甘蓝型油菜苗期耐湿性和抗旱性相关QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿害和干旱是作物主要的逆境胁迫之一,也是我国油菜产区影响最终产量和品质的主要逆境因子之一。本研究利用具耐湿性和抗旱性差异的两份材料为双亲构建了一个由F_1小孢子培养得到的150个DH系,通过两个环境下的田间试验,考察株高等5个性状,结合分子标记分析,对性状及耐湿系数和抗旱系数进行QTL定位,分析甘蓝型油菜苗期的耐湿性和抗旱性。主要结果如下:
     1、两亲本比较发现,母本(No2127-17×275B F_4)比父本(沪油15×5900 F_4)表现出更强的耐湿性和抗旱性。
     2、以183个SSR标记和157个AFLP标记构建了全长为1489.4 cM的遗传连锁图谱,标记间的平均距离为4.4 cM。采用共同的SSR标记,将本图谱与甘蓝型油菜通用图谱进行了初步对应。
     3、卡方测验表明,在DH群体中,86个标记(25.3%)表现显著偏分离(P<0.01),且大部分偏向父本。所有定位的340个位点的等位基因在DH群体中的分布为父本等位基因占52.7%,母本等位基因占47.3%,近似为1:1,略微偏向父本。
     4、DH群体各性状变异丰富,大部分表现出明显的超亲分离,同时表现为正态分布。
     5、应用复合区间作图法,对株高、根长、地上部干重、根干重和总干重5个性状进行了QTL定位。对照和湿害胁迫下总共检测到45个QTL,其中对照条件下检测到28个,湿害胁迫条件下共检测到26个,在对照和湿害胁迫下同时检测到的QTL有9个;另外,由耐湿系数(WTC)检测到11个QTL。
     6、应用复合区间作图法,对5个性状进行了QTL定位。对照和干旱胁迫下总共检测到50个QTL,其中对照条件下检测到28个,干旱胁迫条件下共检测到31个,在对照和干旱胁迫下同时检测到的QTL有9个;另外,由抗旱系数(DRC)检测到19个QTL。
     7、检测到的各性状QTL以及其耐湿系数QTL和抗旱系数QTL有重叠分布,说明耐湿性和抗旱性的遗传基础有着紧密联系,可以在育种上将二者加以聚合。
Waterlogging and drought are serious environmental stresses on the growth of crop, which are the main abiotic constraints in oilseed production. In this study, we employed two B.napus lines which are different in tolerance to waterlongging and drought stress. The population with 150 doubled haploid (DH) lines was derived from the microspore culture of F_1. Testing experiments with 3 replicates following a randomized complete block design were implemented in two environments. Molecular markers were used to analyze the genetic model associated with 5 traits, WTC (waterlogging tolerance coefficient) and DRC (drought resistance coefficient) of all the traits. The main results are summarized as follow:
     1. Comparing two parents, the female parent (No2127-17×275B F4) is more tolerant to waterlogging and drought stress than the male parent (Huyoul 5×5900 F_4).
     2. A genetic linkage map, spanning 1489.4 cM with an average interval of 4.4 cM, was constructed using 183 simple sequence repeat (SSR) markers and 157 Amplified fragment length polymorphism (AFLP) markers. Based on the public information of microsatellites (SSR markers), our map was aligned with reference maps.
     3. In the DH population, 86 markers (25.3%) skewed from the expected 1:1 genotypic segregation by Chi-square test, and most of them skewed towards the male parent. The allele frequencies of the male parent and the female parent in all 340 informative loci were 52.7% and 47.3% respectively. The allele ratio approximated to the expected 1:1.
     4. Most traits in DH population showed transgressive segregation and demonstrated the normal distribution.
     5. Using composite interval mapping method, a total of 45 QTL were detected for five traits, which are plant height, root length, shoot dry weight, root dry weight and total dry weight, under control and waterlogging condition. Twenty eight QTL were detected under control and 26 QTL were detected under waterlogging condition. There are 9 QTL detected under both control and waterlogging condition. The other 11 QTL were detected by WTC.
     6. The entire genome was searched for QTL conferring significant effects on all scored traits by composite interval mapping in DH population. A total of 50 QTL were detected for five traits under control and drought condition. Twenty eight QTL were detected under control and 31 QTL were detected under drought condition. There are 9 QTL detected under both control and waterlogging condition The other 19 QTL related to DRC were identified.
     7. QTL detected for five traits, WTC and DRC are clustering. All clusters detected indicated that the waterlogging tolerance and drought resistance may have strong relationship, which implied that waterlogging tolerance and drought resistance can be pyramided in breeding in B. napus.
引文
1.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    2.金千瑜,欧阳由,禹盛苗.土壤干旱胁迫对不同水稻品种叶片卷曲的影响.中国水稻科学,2003,17(4):349-354
    3.金善宝.中国小麦学.北京:中国农业出版社,1996,754-758
    4.景蕊莲,朱志华,胡荣海,朱志华,昌小平.冬小麦不同基因型幼苗形态性状遗传力和抗旱性的研究.西北植物学报,1997,17(2):152-157
    5.李佳,沈斌章,韩继祥,甘莉.一种有效提取油菜叶片总DNA的方法.华中农业大学学报,1994,13:521-523
    6.李金才,董琦,余松烈.不同生育期根际土壤淹水对小麦品种光合作用和产量的影响.作物学报,2001,27(4):434-441
    7.廖伯寿.论WTO挑战与中国油菜产业发展.中国作物学会油料作物专业委员会.迎接21世纪的中国油料科技.北京:中国农业科学技术出版社,2002,9-15
    8.刘友良.水分逆境生理.北京:农业出版社,1992,144-188
    9.陆光远,杨光圣,傅廷栋.一个简便的适合于分析油菜中SSR位点的检测体系.中国油料作物学报,2003,25:79-81
    10.陆光远,杨光圣,傅廷栋.应用于油菜研究的简便银染AFLP标记技术的构建.华中农业大学学报,2001,20(5):413-415
    11.王晨阳,马元喜.土壤渍水对冬小麦根系活性氧代谢及生理活性的影响.作物学报,1996,22(6):712-719
    12.王三根,何立人.淹水对大麦与小麦若干生理生化特性影响的比较研究.作物学报,1996,22(2):228-231
    13.魏和平,利容千,王建波.淹水对玉米叶片细胞超微结构的影响.植物学报,2000,42(8):811-817
    14.吴志华,曾富华,马生健等.水分胁迫下植物活性氧代谢研究进展.亚热带植物科学,2004,33(3):77-80
    15.徐云碧,朱立煌.分子数量遗传学.北京,中国农业科技出版社,1994
    16.严建兵.玉米杂种优势遗传基础及玉米与水稻比较基因组研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    17.余凤群,刘后利.甘蓝型油菜未成熟小孢子培养技术体系的研究.[博士学位论文].武汉:华中农业大学图书馆,1994
    18.张江丽,蔡士宾,张光祥,魏静波,张彩琴.马卡小麦耐湿性的RAPD标记及定位研究.南京农业大学学报,2003,26(2):7-10
    19.中华人民共和国统计局.《国际统计年鉴2007)).中国统计出版社,2008
    20.Abebe T,Guenzi A C,Martin B,Cushman J C.Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol, 2003, 131(4): 1748-1755.
    21. Andraws D L, Cobb B G, Johnson J R, Drew M C. Hypoxic and Anoxic Induction of Alcohol Dehydrogenase in Roots and Shoots of Seedlings of Zea mays (Adh Transcripts and Enzyme Activity). Plant Physiol, 1993, 101: 407-414
    22. Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun M H, Tharreau D. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet, 2003,107: 1139-1147
    23. Boru G, Ginkel M, Kronstad W E, Boersma L. Expression and inheritance of tolerance to waterlogging stress in wheat. Euphytica, 2001,117: 91-98
    24. Botstein B, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331
    25. Bray E A. Molecular responses to water deficit. Plant Physiol, 1993, 103: 1035-1040
    26. Bray E A. Plant response to water deficit. Trends Plant Sci, 1997, 2: 48-54
    27. Breseghello F, Sorrells M E. Association Mapping of Kernel Size and Milling Quality in Wheat (Triticum aestivum L.) Cultivars Genetics, 2006, 172: 1165-1177
    28. Brondani C, Rangel P, Brondani R, Ferreira M. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet, 2002, 104: 1192-1203
    29. Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci, USA, 2004, 101(26): 9909-9914
    30. Causse M A, Fulton T M, Cho Y G, Ann S N, Chunwongse J, Wu K, Xiao J, Yu Z H, Ronald P C, Hamington S E, Second G, Mccouch S R, Tanksley S D. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138: 1251-1274
    31. Champou MC, Wang G, Sarkarung S. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor.Appl.Genet, 1995, 90: 969-981
    32. Chetelat R T, Meglic V. Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet, 2000, 100: 232-241
    33. Crawford R R M, Braendle R. Oxygen deprivation stress in a changing environment. Journal of Experimental Botany, 1996,47(295): 145-159
    34. Culati J M L, Lenka D, Jena S N. Root growth of groundnut (Arachis hypogaea L.) as influenced by irrigation schedules under different water table conditions[J]. Indian Journal of Agricultural Science, 2000, 70(2): 122-124
    35. Dennis E S, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren F U. Molecular strategies for improving waterlogging tolerance in plants. Journal of Botany, 2000, 51 (342): 89-97
    36. Doi K, Iwata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud) in the background of japonica rice (O. sativa L.). Rice Genetics Newsletter, 1997, 14:39-41
    37. Drew M C. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 223-250
    38. Drew M C, He C J, Morgan P W. Programmed cell death and aerenchyma formation in roots. Trends in plant science, 2000, 5(3): 123-127
    39. Edwards M D, Stuber C W, Wendel J F. Molecular marker facilitated investigations of quantitative trait loci in maize. I: Numbers genomic distribution and types of gene action. Genetics, 1987, 116: 113-125
    40. Espinosa-Ruiz A. Arabidopsis thaliana AtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth. Plant J, 1999, 20(5): 529-539.
    41. Frary A, Nesbitt T C, Frary A, Grandillo S, Knaa E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289:85-88
    42. Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, Schuler K. Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed, 2004, 13: 93-102
    43. Guo W Z, Zhang T Z, Ding Y Z, Zhu Y C, Shen X L, Zhu X F. Molecular marker assisted selection and pyramiding of two QTLs for fiber strength in upland cotton. Journal of Genetics and Genomics, 2005, 32: 1275-1285
    44. Guy C L. Effect of low temperature on the glutathione status of plant cells. New York: Academic Press, 1982, 169
    45. Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162: 1885-1895
    46. Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics, 1993, 135: 205-211
    47. Jongdee B, Fukai S, Cooper M. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Research, 2002, 76: 153-163
    48. Kamoshita A, Wade L J, Ali M L, Pathan M S, Zhang J, Sarkarung S, Nguyen H T. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor Appl Genet, 2002, 104:880-893
    49. Ketring D L, Jordan W R, Smith O D. Genetic variability in root and shoot growth characteristics of peanut [J]. Peanut Science, 1982, 9: 68-72
    50. Kinshita T. Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet Newl, 1991, 8: 2-37
    51. Kinshita T. Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet Newl, 1993, 10:7-39
    52. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antoni B A, Shomura A, Shimizu T, Lin S Y, Inoue T, Fukuta A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L. 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet, 1994, 8:365-376
    53. Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-192
    54. Lemieux B. Overview of DNA chip technology. Mol Breed, 1998, 4: 277-289
    55. Levitt J. Responds of plants to environmental stress. New York: Academic press, 1980, 2: 213-228
    56. Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103:455-461
    57. Lilley E Y, Ludlow T J, Couchsr M. Locating QTL for osomtic adjustment and dehydration tolerance in rice. J Exp. Bot, 1996,47(302): 1427-1436
    58. Lincoln S, Daly M, Lander E. Constructing genetic maps with Mapmaker/Exp 3.0. Whitehead Institute Technical Report, Cambridge, MA, USA, 1992
    59. Li Z K, Pinson S R M, Park W D, Paterson A H, Stansel J W. Epistasis for three grain yieldcomponents in rice (Oryza sativa L). Genetics, 1997, 145: 453-465
    60. Li Z Y, Chen S Y. Differential accumulation of the S-adenosyl-methionine decarboxylase transcript in rice seedlings in response to salt and drought stresses[J]. Theor Appl Gene, 2000, 100:782-788
    61. Lowe A J, Moule C, Trick M, Edwards K J. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet, 2004, 108: 1103-1112
    62. Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet, 2002,105: 622-628
    63. Martin B, Nienhuis J, King G, Schaeffer A. Restriction fragment length polymorphism associated with water use efficiency in tomato. Science, 1989,243: 1725-1728
    64. McCallum C M, Comai L, Greene E A, Henikoff S. Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol, 2000, 123: 439-442
    65. Mian M A R, Bailey M A, Ashley D A, Wells R, Carter J T, Parrott W A, Boerma H R. Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci, 1996, 36: 1252-1257
    66. Monforte A J, Tanksley S D. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L.esculentum genetic background: A tool for gene mapping and gene discovery. Genome, 2000, 43: 803-813
    67. Morgan J M, Tan M K. Chromosomal location of a wheat osmotic regulation gene using RFLP. Australian Journal of Plant Physiology, 1996, 23: 803-806
    68. Neog B, Gogoi N, Baruah K K. Morpho - physiological changes associated with waterlogging in rice (Oryza sativa) [J]. Indian Journal of Agricultural Sciences, 2002, 72 (7): 404-407
    69. Nguyen T T T, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena A C M, Pathan M S, Nguyen H T. Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Gen Genet, 2004, 272: 35-46
    70. Olson D C, Oetiker J H, Yang S F. Analysis of LE-ACS3, a-1-aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants. Journal of Biological Chemistry, 1995,270: 14056-14061
    71. Parkin I A P, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome, 1995, 38: 1122-1131
    72. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M J, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet, 2005, 111:1514-1523
    73. Prasad M, Kumar N, Kulwal P L, Roder M S, Balyan H S, Dhaliwal H S, Gupta P K. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet, 2003, 106(4): 659-667
    74. Price A H. Believe it or not, QTLs are accurate! TRENDS in Plant Science, 2006, 11:213-216
    75. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTLs analysis of seed oil and erucic acid content. Theor Appl Genet, 2006,114: 67-80
    76. Qiu F Z, Zheng Y L, Zhang Z L, Xu S Z. Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Annals of Botany, 2007, 99: 1067-1081
    77. Quarrie, S A, Gulli M, Calestani C, Steed A, Marmiroli N. Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor Appl Genet, 1994, 89: 794-800
    78. Ray J D, Yu L X, McCouch S R, Champou M C. Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L). Theor Appl Genet, 1996, 42: 627-636
    79. Reyna, Cornelious N B, Shannon J G, Sneller C H. Evaluation of a QTL for waterlogging tolerance in southern soybean germplasm. Crop Science, 2003, 43: 2077-2082
    80. Roberts J K M, Callls J, Jardetsky O. Cytotplasmic acidosis as a determinant of flooding in tolerance in plants. Proc Natl Acad Sci, USA, 1984, 81: 6029-6033
    81. Robin S, Coutois B, Pathan M S. Marker assisted back cross breeding for improvement of drought tolerance in indica and japonica rice. Abstract, Proceedings of an international workshop on progress toward developing resilient crops for drought-prone areas, 2002, IRRI, Los Banos, Laguna Philippines
    82. Sanguineti M C, Tuberosa R, Stafenelli S, Noli E, Blake T K, Hayes P M. Utilization of a recombinant inbred population to localize QTLs for abscisic acid content in leaves of drought stressed barley (Hordeum vulgare L.). Rus J Plant Physiol, 1994, 41: 572-576
    83. Sarkar R K, Das A. Changes in antioxidative enzymes and antioxidants in relation to flooding tolerance in rice. Journal of Plant Biology, 2000, 27(3): 307-311
    84. Serraj R, Vasquez - Diaz H, Hernandez G, et al. Genotypic difference in the short-term response of nitrogenase activity (C_2H_2 reduction) to salinity and oxygen in the common bean[J]. Agronomie, 2001,21: 1-7
    85. Shen L, Courtois B, McNally K L, Robin S, Li Z. Evaluation of near-isogenic lines of rice introgressioned with QTLs for root depth through marker-aided selection. Theor Appl Genet, 2001,103:75-83
    86. Singh S, Singh T N. Significance of leaf rolling in rice during water stress. Indian Journal of Plant Physiology, 2000, 5(3): 214-218
    87. Sivamani E, Bahieldrin A, Wraith J M. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci., 2000, 155: 1-9
    88. Stam P. Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J, 1993, 3: 739-744
    89. Street T O, Bolen D W, Rose G D. A molecular mechanism for osmolyte-induced protein stability. PNAS,2006, 103: 13997-14002
    90. Stuber C W. Mapping and manipulating quantitative trait in maize. Trends in Genetics, 1995, 11: 477-481
    91. Subbaiah C C, Sachs M M. Molecular and Cellular Adaptations of Maize to Flooding Stress. Annals of Botany, 2003, 90: 119-127
    92. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics, 2006, 173:309-319
    93. Swanson-Wagner R A, Jia Y, DeCook Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A. Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet, 1998, 96: 688-698
    94. Teulat B, Merah O, Sirault X, Borries C, Waugh R, This D. QTLs for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet, 2002, 106: 118-126
    95. Tuberosa R, Sanguineti M C, Landi P, Salvi S, Casarini E, Conti S. RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought stressed maize (Zea mays L.). Theor Appl Genet, 1998, 97: 744-655
    96. Turner N C, Toole J C, Cruz R T. Response of seven diverse rice cultivars to water deficits: Stress development canopy temperature, leaf rolling and growth. Field Crops Res, 1986,13:257-271
    97. Ushimaru T, Ogawa K, Ishida N, Shibasakal M, Kanematsu S, Asada K, Tsuji H. Changes in organelle superoxide dismutase isoenzymes during air adaptation of submerged rice seedlings: Differential behaviour of isoenzymes in plastids and mitochondria. Planta, 1995, 196(3): 606-613
    98. VanToai T T, Martinb S K S, Chased K, Borub G, Schnipkea V, Schmitthennerc A F, Larkd K G. Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Science, 2001,41: 1247-1252
    99. Verslues P E, Bray E A. LWR1 and LWR2 are required for osmoregulation and osmotic adjustment in Arabidopsis. Plant Physiol, 2004, 136(1): 2831-2842
    100. Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity, 2002, 93 (1): 77-78
    101. Wan J L, Zhai H Q, Wan J M, Yasui H, Yoshimura A. Mapping QTL for traits associated with resistance to ferrous iron toxicity in rice, using japonica chromosome segment substitution lines. Acta Genetica Sinica, 2003,30(10): 893-898
    102. Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTLs environment interactions. Theor Appl Genet, 1999, 99: 1255-1264
    103. Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC, 2006
    104. Waterhouse P M, Helliwell C A. Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet, 2003, 4: 29-38
    105. Werner J D, Borevitz J O, Warthmann N, Gabriel T T, Ecker J R, Chory J, Weigel D. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. PNAS, 2005, 102(7): 2460-2465
    106. Xing Y Z, Tan Y F, Hua J P, Sun X L, Xu C G, Zhang Q F. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet, 2002, 105: 248-257
    107. Xu C, Jing R, Mao X, Jia X, Chang X. A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco. Ann Bot (Lond), 2007, 99(3): 439-450
    108. Xu D, Duan X, Wang B, Hong B. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110:249-257
    109. Xu K N, Mackill D J. A major locus for submergence tolerance mapped on rice chromosome 9. Molecular Breeding, 1996, 2: 219-224
    110. Xu K N, Xu X, Ronald P C, Mackill D J. A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol Gen Genet, 2000, 263: 681-689
    111. Xu K N, Xu X, Fukao T, Canlas P, Reycel M R, Sigrid H, Ismail A M, Julia B S, Ronald P C, Mackill D J. Subl A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 2006, 442: 705-708
    112. Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2, and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998, 97: 37-44
    113. Yamada M. Effects of free proline accumulation in petunias under drought stress. J Exp Bot, 2005, 56(417): 1975-1981.
    114. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000,12: 2473-2483
    115. Yoshimura K, Miyao K, Gaber A Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S. Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J, 2004, 37: 21-33
    116. Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. Patent Application World intellectual Property Organization, WO, 1993,93, 06239
    117. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    118. Zhang Y, Luo L, Xu C, Zhang Q, Xing Y. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet, 2006, 113: 361-368
    119. Zheng B S, Yang L, Zhang W P, Mao C Z, Wu Y R, Yi K K, Liu F Y, Wu P. Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet, 2003, 107: 1505-1515
    120. Zhou W C, Kolb F L, Bai G H, Domier L L, Boze L K, Smith N J. Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breeding, 2003, 122:40-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700