用户名: 密码: 验证码:
氰酸酯树脂改性体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氰酸酯树脂(CE)是一种新型的热固性树脂,它在宽广的温度和频率范围内
    保持低且稳定的介电常数和介电损耗,同时具有良好的耐热性能和工艺性能,
    这些性能决定了氰酸酯树脂作为高性能复合材料基体树脂的优越性,但其韧性
    和模量还有待进一步提高。本课题的目标是希望通过改性氰酸酯树脂体系的研
    究,获得具有优异的机械、化学、热及介电等性能的氰酸酯树脂基复合材料,
    同时对热固性树脂的改性提出新的方法和理论依据。
    论文主要分为四部分,第一部分是氰酸酯树脂与环氧树脂的固化动力学研
    究,第二部分是氰酸酯树脂/氨基膨润土复合体系的研究,第三部分是在氰酸酯
    树脂/端羧基液体丁腈胶复合体系的基础上进一步改性的研究,第四部分是正电
    子湮没法对体系自由体积的研究。
    在第一部分工作中,对氰酸酯树脂与环氧树脂的固化行为进行了研究,对
    固化动力学和固化反应进行了探讨。采用DSC和FTIR研究了氰酸酯树脂/环氧
    树脂共混体系的固化行为,考察了环氧树脂含量对体系的固化动力学参数的影
    响。通过Ozawa方法计算得到纯氰酸酯树脂及氰酸酯树脂/环氧树脂共混物(重
    量比为9:1,7:3,5:5) 的表观活化能依次为:74. 3,72. 1,60. 8,72. 7 kJ/mol,说
    明少量的环氧树脂可促进氰酸酯树脂的固化反应,过量则抑制。同时还发现,
    固化过程中氰酸酯树脂的转化速率远大于环氧树脂,固化反应对氰酸酯基和环
    氧基均是一级反应。
    在第二部分工作中,对氨基膨润土在氰酸酯树脂中的插层和剥离行为进行
    了研究,对氰酸酯树脂对膨润土的插层以及膨润土在氰酸酯中剥离的机制进行
    了探讨。研究表明,氰酸酯树脂和氨基膨润土之间相容性好,二者混合时氰酸
    酯单体很容易插入到膨润土层间,得到稳定的插层物。通过熔融共混法得到了
    部分插层和部分剥离的纳米复合材料,并对其机械性能进行了研究,冲击强度
    在1phr膨润土的加量下达到了最大值7. 1kJ/m2,远高于纯树脂的3. 8kJ/m2,实
    验结果表明膨润土剥离可以确保复合材料冲击性能的提高。同时发现,氰酸酯
    
    摘要
    树脂/氨基膨润土复合材料具有更高的热稳定性。
     在第三部分工作中,研究了端梭基丁睛胶增韧氰酸醋树脂的共混体系,探
    讨了端狡基丁睛胶增韧氰酸酷的机理,并基于这个体系做了进一步的改性研究。
    通过TGA和SEM发现了空穴的存在,通过透射电镜发现了橡胶粒子的存在,
    从而认为橡胶粒子和空穴是端梭基丁睛胶增韧氰酸酷树脂的主要机理。虽然端
    梭基丁睛胶增韧氰酸酷树脂的效果确实很明显,但这是以牺牲其它性能如热性
    能和模量为前提的。适量的环氧树脂加入氰酸酉旨端梭基丁睛胶共混体系中可以
    在保持韧性不变的前提下,同时提高模量和热稳定性,这是由于环氧树脂的加
    入提高了体系的相容性所致。向氰酸醋/端梭基丁睛胶共混物中添加氨基膨润
    土,发现膨润土在体系中是以插层和剥离结构的方式存在的,而橡胶粒子也同
    时存在于复合材料中。少量氨基膨润土的加入可以在不损失氰酸醋/端梭基丁睛
    胶体系韧性的同时提高了模量和热稳定性,而且模量的提高较为显著,如:lphLr
    加量的膨润土就使CE/CTBN(重量比1 00/10)材料的模量从Z100Mpa升高到
    2600MPa,含o.sphr加量氨基膨润土的复合材料的综合性能最佳。
     在第四部分工作中,通过正电子湮没技术对氰酸醋树脂改性体系的自由体
    积进行了研究。在氰酸酷树脂/氨基膨润土体系中,有机改性粒子主要充当反应
    点阻隔了交联网络点,从而使自由体积增加;在CE/CTBN体系中,CTBN的
    长链分子与孔洞效应同时作用改变自由体积;CE/EP体系中则主要是体系交联
    网络密度的变化导致自由体积的变化;三元体系则是以上各效应的综合影响。
    关键词:氰酸酷树脂,环氧树脂,氨基膨润土,端梭基丁睛胶,纳米复合材料,
     改性
Cyanate ester resin (CE) possesses very low dielectric constant and dielectric loss in a wide temperature and frequency range. It has also balanced heat resistance and processing properties. As a consequence, CE is suggested to be a potential resin for high performance composites. However, the toughness and modulus of CE are not satisfied. The purpose of this work is to develop a new kind of CE-based composite with excellent mechanical, thermal and dielectric properties. It is also of value to provide a broad understanding about the modification of other thermoset polymer systems.This dissertation is composed of four parts. First, study on the curing kinetics of cyanate and epoxy resin (EP) blend; second, study on the intercalated (or exfoliated) nanocomposite of CE and amino-bentonite (BT); third, further modification based on the carboxyl terminated liquid nitrile rubber (CTBN) modified cyanate ester resin system; fourth, study on the free volume of the system by positron annihilation lifetime (PAL) spectroscopy.In the first part, curing process of the binary blends consisting of different amount of cyanate ester and epoxy resin was studied by the means of differential scanning calorimetry (DSC) and Fourier transform infrared analysis (FTIR). The apparent activation energy values of CE/EP blends with mass ratio of 10/0, 9/1, 7/3, and 5/5 obtained by Ozawa treatment of DSC results equal to 74.3, 72.1, 60.8 and 72.7kJ/mol, respectively. Incorporation of small amount of epoxy resin could accelerate the curing process of cyanate ester. Kinetic parameter obtained by FTIR is in good agreement with that by DSC. Furthermore, it was found that the transformation of cyanate group is much faster than that of epoxy group during curing process and the curing process is a first-order reaction for both cyanate group and epoxy group.
    
    In the second part, intercalated and exfoliated structures of anmino-bentonite in cyanate ester resin has been investigated, the intercalation and exfoliation mechanism was discussed. The results revealed that the amino-bentonites were easy to be intercalated by cyanate oligomer to form a stable CE/bentonite intercalated hybrid. Partially exfoliated and partially intercalated CE/NH4+-BT nanocomposites were obtained via a melt blending process. The impact strength and thermostability of CE were improved simultaneously with the loading of NH4+-BT. The impact strength showed a maximum of 7.1kJ/m at lphr BT loading, comparing to 3.8kJ/m of pure CE. The exfoliated BT had the best toughening effect, whereas the aggregate BT particles may deteriorated it. Also, results of thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) suggest that CE/BT nanocomposites has higher thermal stability and modulus.In the third part, CTBN modified cyanate system and accordingly toughening mechanism were first discussed. Then, further modifications base on such a system were performed. Results show that the addition of CTBN does increase the impact strength significantly but with sacrifice of modulus and thermostability. TGA curve of CTBN and SEM picture of fracture surface indicated the existence of cavities. TEM observations verified the presence of CTBN rubber-particles. Hence, it is concluded that rubber-particle and cavities toughening mechanism function together to improve the toughness of CE. Addition of appropriate amount of epoxy resin (EP) in CE/CTBN system can not only increase the modulus and thermostability of the blend, but also improve the toughness. Good result ascribe from the fact that the addition of EP plays a key role to improve the miscibility of CE/CTBN/EP blends. It was found that a combination of intercalated and exfoliated structures of BT existed in CE/CTBN/BT composites while rubber particles also can be observed in CE/CTBN/BT composites by TEM. Addition of appropriate amount of BT in CE/CTBN system could not only obviously increase the modulus of the blend without sacrifice of toughness, but also improve the thermostability. The modulus increased from about 2100MPa of CE/CTBN (100/
引文
1. Robbe, A new look at the use of glass-fiber reinforced plastic piping, 1990, (6) , 29-352
    2. A.S Chiu, FRP line pipe for oil and gas production, 1989:(8) , 64-69
    3. 蓝立文.氰酸酯树脂.玻璃钢/复合材料,1996(6) :29-44
    4. 王仲群,宁荣昌,李爱红.氰酸酯树脂的性能和应用.玻璃钢/复合材 料,1997(2) :22-25
    5. 王胜杰,许元泽,杨振忠,俞浩,赵得禄.氰酸酯聚合物的研究。化学通 报,1996(12) :1-8
    6. 陈祥宝编著.《高性能树脂基体》第5章,化学工业出版社,1999
    7. D.H Wertz, D.C Prevorsek. Dicyanate semi IPNs-A new class of high performance, high temperature plastics. Polym Eng Sci, 1985,25(13) :804-806
    
    8. E.M Woo, D.A Shimp, J.C Seferis. Polymer, 1994,35(8): 1658-1665
    9. J.W Hwang, S.D Park, K. Cho, J.K Kim et al. Toughening of cyanate ester resins with cyanated polysulfones. Polymer,\997, 38(8):1835-1843
    10. C Marieta, M.D Rio, I Harismendy, Mondragon. Effect of the cure temperature on the morphology of a cyanate ester resin modified with a thermoplastic: characterization by atomic force microscopy. Eur.Polym.J., 2000,36 (7): 1445-1454
    11. J.W Hwang, K Cho, C.E Park, W Huh. Phase separation behavior of cyanate ester resin/polysulfone blends. J. Appl. Polym. Sci., 1999,74 (l):33-45
    12. S.A Srinivasan, A.V Rau, A.C Loos, J.E McGrath, Polym. Mater. Sci.Eng.,\994, 71:750-751
    13. J.Y Chang, J.L Hong. Morphology and fracture toughness of poly(ether sulfone)-blended polycyanurates. Polymer, 2000,41 (12): 4513-4521
    14. I Harismendy, M.D Rio, A Eceiza, J Gavalda, CM Gomez, I Mondragon. Morphology and thermal behavior of dicyanate ester-polyetherimide semi-IPNS cured at different conditions. J. Appl. Polym. Sci., 2000,76(7): 1037-1046
    15. Takao Iijima, Takanori Maeda, Masao Tomoi. Toughening of cyanate ester resin by N-phenylmaleimide-styrene copolymers. J Appl Polym Sci, 1999,74(12): 2931-2939
    16. Takao Iijima, Takanori Maeda, Masao Tomoi. Toughening of cyanate ester resin by N-phenylmaleimide-N-(p-hydroxy) phenyl-maleimide-styrene terpolymers and their hybrid modifiers. Polym Int, 2001,50(3): 290-302
    17. Takao Iijima, S Katsurayama, W Fukuda, M Tomoi. Modification of cyanate ester resin by poly(ethylene phthalate) and related copolyesters. J. Appl.Polym.Sci, 2000,76(2): 208-219
    18. E. M Woo, C.C Su, J. F Kuo, J.C Seferis. Model with experimental evidences for the morphology of binary blends of a thermosetting polycyanate with thermoplastics. Macromolecule, 1994,27(19): 5291-5296
    19. S.A Srinivasan, J. E McGrath. Amorphous phenolphthalein-based poly(arylene ether)- modified cyanate ester networks: Effect of thermal cure cycle on morphology and toughenability. J. Appl. Polym. Sci.,1991,64(1) : 167-178
    20
    
    20. J.Y Chang, J.L Hong. Morphology and fracture toughness of poly(ether sulfone)-blended polycyanurates. Polymer, 2000,41(12) : 4513-4521
    21. 陈平,郭昕昕.环氧树脂与氰酸酯共固化反应的研究.高分子学报,2000,(4) : 472-475
    22. 赵磊,梁国正,孟季茹,秦华宇.环氧树脂改性氰酸酯树脂基复合材料.工程塑 料应用,2000,28(3) :7-9
    23. 陈平,程子霞,金镇镐,雷清泉.环氧树脂与氰酸酯共固化产物性能的研究.高 分子学报,2001,(2) :238-240
    24. 包建文,唐邦铭,陈祥宝.环氧树脂与氰酯共聚反应研究.高分子学 报,1999,(2) :151-155
    25. B. S Kim. Effect of cyanate ester on the cure behavior and thermal stability of epoxy resin. J. Appl. Polym. Sci. 1997,65 (1) : 85-90
    26. Suguna Lakshmi, M Reddy, B.S R. Synthesis and characterization of new epoxy and cyanate ester resins. Eur. Polym. J, 2002, 38(4) , 795-801
    27. D.S Kim, J.H Shin. Cure kinetics and properties of epoxy/dicyanate blends. Polym. Eng. Sci,2000,40(6) :1429-1434
    28. C.P Reghunadhan Nair, Dona Mathew, K. N Ninan. Imido-phenolic-triazine network polymers derived from maleimide-functional novolac. Eur Polym J, 2001,37(2) :315-321
    29. A Chaplin, I Hamerton, H Herman et al. Studying water uptake effects in resins based on cyanate ester/bismaleimide blends. Polymer,2000,41 (11) : 3945-3956
    30. Ian Hamerton, High Performance Polymers 1996, 8(1) :83-95
    31. C.P Reghunadhan Naire, Tania Francis. Blends of bisphenol A-based cyanate ester and bismaleimide: Cure and thermal characteristics. J. Appl. Polym. Sci, 1999, 74(14) : 3365-3375
    32. J.M Barton, I Hamerton, J.R Jones, J.C Stedman. Mechanical properties of tough, high temperature carbon fibre composites from novel functionalized aryl cyanate ester polymers. Polymer, 1996, 37(20) :4519-4528
    
    33. 尹剑波,秦华宇,梁国正,赵磊.共聚改性氰酸酯树脂.工程塑料应用,1999,27(7) : 5-7
    34. 梁国正,闫福胜.双酚A型氰酸酯树脂的合成.化工新型材料,1999,27(6) : 29-32
    35. C.B Buchnall. Toughened Plastics, Appl. Sci, Published Ltd, 1977
    36. L.M Manzione, J.K Gillham. J. Appl. Polym. Sci., 1981,26, 889
    37. 陈平,韩丽洁.热固性树脂的增韧方法和增韧机理.热固性树脂,1996,2:42-46
    38. 孙以实,傅增力.热固性树脂,1992,3:5
    39. 肖惠宁等.高分子材料科学与工程,1989,24(1) :55
    40. 黄家伟等,高分子材料科学与工程,1985,(1) :61,
    41. 陈平,刘胜平.环氧树脂,126-138
    42. B.S Hayes, J.C Seferis. Rubber modification of low temperature cure cyanate ester matrices and the performance in glass fabric composites. Polym Eng Sci, 2000,40(6) :,1344-1349
    43. R.W Hillermeier, B.S Hayes, J.C Seferis, Polym. Comp, 1999,20(1) : 155-165
    44. R.W Hillermeier, B.S Hayes, J.C Seferis, Proc. Conf. North Am. Therm. Anal. Soc. 1998,26th:,99-104
    45. T.C Ward, D.S Porter, R.E Jensen, et al. Adhes. '99, Int. Conf. Adhes., 1999, 7th: 81-86
    46. D.S Porter, J Adhes. Sealant Counc., 1996:515-517
    47. P.C Yang, E.P Woo, M.T Bishop, D.M Pickelman, J.H Sue, Proc. ACS Div. Polym. Mater. Sci. Eng.,1990: 63:315-321
    48. P. C Yang, E.P Woo, S.A Laman, et al, 36th Int. SAMPE Symp. Exhib.1991, 36 (1) : 437-448
    49. E.M Maya, A.W Snow, L.J Buckley. Oligodimethylsiloxane Linked Cyanate Ester Resins. Macromolecule, 2002, 35(2) , 460-466
    50. J.Borrajo, C.C Riccardi, R.J.J Williams, Z.Q Cao, J.P Pascault. Rubber-modified cyanate esters: thermodynamic analysis of phase separation. Polymer. 1995; 36:3541-3547
    51. D.S Porter, T.C Ward, J Adhes. Sealant Counc. 1997, (8) : 353-355
    
    52. R.W Hillermeier, J.C Seferis. Environmental effects on thermoplastic and elastomer toughened cyanate ester composite systems. J Appl. Polym. SW,2000,77(3) :556-567
    53. B. S Hayes; J.C Seferis, Parker, A George. Rubber modification of low temperature cure cyanate ester matrices and the performance in glass fabric composites. Polymer Engineering and Science. 2000; 40:1344-1349
    54. B.S Hayes, J.C Seferis, Rubber toughened epoxy-cyanate ester liquid resins: Effect of rubber functionality. Int. SAMPE Symp. Exhib.,2001,46th: 1072-1078
    55. C Arnold, P Mackenzie, V Malhotra et al 37th Int. SAMPE Symp. Exhib., 1992,37:128-136
    56. Z Fu, S.K Pollack, Polym. Prepr. 1998, 39(1) , 452-453
    57. E.M Maya, A.W Snow, L.J Buckley. Oligodimethylsiloxane Linked Cyanate Ester Resins. Macromolecule, 2002, 35(2) , 460-466
    58. J.W Oilman, J.E Brown, K.D Oliver, Annu.Tech. Conf.-ANTEC, 1996, 3:3055-3057
    59. 李静,梁国正.化工新型材料,2000,28(10) :37-38
    60. W Kern, R. Schroder, K Hummel, C Mayer, M Hofstotter. Polymers with pendant cyanate ester groups: synthesis, thermal curing and photocrosslinking. Eur. Polym. J.,1998, 34(7) :987-995
    61. S.Y Zeng, M Hoisington, J.C Seferis, Polym Comp, 1993,14(6) : 458-466
    62. A.C Taylor, AJ Kinloch, Adhes. '99, Int. Conf.Adhes. 1999,7th: 181-186
    63. A.C Taylor, A.J Kinloch, Proc. Annu. Meet. Adhes. Soc. 1999,22nd: 125-127
    64. O.A , M Kawasumi, T Kurauchi, et al. Polym Prepr , 1987, 28(2) :447.
    65. 欧玉春.刚性粒子填充聚合物的增强增韧与界面相结构.高分子材料科学与 工程,1998,14(2) :12-15,
    66. 陈平,张岩.热固性树脂的增韧方法及其增韧机理.复合材料学 报,1999,16(3) :19-22
    67. 漆宗能等.一种聚酰胺/粘土纳米复合材料及其制备方法[P].CN1138593A, 1996
    68. A Akelah, A Moet. J Mater Sci, 1996, 31:3589-3596
    
    69. A Moet, A Akelah, A Hiltner, et al. Mater Res Soc Symp Proc. 1994, 351:91-96
    70. T Lan, P.D Kaviratna, T.J Pinnavaia. Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites, Chem Mater, 1995,7:2144-2150
    71. M. S. Wang, T.J. Pinnavaia, Clay-polymer nanocomposites formed from acidic derivatives of montmorillonite and epoxy resin. Chem Mater, 1994, 6: 468-474
    72. T Lan. Clay-epoxy nanocomposites; relationships between reinforcement properties and the extent of the clay layer exfoliation. Proc ACS Div. Polym Mater Sci Eng. (PMSE), 1994, 71: 527-528
    73. Zhen Wang and Thomas J. Pinnavaia. Nanoclayer reinforcement of elastomeric polyurethane, Chem Mater. 1998,10:3769-3771
    74. S.H Hsiao, G.S Liou, L.M Chang. Synthesis and properties of organosoluble polyimide/clay hybrids. JAppl Polym Sci, 2001, 80(11) :2067-2072
    75. A.J Gu, S.W Kuo, F.C Chang. Syntheses and properties of Pi/clay hybrids. JAppl Polym Sci, 2001, 79(10) :1902-1910
    76. D.J Suh, Y.T Lim, O.O Parka. The property and formation mechanism of unsaturated polyester-layered silicate nanocomposite depending on the fabrication methods. Polymer, 2000,41(24) :8557-8563
    77. R Krishnammoorti, R.A. Vaia, E.P Giannelis, Structure and Dynamics of Polymer-Layered Silicate Nanocomposites, Chem Mater. 1996, 8,1728-1734
    78. 袁建君,方琪,刘智恩.晶须的研究进展.材料科学与工程,1996,14(4) :1-7
    79. 贾巧英,马晓燕,梁国正,鹿海军.晶须及其在高分子材料中的应用.高分子通 报,2002,6:71-78
    80. 刘玲,殷宁,亢茂青,王心葵.晶须增韧复合材料机理的研究.材料科学与工 程,2000,18(2) :116-119
    81. Okano, Norio, Kobayashi, etal.USP, 5965245,1999-10-12.
    82. Tanabe Takahiro, Kobayashi Kazuhito, Takahashi Atsuyki. JP, 11140229, 1997-11-6.
    83. Urasaki, Naoyuki, Tsuyama, etal. USP, 5879568, 1999-3-9.
    84. Ueno Takakuni, Tamura Yorikazu. EP, 781639, 1997-7-2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700