有机废水在UASB反应器中的厌氧发酵产氢的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用连续流USAB反应器进行厌氧产氢污泥的驯化,污水处理厂的
    厌氧颗粒污泥作为接种污泥,通过对主要非生物因子,如pH,HRT(水力停留时间)
    等采取一定的控制,使污泥混合菌体向产氢优势菌群演变。分析此过程中发酵
    气体氢气、甲烷的含量及产率、反应器内部和出水中VFA(挥发性脂肪酸)、蔗
    糖和COD_(cr)的变化情况,考察Na~+、NH_4~+离子浓度对厌氧发酵产氢污泥的影响。
    寻找厌氧发酵产氢污泥驯化的培养条件和一般规律。本研究对实际工程的产氢
    污泥驯化的运行控制具有理论和实践指导意义。
    从UASB反应器的产甲烷向产氢转变的过程来看,本实验研究得出如下结
    论:
    1.反应器内的pH值控制在7.0左右,调节回流比和COD容积负荷均未
    能达到厌氧发酵产氢的目的。
    2.pH值是厌氧发酵产氢的主要的非生物因子。UASB反应器进水的蔗糖
    浓度为5000mg/L,HRT为16h,COD容积负荷为26.0kgCOD/(m~3·d),污
    泥负荷为0.13kgCOD/(kg-VSS·d),pH值在4.1~4.3之间时,发酵气体
    中氢气的含量达到到60.2%,甲烷的含量降至0%(未检测到),发酵
    气体的氢气的最大产量9.5L/d,反应器的产氢能力达到3.1 LH_2/(L-反应
    器容积·d),比产氢速率达到3.2×10~(-3)LH_2/(g-VSS·d),蔗糖产氢率为
    408ml/g-蔗糖。
    3.当Na~+离子浓度在1000~2000mg/L时,对厌氧发酵产氢有促进作用;
    当Na~+离子浓度在8000~16000mg/L时,对厌氧发酵产氢有很大抑制
    作用;而较低的Na~+离子浓度对厌氧发酵产氢菌群的生长产生不良影
    响。
    4.当NH_4~+浓度在1200mg/L~2400mg/L时,对微生物的厌氧发酵产氢是
    有利的;当NH_4~+浓度大于4800mg/L时,对厌氧发酵产氢有明显的抑
    制作用。
In the paper acclimating anaerobic hydrogen-producing microorganisms seeded with anaerobic granular sludge of some sewage plant in Upflow Anaerobic Sludge Blanket (UASB) reactor was studied. We can adjust and control the un-biological factors e.g. pH, HRT (Hydrolic Retention Time), to realize the transformation from mixed microbe community to the superior hydrogen-producing microbe groups. In the prodecure the gas production rate and composition (hydrogen, methane), volatile fatty acids (VFA), sucrose concentration and CODcr concentration in the reactor and outflow were investigated, and effects of different sodium ion and ammonium concentration on the production of hydrogen by static anaerobic fermentation of sucrose disposed by anaerobic hydrogen producing sludge are studied to seek the conditions and laws of acclimating anaerobic hydrogen-producing sludge ,and the instructions of realistic engineering of acclimating anaerobic hydrogen-producing sludge.
    The results were concluded from the procedure of the change from producing methane to producing hydrogen:
    1. pH was controlled at about 7.0,return flow (rate) and COD volumetric loading were adjusted, the aim of producing hydrogen wasn't reached.
    2. pH was the important un-biological factor during anaerobic hydrogen-producing fermentation.When pH was about4.1~- 4.3, the sucrose concentration of the inflow of UASB reactor was 5000mg/L,HRT was 16h, COD volumetric loading was 26.0kgCOD/(m3-d), the sludge loading was 0.13kgCOD/(kg-VSS-d),the methane-free biogas comprised from 5.2% to 60.2%, the hydrogen production yield was 3.1LHi/(L-reactor volume d), a specific hydrogen production was 3.2 X 10" LH2/(g-VSS d), a sucrose-hydrogen production yield was 408ml/g-sucrose.
    3. The minimum sodium ion concentration (<1000 mg/L) had bad impact
    
    
    upon the activity and the ability of producing hydrogen of the microbe. The level of 1000 ~ 2000 mg/L of sodium ion concentration had stimulative action upon the anaerobic fermentation of the production of hydrogen. High sodium ion concentration (8000~ 16000 mg/L) had inhibitory effect on the anaerobic fermentation of the production of hydrogen.
    4. The ammonium concentration (1200mg/L~2400mg/L) had bad impact upon the activity and the ability of producing hydrogen of the microbe. When ammonium concentration was above 4800mg/L, it had inhibitory effect on the anaerobic fermentation of the production of hydrogen.
    5. There were significant differences of effect of different sodium ion (ammonium) concentrations on acidogenic products associated with time and sodium ion concentrations.
引文
[1] Suzuki Y. On hydrogen as fuel gas. International Journal of Hydrogen Energy,1982,7:227~30.
    [2] Bockris JO'M. The economics of hydrogen as a fuel. International Journal of Hydrogen Energy, 1981, 6:223~264.
    [3] Chen C C, Lin C Y, Startup-up of anaerobic hydrogen producing reactors seeded with sewage sludge. Acta Biotechnol, 2001, 21(4):371~379.
    [4] Casper M S. Hydrogen manufacture by electrolysis,thermal decomposition and unusual techniques. N.J.:Nayes Data Corp, 1978.
    [5] Lodhi M A K. Hydrogen production from renewable sources of energy. Int. J.Hydrogen Energy, 1987, 12:461~469.
    [6] Sastri M V C. Indi's hydrogen energy program—a status report. In.J.Hydrogen Energy, 1989, 14:507~520.
    [7] Cox K E, Williamson Jr.K D. Hydrogen:its technology and implications. Boca Raton, FL:CRC press, 1979.
    [8] Rosen M A, Scott D S. Comparative efficiency assessments for a range of hydrogen production processes. In.J. Hydrogen Energy, 1998, 23:653~662.
    [9] 郑元景,沈永明,沈光范.污水厌氧生物处理.北京:中国建筑工业出版社,1987.8.
    [10] Yong,J.C. and McCarty, P.L.J.Water pollut. Control Fed.,1969 (41):160.
    [11] Lettinga, G. et al. Biotechnol.bioengin.,1980 (22):699~734.
    [12] Iza,J.et al.in:E.R.Hall and Hobson P.N.(eds.).Advances in Water Pollution Control.Pergamon Press, 1986.155~165.
    [13] 姚刚,秦麟源.上流式厌氧污泥床性能的研究.中国给水排水,1994,10(1):7~10.
    [14] 杨景亮,罗人明,黄群贤.UASB+AF处理维生C废水的研究.环境科学,1994,15(6):54~57.
    [15] 刘志杰,陆正禹,李静,等.处理啤酒废水的生产性UASB反应器常温下培养颗粒污泥的过程及工艺条件.中国沼气,1994,12(4):3~7.
    [16] 洪育才,Letinga G.一种新型UASB反应器用于酒厂废水处理.中国给水排水,1989,5(5):28~33.
    [17] 赵亚乾,邱熔处.高负荷UASB反应器处理酒糟污水.水处理技术,1991,
    
    17(2):112~117.
    [18] 孙勤,李仲英.污水处理厂UASB污泥处理的试验研究.水处理技术,1997,23(5):306~308.
    [19] 王凯军,左剑恶,甘海南,贾立敏等.UASB工艺的理论与工程实践.北京:中国环境科学出版社,2000.16-20.
    [20] 龚敏,赵九旭.新型复合厌氧反应器.环境工程,1998,16(2):24~26.
    [21] 周平,钱易.内循环三相好氧流化床处理化工有机废水研究,中国给水排水,1994,10(6):28~32.
    [22] 竺建荣,杨艳茹,安虎仁等.厌氧UASB—好氧工艺处理染料废水研究.环境科学,1994,15(4):31~34.
    [23] Kumar A, Jain S R, Sharma C B, Joshi A P, Kalia V C. Increased H_2 production by immobilized microorganisms. World Journal of Microbiology and Biotechnology, 1995, 11,156~159.
    [24] Tanisho S, Kuromotto M. Hydrogen production from industrial wastewater by anaerobic microflora in chemostate culture. Journal of Fermentation and Bioengineering, 1998, 82:194~197.
    [25] Yokoi H, Maeda Y, Hayashi S,Takasaki Y. H_2 production by immobilized cells of Clostridium butyricum on porous glass beads. Biotechol Tech., 1997, 11(6):431~433.
    [26] Taguchi F, Mizukami N, Saitotaki T, Hasegawa K. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain NO.2. Canadian Journal of Microbiology, 1995, 41:536~540.
    [27] Brosseau J D, Zajic J E. Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. Journal Chemical Technology and Biotechnology, 1982, 32:496~502.
    [28] 李白昆.有机废水发酵法生物产氢原理研究-产氢细菌产氢机理和能力探讨(硕士学位论文).哈尔滨:哈尔滨建筑大学,1994.
    [29] Fang H H P, Liu H,et al. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 2002, 82:87~93.
    [30] Osamu M, Hawkes D, Hawkes F R, et al. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresource Technology,2000,73:59~65.
    [31] 任南琪,王宝贞.有机废水处理生物制氢技术.中国环境科学,1994,
    
    14(6):411~414.
    [32] Lin C Y, Chang R C. Hydrogen production during the anaerobic acidogenic conversion of glucose. J.Chem Technol Biotechnol, 1999, 74:498~500.
    [33] Osamu M, Tatsuya N, et al. Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. The 7th International symposium on Anaerobic Digestion, Sendai, Japan, 1998.
    [34] Lay J J. Biohydrogen generation by mesophilic Anaerobic fermentation of microcrystalline cellulose. Biotechnology and bioengineering, 2001,74(4):280~287.
    [35] Lay J J. Modeling and optimization of anaerobic digested Sludge converting starch to hydrogen. Biotechnology and bioengineering, 2000, 68(3): 269~278.
    [36] Lina V, Anna K. Optimising hydrogen production from anaerobic digestion of food industry residues and manure. Proceeding of Biohydrogen 2002[C], Ede.,The Netherlands, 2002 April.
    [37] Fang H H P, Liu H,Zhang T. Characterization of Hydrogen-producing Granular Sludge. Biotechnology and bioengineering, 2002, 80:227~231.
    [38] Lee Y J, Takashi M, Tatsuya N. Effect of iron concentration on hydrogen fermentation. Bioresource Technology, 2001, 80:227~231.
    [39] Kumar N, Monga P S, Biswas A K, Das A. Modeling and simulation of clean fuel production by Entero-bactercloacae ⅡT-BT 08.International Journal of hydrogen Energy, 2000, 25:945~952.
    [40] Andrews J F. Dynamic model of the anaerobic digestion process. J.Sanitary Engineering Division, 1969,95:95~106.
    [41] Andrews J F, Graef S P. Dynamic modeling and simulation of the anaerobic digestion process. In advances in chemistry Series, 1971, 105:126~162.
    [42] Lay J J, Lee Y J, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res, 1999, 33:2579~2586.
    [43] 陈晓蕾.有机废水产酸发酵顶极群落研究—生态因子pH、Eh的影响(硕士论文).哈尔滨:哈尔滨建筑大学,1998.
    [44] 任南琪等.发酵法生物制氢技术研究.哈尔滨:哈尔滨建筑大学,1994.
    [45] Wiegant,W.W. and Man W. A.Biotech. Bioengin.,1986(27):718~727.
    [46] Hulshoff Pol,L.W. et al. Wat. Sci. Technol.,1983(150):291~304.
    
    
    [47] 贺延龄.废水的厌氧生物处理.北京:中国轻工出版社,1998.16~39.
    [48] 周德庆.微生物教程(第二版).北京:高教教育出版社,2002.113~119.
    [49] 顾夏声、李文献、竺建荣编.水处理微生物学(第三版).北京:中国建筑工业出版社,1988.
    [50] Harper, S.R.and Polland F.G.,Biotach.& Bioeng.,1986.28.585~602.
    [51] (澳)H.W.多伊尔著,郭杰炎等译.细胞的新陈代谢.北京:科学出版社,1983.
    [52] 王祖农主编.微生物词典.北京:科学出版社.1990。
    [53] 马放,戴爱临,任南琪,曾莉,崔雅珊.产氢相最佳发酵类型,哈尔滨建筑大学学报,1995,28(5):63~68.
    [54] Cohen, A.,et al., Process Biochem.,1984.19.227~229.
    [55] Ghosh, S., Biomass, 1986.10.97~107.
    [56] Zoetemeyer, R.J. et al., Water Res.,1982.16.313~321.
    [57] Noike, T. et al., Biotech. & Bioeng., 1985.27.1482~1489.
    [58] Kisaalita,W.S. et al., Biotech. & Bioeng.,1987.30.88~95.
    [59] Dinopoulou, G. et al., Biotech. & Bioeng., 1988.31.958~968.
    [60] Gijzen, H.J. et al., Biotech. & Bioeng., 1988.31.418~425.
    [61] Breure,A.M. et al.,Appl. Microbiol.Biotech.,1984.20.39~40.
    [62] 赵惠勋主编.群体生态学.黑龙江:东北林业大学出版社,1990.
    [63] 任南琪等.水污染控制微生物学.黑龙江:黑龙江科学技术出版社,1993.
    [64] 夏淑芬等编.微生物生态学。武汉:武汉大学出版社,1988.
    [65] 赵丹、产酸相发酵类型控制对策研究(硕士学位论文).哈尔滨:哈尔滨建筑大学,1998.
    [66] Dubios M., Gilles K.L, Hamilton J.K, Reber P.A, Smith F. Colorimetric method for determination of sugars and related substance. Anal.Chem, 1956, 58. 350~356.
    [67] Standard methods for the Examination of Water and Wasterwater (sixteenth edition).American Public Health Association NW. WashingtonDC 20005,1985.
    [68] 国家环保局《水和废水检测分析方法》编委会编.水和废水检测分析方法(第三版),1998:107~109.
    [69] 周群英,高廷耀.环境工程微生物学(第二版).北京:高等教育出版社,2002,87~97.
    [70] 张自杰,周帆.活性污泥生物学与反应动力学.北京:中国环境科学出版社,1989,89~95.
    [71] 周德庆.微生物教程(第二版).北京:高教教育出版社,2002,82~90.
    [72] 文湘华,占新民,王建龙,等.含盐废水的生物处理研究进展.环境科学,1999,20(3):104~106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700