明,miR-200b可以抑制CNE2鼻咽癌细胞裸鼠皮下移植瘤的生长速率;因而,miR-200b在鼻咽癌的发生发展过程中可能发挥抑瘤基因的作用。为进一步阐明其作用机制,我们运用生物信息学以及相应实验证实,miR-200b可抑制靶基因CD133的表达,并能下调鼻咽癌干细胞CNE2-SC中CD133的表达活性水平;而干扰miR-200b则能拮抗益气解毒方对鼻咽癌细胞的抑制效应。因此,miR-200b可能是鼻咽癌治疗的潜在生物靶点。
     总之,鼻咽癌的发生发展是一个多基因参与、多阶段变异累积形成的病理过程。miRNA、基因、肿瘤干细胞等在鼻咽癌的发生发展过程中扮演重要角色,它们相互作用,进而构成鼻咽癌发生发展过程中的复杂的调控网路。阐明益气解毒方通过miR-200b参与鼻咽癌发生发展的分子机制,能为鼻咽癌的诊断、预后评估提供检测分子标记,为鼻咽癌的临床治疗提供有效靶点。
[Background]
     Qi-Boosting Toxin-Resolving Formula (QBTRF) holds a strong inhibititory effect on implanted tumor of NPC (nasopharyngeal carcinoma) cells in nude mice. When used in a combined way with cisplatin, this kind of effect can be further enhanced to show a higher inhibition rate and improved quality of life following treatment on nude mice. It improves DC's secretion of IL-12and increase the cytotoxic activity of CTL on NPC CNE2cells. More recently, cancer stem cell (CSC) has become associated with the operational detection of cells with CSC properties. In this case, the term refers to cells shown to have been capable of generating and propagating a malignant cell population, usually identified and characterized in an experimental setting. As so far, the report about cancer stem cells in NPC cell lines is rare.
     To explore the network associated with miRNA regulating and the effect of QBTRF as a drug in the treatment of NPC cells and NPC stem cells, miRNA microarray was applied to investigate the differentially expressed miRNAs in CNE2-SC/QBTRF treating system contrasting with CNE2-SC/control cells.
     [The expression analysis of CD133and CD44in NPC progression]
     More and more evidences have demonstrated that overacticated CD133and CD44were implicated in carcinogenesis of diverse tumors and as marker of CSCs. Thus, we selected CD133and CD44for further identification in the follwing experiments. In the immunohistochemical analysis using extended clinical samples, we detected the expression of the main members of CD133and CD44. The results showed that CD133and CD44expression increased in tumor tissues, and was associated with NPC progression. Then, we use flow cytometry and stem cells mammosphere assay detected the expression of CD133、CD44as well as the the cytotoxic effect on NPC stem cell CNE2-sc cells by QBTRF. The results showed that the ability into mammosphere of the NPC stem cell CNE2-sc was significantly inhibited and reduced the expression of CD133, while, have rare effect on the expression of CD44
     [The expressions of miRNAs regulated significantly by QBTRF in NPC stem cell]
     In the resultd of miRNA microarray, there were4upregulated miRNAs following the treatmrnt of QBTRF, with more than2-fold of expressive activity shown, which was subsequently identified by qRT-PCR. Data indicated that miR-200b was overexpressed in NPC tissues and cell lines.
     [miR-200b inhibited NPC stem cell growth though targeting CD133as a potential therapeutic marker and played important role in the pathogenesis of NPC]
     miRNA may be involved in the process of tumor development as a tumor suppressor gene. Overexpression of miR-200b reduced mammosphere number and size of NPC stem cells. It's certified that miR-200b could inhibit NPC cell growth and invasion identified by MTT transwell test in vivo and in vitro. Some relative assays were performed to demonstrate that miR-200b could inhibit CD133. Therefore, they were considered to be potential therapeutic biomarker in NPC. qRT-PCR was applied to detect the expression of up-regulated miRNAs in CNP cell by QBTRF contrasting with normal epithelia cell NP-69/control. The results showed that the expression of miR-200b was striking reduced in CNE2, CNE1,6-10B and5-8F cell lines. Moreover, miR-200b was hardly expression in CNP stem cell CNE2-SC. So, we selected miR-200b for further identification in53NPC samples. qRT-PCR showed that the expression of miR-200b was significantly down-regulated and was associated with advanced clinical staging. These suggested that miR-200b might be a tumor suppressor involved in the development of NPC. Meanwhile, in vivo experiment confirmed that the expression of miR-200b was singnifcantly up-regurated in implanted tumor of NPC cells in nude mice following the treatment of QBTRF. Thus, QBTRF showed an inhibitory effect on the potentiality of growth, proliferation and invasion of CNP cells, which might depend on up-regulate the level of miR-200b.
     In conclusion, development of NPC is a pathological process associated with abnormal changes in multiple genes and developing status via multi-stages. Genes, miRNAs and CSC all play an important role in NPC formation. They may support or antagonize each other and construct a complicated network in the pathological processing of NPC. It has been clarified that the mechanism of QBTRF inhibiting the NPC stem cells may be through up-regulating miR-200b expression, thus providing potential diagnostic and prognostic evaluating markers, as well as therapeutic targets for NPC.
引文
[1]Lai JP, Tong CL, Hong C, et al. Association between high initial tissue levels of cyclin D1 and recurrence of nasopharyngeal carcinoma. Laryngoscope,2002, 112(2):402-408.
    [2]Qian CN, Guo X, Cao B, et al. Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma. Cancer Res., 2002,62(2):589-596.
    [3]Hui AB, Lo KW, Teo PM, et al. Genome wide detection of oncogene amplifications in nasopharyngeal carcinoma by array based comparative genomic hybridization. Int J Oncol,2002,20(3):467-473.
    [4]Fujii M, Yamashita T, Ishiguro R, et al. Significance of epidermal growth factor receptor and tumor associated tissue eosinophilia in the prognosis of patients with nasopharyngeal carcinoma. Auris Nasus Larynx,2002,29(2):175-181.
    [5]Kwong J, Lo KW, To KF, et al. Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin. Cancer Res,2002,8(1):131-137.
    [6]Chan ATC, Teo PML and Johnson PJ. Nasopharyngeal carcinoma. Ann. One., 2002,13(7):1007-1015.
    [7]Tamoto E, Tada M, Murakawa K, et al. Gene-expression profile changes correlated with tumor progression and lymph node metastasis in esophageal cancer. Clin. Cancer Res.,2004,10(11):3629-3638.
    [8]Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature.2001; 414(6859):105-111.
    [9]Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature.1994; 367 (6464):645-648.
    [10]Al-Hajj M, Wicha MS. Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA.2003; 100(7):3983-3988.
    [11]Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Cancer Res.2003; 63(18):5821-5828.
    [12]Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res.2005; 65(20):9328-9337.
    [13]O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature.2007; 445(7123): 106-110.
    [14]Bapat SA, Mali AM, Koppikar CB, Kurrey NK. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res.2005; 65(8):3025-3029.
    [15]Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.2005; 65(23): 10946-10950.
    [16]Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell.2005; 121(6):823-835.
    [17]Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PW, Lam CT, Poon RT, Fan ST. Significance of CD90(+) Cancer Stem Cells in Human Liver Cancer. Cancer Cell.2008; 13(2):153-166.
    [18]Wang J, Guo L, Chen L, Zeng Y and Lu S. Identification of Cancer Stem Cell-Like Side Population Cells in Human Nasopharyngeal Carcinoma Cell Line. Cancer Res.2007; 67(8):3716-3724.
    [19]Shmelkov SV, St Clair R, Lyden D, et al. AC133/CD133/Prominin-l. Rafii S. Int J Biochem Cell Biol.2005; 37(4):715-9.
    [20]Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res.2004; 64(19):7011-21.
    [21]Bao S, Wu Q, McLendon RE, et al. Glioma stemcells promote radioresistance by preferential activation of the DNA damageresponse. Nature.2006; 444 (7120):756-60.
    [22]O'Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature.2007; 445(7123): 106-10.
    [23]Richardson GD, Robson CN, Lang SH, et al. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci.200; 117(Pt 16):3539-45.
    [24]Yin S, Li J, Hu C, et al. CD 133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer.2007; 120(7):1444-50.
    [25]Hermann PC, Huber SL, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell.2007; 1(3):313-23.
    [26]Wen L, Chen XZ,Yang K, et al. Prognostic Value of Cancer Stem Cell Marker CD 133 Expression in Gastric Cancer:A Systematic Review. PLoS One.2013; 8(3):e59154.
    [27]Welte Y, Davies C, Schafer R, et al. Patient Derived Cell Culture and Isolation of CD133+Putative Cancer Stem Cells from Melanoma.J Vis Exp.2013; 13;(73).
    [28]Arndt K, Grinenko T, Mende N, et al. CD133 is a modifier of hematopoietic progenitor frequencies but is dispensable for the maintenance of mouse hematopoietic stem cells. Proc Natl Acad Sci U S A.2013;110(14):5582-7
    [29]Wang X, Wang G,Zhao Y, et al. STAT3 mediates resistance of CD44(+)CD24(-/low) breast cancer stem cells to tamoxifen in vitro. J Biomed Res.2012; 26(5):325-35.
    [30]Yang X, Sarvestani SK, Moeinzadeh S, et al. Effect of CD44 Binding Peptide Conjugated to an Engineered Inert Matrix on Maintenance of BreastCancer Stem Cells and Tumorsphere Formation. PLoS One.2013; 8(3):e59147.
    [31]Chen W, Zhang X, Chu C, et al. Identification of CD44+Cancer Stem Cells in Human Gastric Cancer. Hepatogastroenterology.2013; 60(127).
    [32]Lun SW, Cheung ST, Cheung PF, et al. CD44+cancer stem-like cells in EBV-associated nasopharyngeal carcinoma. PLoS One.2012; 7(12):e52426.
    [33]Al-Hajj M, Wicha MS, Benito-Hemandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100(7):3983-3988.
    [34]Dalerba P, Clarke MF:Cancer stem cells and tumor metastasis:first steps into uncharted territory. Cell Stem Cell 2007, 1(3):241-242.
    [35]Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007,131(6):1109-1123.
    [36]Charafe-Jauffret E, Ginestier C, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 2009,69(4):1302-1313.
    [37]Hayashida T, Jinno H, Kitagawa Y, et al. Cooperation of cancer stem cell properties and epithelial-mesenchymal transition in the establishment of breast cancer metastasis. J Oncol 2011:591427.
    [38]Kakarala M, Wicha MS. Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 2008,26(17):2813-2820.
    [39]Velasco-Velazquez MA, Popov VM, Lisanti MP, et al. The role of breast cancer stem cells in metastasis and therapeutic implications. Am J Pathol 2011, 179(1):2-11.
    [40]Liu H, Patel MR, Prescher JA, et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A 2010,107(42):18115-18120.
    [41]Zhang HB, Ren CP, Yang XY, et al. Identification of label-retainig cells in nasopharyngeal epithelia and nasopharyngeal carcinoma tisues. Histochem Cell Biol,2007; 127(3):347-354.
    [42]Wang J, Guo LP, Chen LZ, et al. Identification of cancer stem cell—like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res.2007; 67(8):3716-3724.
    [43]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120(1):15-20.
    [44]Chen CZ, Lodish HF, Bartel DP, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science.2004; 303(5654):83-6.
    [45]Ambros V. The functions of animal microRNAs. Nature.2004; 431(7006): 350-5.
    [46]Brennecke J, Hipfner DR, Stark A, et al. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell.2003; 113(1):25-36.
    [47]Reinhart BJ, Slack F J, and Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature.2000; 403(6772):901-6.
    [48]He L, Harmon GJ. MicroRNAs:small RNAs with a big role in gene regulation. Nat Rev Genet.2004; 5(7):522-31.
    [49]Osaki, M, Takeshita F, and Ochiya T. MicroRNAs as biomarkers and therapeutic drugs in human cancer. Biomarkers.2008; 13(7):658-70.
    [50]Ortholan C, Puissegur MP, llie M, et al., MicroRNAs and Lung Cancer:New Oncogenes and Tumor Suppressors, New Prognostic Factors and Potential Therapeutic Targets. Curr Med Chem.2009; 16(9):1047-61.
    [51]Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature.2005; 435(7043):834-8.
    [52]Volinia S, Callin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A.2006; 103(7):2257-61.
    [53]Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res.2004; 64:3753-6.
    [54]Sengupta S, den Boon JA., Chen IH, et al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA.2008.105(15):5874-5878.
    [55]Chen HC, Chen GH, Chen YH, et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer.2009; 100(6):1002-11.
    [56]Xia H, Ng SS, Jiang S, et al. miR-200a mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion Biochem Biophys Res Commun.2010 Jan 1;391(1):535-541.
    [57]Li G, Wu Z, Peng Y, et al. MicroRNA-10b induced by Epstein-Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Lett.2010; 299(1):29-36.
    [58]何迎春,卢芳国,田道法,等.益气解毒方对DNP诱导TgN(p53mt-LMP 1)/HT小鼠鼻腔/鼻咽上皮癌前病变及p16和c-jun基因表达的影响.中国癌症杂志,2008,18(10):734-738.
    [59]江洁琼,贺安意,田道法,等.益气解毒方对TgN(p53mt-LMP1)/HT转基因小鼠鼻腔和鼻咽黏膜上皮细胞增殖及凋亡相关基因表达的影响.中国组织工程研究与临床康复.2008,12(42):552-555.
    [60]吴新正,戴娜,田道法,等.益气解毒方对癌前病变鼻咽黏膜超微病理组织的逆转效应.湖南中医药大学学报.2012,32(3):119-121.
    [61]胡梅,田道法,刘群良,等.益气解毒方提取物对CNE2细胞的体内外抑瘤作用.中国中医药信息杂志.2012,(11):115-118.
    [62]Ma J, Cao SM. The epidemiology of nasopharyngeal carcinoma. In:Jiade J.Lu, Jay S.Cooper, Anne W.M.Lee, eds. Nasopharyngeal carcinoma:Multidisciplinary Management. New York:Springer; 2010. P.1-7.
    [63]Lee N, Xia P, Quivey JM, et al. Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma:an update of the UCSF experience. Int J Radiat Oncol Biol Phys 2002; 53(1):12-22.
    [64]Tang L, Li L, Mao Y, et al. Retropharyngeal Lymph Node Metastasis in Nasopharyngeal Carcinoma Detected by MRI:Prognostic Value and Staging Categories. Cancer.2008; 113(2):347-54.
    [65]Bartel, D.P. MicroRNAs:target recognition and regulatory functions. Cell 2009, 136,215-233.
    [66]Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer:rationale, strategies and challenges. Nature reviews Drug discovery 2010; 9:775-89.
    [67]Amelia Cimmino, George Adrian Calin, Muller Fabbri.et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A.2005; 102(39):13944-13949.
    [68]Bonci D, Coppola V, Musumeci M, et al.The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med.2008; 14:1271-1277
    [69]Garzia L, Andolfo I, Cusanelli E,et al. MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS One.2009; 4:4998
    [70]He X, He L, Hannon GJ. The guardian's little helper:microRNAs in the p53 tumor suppressor network. Cancer Res.2007; 67:11099-11101
    [71]Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and rumorigenicity of breast cancer cells. Cell.2007; 131:1109-1123.
    [72]Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007; 21:1025-1030.
    [73]Li O, Li J, Droge P. DNA architectural factor and proto-oncogene HMGA2 regulates key developmental genes in pluripotent human embryonic stem cells. FEBS Lett.2007; 581:3533-3537.
    [74]Li O, Vasudevan D, Davey CA,et al. High-level expression of DNA architectural factor HMGA2 and its association with nucleosomes in human embryonic stem cells. Genesis.2006; 44:523-529.
    [75]Godlewski J, Nowicki MO, Bronisz A,et al._Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res.2008; 68(22):9125-9130
    [76]Ferretti E, De Smaele E, Miele E, et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J. 2008; 27:2616-2627
    [77]Xia W, Li J, Chen L, et al. MicroRNA-200b regulates cyclin Dl expression and promotes S-phase entry by targeting RND3 in HeLa cells. Mol Cell Biochem [J]. 2010,344(1-2):261-6.
    [78]Wang Z, Zhao Y, Smith E, et al. Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by micoRNA-200b [J]. Toxicol Sci.2011,121(1):110-22.
    [79]Shinozaki A, Sakatani T, Ushiku T, et al. Downregulation of microRNA-200 in EBV-associated gastric carcinoma [J]. Cancer Res.2010,70(11):4719-27.
    [80]Kurashige J, Kamohara H,et al. MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma [J].Ann Surg Oncol,2012 Jul;19 Suppl 3:S656-64.
    [81]Hung CS, Liu HH, Liu JJ, et al. MicroRNA-200a and -200b Mediated Hepatocellular Carcinoma Cell Migration Through the Epithelial to Mesenchymal Transition Markers.Ann Surg Oncol.2012 Aug 7.
    [82]Iliopoulos D, Lindahl-Allen M, Polytarchou C, et al. Loss of miR-200 inhibition of Suz12 leads to poly comb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 2010,39(5):761-772.
    [83]Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009,138(3):592-603.
    [84]Howe EN, Cochrane DR, Richer JK. Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res 2011,13(2):R45.
    [85]Xia W, Cao G, Shao N. Progress in miRNA target prediction and identification. Sci China C Life Sci.2009,52:1123-1130.
    [86]Witkos TM, Koscianska E, Krzyzosiak WJ. Practical Aspects of microRNA Target Prediction. Curr Mol Med.2011,11:93-109.
    [87]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005,120:15-20.
    [88]Sethupathy P, Megraw M, Hatzigeorgiou AG. A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods.2006,3:881-886.
    [89]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell. 2004.116:281-297.
    [90]Tay Y, Zhang J, Thomson AM. et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature.2008,455: 1124-1128.
    [91]Medina PP, Slack FJ. microRNAs and cancer:an overview. Cell Cycle.2008; 7(16):2485-92.
    [92]Elmen J, Lindow M, Silahtaroglu A, et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res.2008,36:1153-62.
    [93]Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges competitive inhibitors of small RNAs in mammalian cells.Nat Methods.2007,4:721-6.
    [94]Gumireddy K, Young DD, Xiong X, et al. Small-molecule inhibitors of microrna miR-21 function. Angew Chem Int Ed Engl.2008,47:7482-4.
    [95]Michelfelder S, Trepel M. Adeno-associated viral vectors and their redirection to cell-type specific receptors. Adv Genet.2009,67:29-60.
    [96]Aagaard L, Rossi JJ. RNAi therapeutics:Principles, prospects and challenges. Adv Drug Deliv Rev.2007,59:75-86.
    [97]Guan Y, Mizoguchi M, Yoshimoto K, et al. MiRNA-196 is up-regulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance. Clin Cancer Res.2010,16:4289-97.
    [98]Liu S, Wu LC, Pang J, et al. Evidence of microRNA-29b and Spl/NF_B-HDAC regulatory network for KIT expression in KIT-driven acute myeloid leukemia (AML):biologic and therapeutic implications. Cancer Cell.2010,17:333-47.
    [1]Egeblad M,Werb Z.New functions for the matrix metalloproteinase in cancer progression [J].Nat Rev Cancer,2002,2(3):161-174.
    [2]Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior[J]. Annu Rev Cell Dev Biol,2001,17:463-516.
    [3]Mu D, Cambier S, Fjellbirkeland L, et al. The integrin alpha (v)beta 8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-betal[J].J Cell Biol,2002,157(3):493-507.
    [4]Liabakk NB,Talbot I, Smith RA, et al. Matrix metalloproteinase 2(MMP2) and matrix metalloproteinase 9 (MMP9) typeⅣ collagenase in colorectalcancer[J]. Cancer Res,1996,56(1):190-196.
    [5]Franchi A, Santucci M. Masini E, et al. Expression of matrixmetalloproteinase 1, matrixmetalloproteinase 2,and matrixmetalloproteinase 9 in carcinoma of the head and neck[J].Cancer,2002,95:1902-1910.
    [6]Zhou Z,Apte SS,Soininen R,et al.Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I[J].ProcNatl Acod Sci USA,2000,97 (8):4052-4057.
    [7]Werner JA, Rathcke 10, Mandic R, et al. The role of matrix metalloproteinases in squamous cell carcinomas of the head and neck[J]. Clin Exp Metastasis, 2002,19(4):275-282.
    [8]苏勇,吴秋良,夏云飞等.CD44V6和MMP2在鼻咽癌组织中的表达及意义[J].广东医学,2002,23(5).
    [9]周小军,王书芹,王士贞等.鼻咽癌上皮细胞异型性改变与PCNA及MMP9表达的相关性研究[J].中国中西结合耳鼻喉科杂志,2007,15(4):252-254.
    [10]陆兴,姚利,刘平平等.基质基质金属蛋白酶2及其组织抑制物在鼻咽中的表达[J].中国耳鼻喉头颈外科,2007,14(8),483-486.
    [11]蔡朝阳,汤建国,李旋等.基质基质金属蛋白酶-9和IL-8在鼻咽癌中的表达及其与潜伏膜蛋白-1的相关研究[J].临床耳鼻喉头颈外科,2007,21(21),966-969.
    [12]黄方,吴波,钱小明等.表皮生长因子受体、血管内皮生长因子和Ki-67在老年非小细胞肺癌患者中的表达及意义[J].医学研究生学报,2007,20(8),823-826.
    [13]Fontaning, Viganatis,Biginid,et al.Neoangiogenesis:a putative marker of malignancy in non-small-cell lung cancer(NSCLC)development [J].Int J Cancer,1996,67(5):615-619.
    [14]QIAN CN, ZHANG CQ, GUO X, et al. Eleva tion of serum vascular endothelial growth factor in patients with metastatic nasophryngeal carcinoma [J].Cancer,2000,88(2):255-261.
    [15]姜武忠,赵素萍,廖遇平等.鼻咽癌组织中LMP1和VEGF蛋白表达及其临床意义[J].中国耳鼻咽喉颅底外科,2007,13(3),173-177.
    [16]李钦,陈彦林,孔平等.鼻咽癌组织中COX-2和VEGF-C的表达意义[J].山东医药,,2007,47(12):7-9.
    [17]赵国光,向晓娟,何友兼.血管内皮生长因子C、D在鼻咽癌组织中的表达及其临床意义[J].癌症,2007,26(1):90-95.
    [18]谢晓,梅举.血管内皮细胞及其在肿瘤中作用的研究进展[J].医学研究生学报,2008,21(1):76-78.
    [19]Sounni NE,Baramova EN,Munaut C.et al.Expression of membrane typel matrix metalloproteinase (MT1-MMP) in A2058 melanoma cells is associated with MMP-2 activation and increased tumor growth and vascularization[J].Int J Cancer,2002,98 (1):23-28.
    [20]Sounni NE,Devy L,Hajitou A,et al. MT1-MMP expression promotes tumor growth and angiogenesis through an upregulation of vascular endothelial growth factor expression [J].FASEB J,2002,16(6):555-564.
    [21]Ivaska J,Heino J. Adhesion receptors and cell invasion:mechanisms of integrin Guided degradation of extracellular matrix[J]. Cell Mol Life Sci,2000,57(1):16-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700