玉米深加工过程废水处理及回用模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米深加工行业作为中国农业产业化的重点,存在着高能耗和高资源消耗、污染严重的节能和环保问题。如何有效实现生产过程中的废水循环利用,对玉米深加工产业的可持续发展具有很强的现实意义。然而,目前我国对玉米深加工行业废弃物资源化的技术开发与模式研究还很不全面,仅仅局限于一般性分析,缺乏对资源化技术和模式构建的深入探讨。
     本研究以我国某典型玉米深加工企业为基本研究单元,利用产业生态学工具和高效厌氧好氧技术,对玉米深加工废水处理与回用技术进行研究。以厌氧数学模型ADM1和活性污泥数学模型ASM1为理论基础,建立了玉米深加工过程废水回用的数学模型。
     利用物质流分析法(MFA)对典型玉米深加工企业生产引起的环境负荷进行了深入分析,明确了玉米深加工企业的物质流分析指标。根据得到的物质流模型构建结果与物质流分析指标,发现废水的资源化利用是企业环境管理的关键控制因素。得到物质需求总量强度账户TMR值为2.8118×107 t/a。
     采用高效厌氧好氧技术“CSTR产酸发酵反应罐—UASBAF复合厌氧反应池—NMBR新型多级环流膜生物反应器”进行玉米深加工废水的中水回用中试研究,优化各个单元,使出水达到《生活杂用水水质标准》要求。CSTR产酸发酵反应罐启动成功后,平均COD去除率稳定在50%以上;BOD去除率平均值为49.1%。液相末端发酵产物以乙酸(800~1000 mg/L),丁酸(200~600 mg/L),丙酸(588 mg/L)和乙醇为主,为混合酸发酵类型。UASBAF复合厌氧反应池50d实现了快速启动,稳定运行期平均COD去除率为85.1%; BOD平均去除率达到84%;出水pH值稳定在6.5~7.0之间。NMBR新型多级环流膜生物反应器在HRT为18 h时,出水COD平均值是30.44 mg/L,BOD平均值是9.11 mg/L,pH平均值为6.85,氨氮平均值为15.01 mg/L,基本符合《生活杂用水水质标准》要求。整套玉米深加工废水中水回用工程建设总投资估算为7820.86元/吨水,去除单位COD的基建费用为940元/kg COD,吨水运行成本为2.38元/吨,每吨水收益为1.42元。
     针对玉米深加工过程废水特点,以厌氧数学模型ADM1和活性污泥数学模型ASM1为理论基础,建立了玉米深加工过程废水回用的数学模型,模拟CSTR-UASBAF反应器和NMBR反应器的运行情况,确定了各反应器的适宜运行参数。
Corn deep processing industry, as focus of agricultural industrialization in China, not only is a high energy and resource consumption industry, but also is a seriously polluted industry. How to realize the waste resoure utilization, is very important to the sustainable development of corn deep processing industry. However, the research about waste resource utilization technology and mode of corn deep processing industry is underdevelopment.
     This study was focus on treatment technologies of corn deep processing wastewater, using industry ecological tools and high effective aerobic and anaerobic technologies, and taking a corn deep processing plant located in China as basic unit. The mathematics model for resource recycling utilization of corn deep processing eco-industrial park wastewater was built, using anaerobic model ADM1 and active sludge model ASM1 as theoretical basis.
     This study used material flow analysis (MFA) to analysis the pollution load of the typical enterprise. And MFA index was first determined in typical corn deep processing. That wastewater resource recycling utilization was the key controlling factor of enterprise environmental management was found by analyzing the obtained material flow mode and index. The TMR value of total material demands intensity account was 2.8118×107t/a.
     A model project with“CSTR-UASBAF-NMBR”process was used for the resource recycling treatment of the corn deep processing wastewater. The effluent achieved“reused water quality standard”requests. After the start-up of Acidogenic phase finished, the average COD removal rate was above 50%, the average BOD removal rate was 49.1%. The aqueous terminal productions were acetic acid(800~1000mg/L), butyric acid(200~600mg/L), propionic acid(588mg/L) and ethanol. Fermentation type was the mixed acid type fermentation. After 50 days, the start-up of UASBAF finished, the average COD removal rate was above 85.1%, the average BOD removal rate was 84%, the average pH value was 6.5~7.0. When HRT is 18h, the average COD was 30.44mg/L, the average BOD was 9.11mg/L, the average pH value was 6.85, the average ammonia nitrogen was 15.01mg/L. The capital construction investment per COD removal was 940.007 Yuan /Kg COD; the operation cost was 2.38 Yuan per ton wastewater at formal operative period.
     Based on the two phases anaerobic reactors and new membrane bioreactor process operations were simulated. The mathematics model for resource recycling utilization of corn deep processing eco-industrial park wastewater was built, using anaerobic model ADM1 and active sludge model ASM1 as theoretical basis.
引文
[1]王红,汤洁.玉米深加工过程中异味气体的来源及其治理措施[J].环境保护,2007(07):21-23.
    [2]张忠祥,钱易.废水生物处理新技术[M].北京:清华大学出版社,2005.
    [3]尤新.玉米深加工的循环经济发展道路[J].粮食加工,2007,32(1):14-18.
    [4]张艳玲,黄俊生.淀粉废水处理与资源化利用的研究现状与发展前景[J].江苏农业科技,2009(03):388-391.
    [5]刁殿桐.玉米淀粉清洁生产技术研究[D].济南:山东大学学位论文,2008.
    [6]王红.吉林省玉米深加工产业循环经济模式研究[D].长春:吉林大学学位论文,2007.
    [7]王江,谷凤久.国内外玉米加工产业发展比较研究[J].经济视角,2007(2):18-19.
    [8]尤新.玉米深加工技术[M] .北京:中国轻工业出版社,2009.
    [9]胡纪萃.试论内循环厌氧反应器[J].中国沼气,1999,17(2):3-6.
    [10]吴江,王丽华,张晓光.玉米深加工废水处理工艺设计改进研究[J].中国农学通报,2009,25(16):294-297.
    [11]张智先,毛晓.我国玉米深加工业现状及发展趋势[J].农业展望,2010,(01):30-34.
    [12]龙振永.吉林省玉米加工产业发展战略环境评价研究[D].长春:吉林大学学位论文,2007.
    [13]石桂春,刘熙.玉米加工利用的现状与途径[J].玉米科学,1998,(4):67-69.
    [14]段永蕙.关于我国环境影响评价制度发展与完善的思考[J].环境保护科学,2000,26(2):40-43.
    [15]沈连峰,王谦.淀粉废水处理技术研究进展[J].河南农业大学学报,2006,40(4):440-444.
    [16]张连凯,张仁志.淀粉废水处理方法研究进展[J].污染防治技术,2008,21(3):61-64.
    [17]刘耕耘,李亚威,赛音.淀粉废水的絮凝沉淀及生物处理[J].内蒙古大学学报自然科学版,2002,23(2):230.
    [18]肖彼瑜,张静,李衡.水处理絮凝剂研究进展[J].矿产与地质,2003,17(1):90-95.
    [19]殷永泉,单文坡.淀粉废水处理方法综述[J].环境污染与防治,2005,27(8):625-629.
    [20] Bratby J. Coagulation and flocculation in water and wastewater treatment[R]. London, IWA Publishing, 2006: 186-218.
    [21] Sharma B R, Dhuldhoya N C, Merchant U C. Flocculants: An ecofriendly approach[J]. Journal of Polymers and the Environment, 2006, (14): 195-202.
    [22] Golob V, Vinder A, Simonic M. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents[J]. Dyes Pigments, 2005, (67): 93-97.
    [23]张美华,蒲富永.聚铁絮凝处理淀粉废水的试验研究[J].重庆环境科学,1996,15(1):28-30.
    [24]李亚峰,马强,曹丽丹,等.混凝-吸附法处理淀粉废水[J].沈阳建筑工程学院学报,1999,15(1):40-43.
    [25]莫日根,刘卫,王涛.马铃薯淀粉废水的碱式聚合氯化铝处理[J].内蒙古环境保护,2001,12(1):44-45.
    [26]杨丽娟.用石灰、聚丙烯酸胺处理淀粉生产废水[J].江宁城乡环境科技,2001,21(2):52-53.
    [27]张佩芳,倪哲明.脱乙配基甲壳质处理含淀粉废水的实验[J].环境污染与防治,1990,12(3):22-23.
    [28]李媚,廖安平.混凝法处理木薯淀粉废水[J].广西民族学院学报(自然科学版),2001,7(2):101-103.
    [29]王乃芝,苏永渤.化学法处理淀粉生产废水[J].工业用水与废水,2000,31(1):29-31.
    [30]邓述波,胡筱敏.微生物絮凝剂处理淀粉废水的研究[J].工业水处理,1999,19(5):8-11.
    [31] Minlino P. Microbial flocculation in relationship to wastewater treatment processes: isolation and screening of flo-producing microorganisms. Biotechnol[J]. Util. Biol. Resour. Trop, 1999 (13): 104-114.
    [32] Shogren R L. Flocculation of kaolin by waxy maize starch phosphates[J]. Carbohydrate Polymers, 2009, (76): 639-644.
    [33] Krentz D, Lohmann C, Schwarz S, et al. Properties and flocculation efficiency of highly cationized starch derivatives[J]. Starch, 2006, (58): 161-169.
    [34] Prasertsan P, Dermlim W, Doelle H, et al. Screening, characterization and flocculating property of carbohydrate polymer from newly isolated Enterobacter cloacae WD7[J]. Carbohydrate Polymers, 2006, (66): 289-297.
    [35] Xie C, Feng Y, Cao W, et al. Novel biodegradable flocculating agents prepared by phosphate modification of konjac[J]. Carbohydrate Polymers, 2007, (67): 566-571.
    [36] Kumar P, Prasad B, Chand S. Treatment of desizing wastewater by catalytic thermal treatment and coagulation[J]. Journal of Hazardous Materials, 2009, (163): 433-440.
    [37] Kumar P, Prasad B, Mishra I M, et al. Treatment of composite wastewater of a cotton textile mill by thermolysis and coagulation[J]. Journal of Hazardous Materials, 2008, 151(2-3): 770-779.
    [38] Kumar P, Prasad B, Mishra I M, et al. Catalytic thermal treatment of desizing wastewater[J]. Journal of Hazardous Materials, 2007, (149): 26-34.
    [39] Meric S, Selcuk H, Belgiorno V. Acute toxicity removal in textile finishing wastewater by Fenton’s oxidation, ozone and coagulation-flocculation processes[J]. Water Research, 2005, (39): 1147-1153.
    [40]刘晖,周康群.微生物絮凝剂处理淀粉废水[J].仲恺农业技术学院学报,2004,17(2):47-50.
    [41]许昭和,卓鉴波,张晓丽.淀粉工业废水的絮凝处理研究[J].解放军预防医学杂志,1991,9(6):415-418.
    [42]王毅力,汤鸿霄.气浮净水技术研究及进展[J].环境科学进展,1999,7(6):94-103.
    [43] Sklyar V, Epov A, Gladchenko M, et al. Combined biologic (anaerobic-aerobic) and chemical treatment of starch industry wastewater[J]. Applied Biochemistry and Biotechnology, 2003, (109): 253-262.
    [44] Jin B, Lee V. Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater[J]. Process Biochemistry, 1999, 34(1): 59-65.
    [45] Jin B, Lee V. Utilization of starch processing wastewater for production of microbial biomass protein and fungal alpha-amylase by Aspergillus oryzae[J]. Bioresource Technology, 1998, 66(3): 201-206.
    [46]买文宁,周荣敏.从淀粉废水中提取蛋白饲料[J].工业用水与废水,2002,33(3):57-59.
    [47]买文宁.气浮提取蛋白—UASB-SBR工艺处理淀粉废水[J].工业水处理,2002,22(6):42-44.
    [48]牧剑波,任慧.气浮一体化装置处理淀粉废水的应用研究[J].河南化工,2002,(8):14-15.
    [49]刘海音,周春丽,张强.有机废水生物处理及综合利用技术的研究进展[J].安徽农业科学,2009,27(16):7630-7631.
    [50] Jin B, Yan X Q, Yu Q, et al. A comprehensive pilot plant system for fungal biomass protein production and wastewater reclamation[J]. Advanced Environmental Research, 2002, (6): 179-189.
    [51] Ann J H, Forster C F. Kinetic analysis of the operation of mesophilic and thermophilic anaerobic filters treating a simulated starch wastewater[J]. Process Biochem, 2000, (36): 19-23.
    [52] Verma M, Brar S K, Tyagi R Y, et al. Starch industry wastewater as a substrate for antagonist, Trichoderma viride production[J]. Biresource Technology, 2007, (98): 2154-2162.
    [53] Vu K D, Tyagi R D, Valero J R, et al. Impact of different pH control agents on biopesticidal activity of Bacillus thuringiensis during the fermentation of starch industry wastewater[J]. Bioprocess Biosystems Engineering, 2009, (32): 511-519.
    [54]苏宏,闰广平.加压SBR法处理淀粉废水的研究[J].吉林化工学院学报,2000,17(1):33-35.
    [55]廖鑫凯,李清彪. SBR法处理模拟淀粉废水的工艺条件研究[J].厦门大学学报(自然科学版),2004,43(3):37.
    [56]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.
    [57] Young J C, Carty P L. The anaerobic filter for waste treatment[J]. Water Pollut Control Fed, 1969, 41(5): 160-173.
    [58] Guo W Q, Ren N Q, Chen Z B, et al. Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation[J]. International Journal of Hydrogen Energy, 2008, (33): 7393-7404.
    [59] Seghezzo L, Zeeman G, Lettinga G, et al. A review: The anaerobic treatment of sewage in UASB and EGSB reactors[J]. Bioresource Technology, 1998, (65): 175-190.
    [60] Zhang Y, Yan L, Chi L, et al. Start up and operation of anaerobic EGSB reactor treating palm oil mill effluent[J]. Journal of Environmental Sciences, 2008, (20): 658-663.
    [61] Rajbhandari B K, Annachhatre A P. Anaerobic ponds treatment of starch wastewater: case study in Thailand[J]. Bioresource Technology, 2004, (95): 135-143.
    [62] Vlyssides A, Barampouti E M, Mai S. Influence of ferrous iron on the granularity of a UASB reactor[J]. Chemical Engineering Journal, 2009, (146): 49-56.
    [63] Annachhatre A P, Amatya P L. UASB treatment of tapioca starch wastewater[J]. Environmental Engineering, 2000, 126(12): 1149-1152.
    [64] Annachhatre A P, Amornkaew A. Upflow anaerobic sludge blanket treatment of starch wastewater containing cyanide[J]. Water Environ Res, 2001, 73(5):622-632.
    [65]郑平,胡宝兰. UASB工艺常温处理木薯加工废水[J].太阳能学报,2002,23(6):774-777.
    [66]张振家,王太平,张虹. UASB反应器处理淀粉废水实验研究[J].工业水处理,2002,22(1):28-31.
    [67] Eilersen A M, Henze M, Kloft L. Effect of Volatile Fatty Acids and Trimethylamine on Denitrification in Activated Sludge[J]. Water Resource, 1999 (5): 1259-1266.
    [68]沈耀良,王慧民.厌氧折流板反应器处理淀粉废水及污泥特性[J].上海环境科学,2002,21(3):139-142.
    [69] Shizas I, Bagley D M. Improving Anaerobic Sequencing Batch Reactor Performance by Modifying Operational Parameters[J]. Water Resource, 2002, 36(1): 363-367.
    [70]邱贤锋,毛海亮.一种新型厌氧工艺介绍及其中试装置的开发[J].交通部上海船舶运输科学研究所学报,2002,25(2):100-103.
    [71] Wu W M, Jain M K. Effect of Storage on the Performance of Methanogenic Granules[J]. Water Resource, 1995, 29(6): 1445-1452.
    [72]迟文涛,赵雪娜.厌氧反应器的发展历程与应用现状[J].城市管理与科技,2004,6(1):31-33.
    [73]石宪奎,倪文. EGSB处理玉米淀粉生产废水中试研究[J].环境工程,2005,23(1):17-19.
    [74]佘宗莲,田由芸.厌氧接触消化技术处理高浓度淀粉废水研究[J].青岛海洋大学学报,1997, 27(3):352-358.
    [75] Gil G C, Chang I S, Kim B H. Operational parameters affectiong the performance of a mediator-less microbial fuel cell[J]. Biosens Bioelectron, 2003, (18): 327-334.
    [76] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation[J]. Trends Biotechnol, 2005, (23): 291-298.
    [77] Liu H, Ramnarayanan R, Logen B E. Production of electricity during wastewater using a single chamber microbial fuel cell[J]. Environmental Science Technology, 2004, (38): 2281-2285.
    [78] Oh S E, Logen B E. Hydrogen and electricity production from a food processing wastewater using microbial fuel cell technologies[J]. Water Research, 2005, (39): 4673-4682.
    [79]车庆华,迟庆红.生物膜法A/O工艺处理玉米产品生产废水的研究[J].化工科技,2009,17(5):45-47.
    [80] Kwong T S, Fang H H P. Anaerobic degradation of cornstarch in wastewater intwo upflow reactors[J]. Environmental Engineering, 1996, 122(1): 9-17.
    [81]毛海亮,邱贤锋,朱鸣跃. UASB-SBR工艺处理淀粉废水的试验研究[J].交通部上海船舶运输科学研究所学报,2002,12(2):104-108.
    [82]毛海亮,邱贤锋,朱鸣跃. UASB-SBR处理工艺试验研究[J].交通环保,2002,4(23):21-24.
    [83]孙震,胡滨,张兆伯.山东某淀粉厂污水处理改造工程[J].环境工程,2001,6(19):17-19.
    [84]侯炽成,孙金娣.高浓度淀粉工业废水生物处理研究[J].中国环境科学,1985,5(2):35-39.
    [85]甘海南,李善平. UASB、SR、CASS法处理淀粉生产高浓度废水[J].云南环境科学,2000,8(19):180-182.
    [86]黄翔峰,李春鞠,章非娟.光合细菌的特性及其在废水处理中的应用[J].中国沼气,2005,23(1):29-35.
    [87] Nahjima F, Kamiko N, Yamamoto K. Organic wastewater treatment without greenhouse gas emission by photosynthetic bacteria[J]. Water Science Technology, 1997, 35(8): 258-291.
    [88]王虹,刘宏斌,刘娟.光合细菌降解3种有机废水的实验研究[J].西北大学学报,1994,24(3):235-240.
    [89]王宇新,刘春朝,钱新民.光合细菌处理淀粉废水的中试研究[J].环境科学,1995,16(3):39-40.
    [90]王剑秋,管运涛,滕飞.光合细菌法降解淀粉废水积累菌体蛋白的研究[J].清华大学学报(自然科学版),2007,47(3):348-351.
    [91]李素玉,李玉.多种微生物净化玉米淀粉工业废水的协同效应研究[J].环境保护,2003,(1):22-2.
    [92]李胜.生物质燃料乙醇企业循环经济模式研究[D].北京:中国农业大学学位论文,2005.
    [93]王守兰,武少华,万融,等.清洁生产理论与实务[M].北京:机械工业出版社,2002:9-12.
    [94]董爱军,马放,徐善文.有机废水资源化研究进展[J].中国甜菜农业,2006,(1):24-28.
    [95]邵荣,许琦.以淀粉废水、麦芽根制备生物材料——短梗霉多糖[J].食品科学,2007,28(8):314-317.
    [96]李玉,李其久,尹依婷.白地霉净化和资源化玉米淀粉工业废水的试验条件研究[J].辽宁大学学报,2008,35(1):81-84.
    [97]关贵兰.利用淀粉废水生产单细胞蛋白(SCP)的研究[J].饲料工业,1996,17(8):38-41.
    [98]许剑秋.玉米淀粉废水生产饲料蛋白[J].粮食与饲料工业,2002,(4):24-25.
    [99]蔡琳晖,聂麦茜.以预发酵淀粉废水为碳源生产微生物絮凝剂[J].应用化工,2007,36(5):457-460.
    [100]王园园,王向东,陈希.利用淀粉废水培养复合型絮凝剂产生菌研究[J].中国给水排水,2007,23(5):19-23.
    [101]朱辉,何国庆.金针菇在淀粉废水中发酵的营养条件研究[J].生物工程学报,1999,15(4):512-516.
    [102]王丽芳.以淀粉为原料生产微生物农药[J].微生物学杂志,1998,8(4):53-55.
    [103]卢娜,王跃强.微生物转化淀粉废水制备生物灭蚊剂[J].生态环境,2008,17(3):931-935.
    [104]靳通收,李记太,李慧章.利用淀粉厂废水制备肌醇的研究[J].化学世界,1995,(4):213-215.
    [105] Asano T, Maeda M, Takaki M. Wastewater reclamation and reuse in Japan: Overview and implementation examples[J]. Water science and technology, 1996, 34(11): 219-226.
    [106] Crook J, Surampalli R Y. Water reclamation and reuse criteria in the U.S.[J]. Water science and technology, 1996, 33(10-11): 451-462.
    [107] Tchobanoglous G, Nngelakis A N. Technologies for wastewater treatment appropriate for reuse: Potential for applications in Greece[J]. Water science and technology, 1996, 33(10-11): 15-24.
    [108] Bonomo L, Nurizzo C, Rolle E. Advanced wastewater treatment and reuse: Related problems and perspestives in Italy. Water science and technology, 1999, 40(4-5): 21-28.
    [109] Asano T, Levine A D. Wastewater reclamation, recycling and reuse: past, present and future[J]. Water science and technology, 1996, 33(10-11): 1-14.
    [110]喻青,赵新华,秦琦.中水回用及其应用研究[J].安徽农业科学,2006,34(42):2831-2833.
    [111] Mujeriego R, Asano T. The role of advanced treatment in wastewater reclamation and reuse[J]. Water science and technology, 1999, 40(4-5): 1-9.
    [112] Adin A, Asano T. The role of physical-chemical treatment in wastewater recalmation and reuse[J]. Water science and technology, 1998, 37(10): 79-90.
    [113] Rosenberger S, Kruger U, Witzig G, et al. Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater[J].Water Research, 2002, 36(2): 413-420.
    [114]史洪微,单连斌. MBR在中水回用领域的工程应用研究[J].环境保护科学,,2004,30(6):33-35.
    [115]刘敏,陈滢,任南琪.模拟淀粉废水厌氧发酵生物制氢[J].四川大学学报,2006,38(2):55-59.
    [116]张亚雷,李咏梅.国际水协废水生物处理设计与运行数学模型课题组著译.活性污泥数学模型[M].上海:同济大学出版社,2002:5-78
    [117]闫险峰.两相厌氧-膜生物反应器处理中药废水中试研究及数学模拟[D].哈尔滨:哈尔滨工业大学,2009.
    [118]朱海博.两相厌氧-MBR处理化学制药废水实验及数学模型[D].哈尔滨:哈尔滨工程大学,2009.
    [119]郭亚萍,顾国维,裘晓光,等. ASM1在污水生物处理中的应用与研究[J].工业用水与废水,2004,35(5):47-50.
    [120] Corominas L, Sin Gurkan, Puig Sebastia, et al. Modified calibration protocol evaluated in a model-based testing of SBR flexibility[J]. Bioprocess Biosyst Eng. 2011, (34): 205-214.
    [121] Mantziaras I D, Katsiri A. Reaction rate constants and mean population percentage for nitrifiers in an alternating oxidation ditch system[J]. Bioprocess Biosyst Eng. 2011, (34): 57-65.
    [122] Seung Hyuk Baek, Seok Ku Jeon, Krishna Pagilla. Mathematical modeling of aerobic membrane bioreactor(MBR) using activated sludge model no. 1(ASM1)[J]. Journal of Industrial and Engineering Chemistry, 2009, (15): 835-840.
    [123] Smets I Y, Haegebaert J V, Carrette R, et al. Linearization of the activated sludge model ASM1 for fast and reliable predictions[J]. Water Research, 2003, (37): 1831-1851.
    [124] Liu Shao-Gen, Ni Bing-Jie, Li Wen-Wei, et al. Modeling of the Contact-Adsorption-Regeneration(CAR) activated sludge process[J]. Bioresource Technology, 2011, (102):2199-2205.
    [125] Xu Zhongda, Nakhla George, Patel Jignesh. Characterization and modeling of nutrient-deficient tomato-processing wastewater treatment using an anaerobic/aerobic system[J]. Chemosphere, 2006, (65): 1171-1181.
    [126]胡晓东.运用活性污泥一号模型对缺氧—好氧生物废水处理工艺的模拟[J].环境科学与管理,2007,32(9):95-102.
    [127]闵浩,刘振鸿,吴革,等.基于ASM1的A/O系统工艺参数对出水水质影响研究[J].工业安全与环保,2009,35(1):13-15.
    [128]李伟,邓彪,刘烨,等. ASM1模型在大型城市污水处理厂的应用[J].天津建设科技,2008,(2):36-39.
    [129]季民,霍金胜.活性污泥数学模型的研究和应用[J].中国给水排水,2001,17(8):18-22.
    [130]杨青,刘遂庆,甘树应.城市污水处理厂动态模拟研究[J].上海环境科学,2001,21(5):278-281.
    [131]张亚雷,周雪飞.国际水协厌氧消化工艺数学模型课题组著译[M].上海,同济大学出版社,2004:1-69.
    [132] Batstone D. J., Keller J., Angelidaki I., et al. Anaerobic digestion model No. 1(ADM1)[R]. IWA Publishing, 2002, London.
    [133] Mata-Alvares J., Mace S., Libres P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives[J]. Bioresource technology, 2000, (74): 3-16.
    [134] Batstone D. J., Keller J. Industrial applications of the IWA anaerobic digestion model No.1(ADM1)[J]. Water Science and Technology, 2003, 47(12): 199-206.
    [135]谭艳忠,张冰,周雪飞.厌氧消化1号模型(ADM1)的发展及其应用[J].环境污染与防治,2009,31(6):69-72,100.
    [136] Fedorovich V., Lens P., Kalyuzhnyi S., et al. Extension of anaerobic digestion model No.1 with processes of sulfate reduction[J]. Applied Biochemistry and Biotechnology, 2003, 109(1/2/3): 33-45.
    [137] Venkataramana Gadhamshetty, Yalini Arudchelvam, Nagamany Nirmalakhandan, et al. Modeling dark fermentation for biohydrogen production: ADM1-based model vs. Gompertz model[J]. International Journal of Hydrogen Energy, 2010, (35): 479-490.
    [138] Batstone D. J. Mathematical modelling of anaerobic reactors treating domestic wastewater: rational criteria for model use[J]. Reviews in Environmental Science and Bio-Technology, 2006, 5(1): 57-71.
    [139] A. Gali, T. Benabdallah, S. Astals, et al. Modified version of ADM1 model for agro-waste application[J]. Bioresource Technology, 2009, (100): 2783-2790.
    [140] Tugtas A. E., Tezel U., Pavlostathis S. G., et al. An extension of the anaerobic digestion model No.1 to include the effect of nitrate reduction processes[J]. Water Science and Technology, 2005, 54(4): 41-49.
    [141] Parker W. J.,Wu G. H. Modifying ADM1 to include formation and emission of odourants[J].Water Science and Technology, 2006, 54(4): 111-117.
    [142] Ivan Ramirez, Eveline I. P. Volcke, Rajagopal Rajinikanth, et al. Modeling microbial diversity in anaerobic digestion through an extended ADM1 model[J]. Water Research, 2009, (43): 2787-2800.
    [143] Thamsiriroj T, Murphy J. D. Modelling mona-digestion of grass silage in a 2-stage CSTR anaerobic digester using ADM1[J]. Bioresource Technology, 2011, (102): 948-959.
    [144] Zaher U., Moussa M. S., Widyatmika I. N., et al. Modelling anaerobic digestion acclimatisation to a biodegradable toxicant: application to cyanide[J]. Water Science and Technology, 2006, 54(4): 129-137.
    [145] Dereli Recep Kaan, Ersahin Mustafa Evren, Ozgun Hale, et al. Applicability of anaerobic digestion model No.1(ADM1) for a specific industrial wastewater: Opium alkaloid effluents[J]. Chemical Engineering Journal, 2010, (165): 89-94.
    [146] Fezzani B., Cheikh R. Extension of the anaerobic digestion model No.1 (ADM1) to include phenolic compounds biodegradation processes for the simulation of anaerobic co-digestion of olive mill wastes at thermophilic temperature[J]. Journal of Hazardous Materials, 2009, 162(2/3): 1563-1570.
    [147] Derbal K., Bencheikh-lehocine M., Cecchi F., et al. Application of the IWA ADM1 model to simulate anaerobic co-digestion of organic waste with waste activated sludge in mesophilic condition[J]. Bioresource Technology, 2009, (100): 1539-1543.
    [148] Batstone D. J., Keller J., Blackall L. L. The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass[J]. Water Research, 2004, 38(6): 1390-1404.
    [149] Picioreanu C., Batstone D. J., Loosdrecht M. C. M. Multidimensional modelling of anaerobic granules[J]. Water Science and Technology, 2005, 52(1/2): 501-507.
    [150] Mu S. J., Zeng Y., Tartakovsky B., et al. Simulation and control of an upflow anaerobic sludge blanket (UASB) reactor using an ADM1-based distributed parameter model[J]. Industrial & Engineering Chemistry Research, 2007, 46 (5): 1519-1526.
    [151] Mu S. J., Zeng Y., Wu P., et al. Anaerobic digestion model No.1-based distributed parameter model of an anaerobic reactor:Ⅰmodel development[J]. Bioresource Technology, 2008, 99(9): 3665-3675.
    [152] Tartakovsky B., Mu S. J., Zeng Y., et al. Anaerobic digestion model No.1-based distributed parameter model of an anaerobic reactor:Ⅱmodel validation[J]. Bioresource Technology, 2008, 99(9): 3676-3684.
    [153] Batstone D. J., Hernandez J. L. A., Schmidt J. E. Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors[J].Biotechnology and Bioengineering, 2005, 91(3): 387-391.
    [154]黄君礼.密封法测定COD[J].环境化学,1982,32(6):480-490.
    [155]国家环保局水和废水监测分析方法编委会.水和废水分析检测方法[M].中国环境科学出版社,1989:83-94.
    [156]张炳,黄和平,毕军.基于物质流分析和数据包络分析的区域生态效率评价[J].生态学报,2009,29(5):2473-2480.
    [157]毕军,黄和平.物质流分析研究述评[J].生态学报,2007,27(1):368-379.
    [158] Matthews E, Amann C, Bringezu S, et a1. The weight of nations:material outflows from industrial economies[C]. Washington, DC: World Resources Institute, 2000.
    [159] Sundin E, Svensson N, Mclaren J, et al. Materials and energy flow analysis of paper consumption in the United Kingdom, 1987-2010[J]. Journal of Industrial Ecology, 2001, 5(3): 89-105.
    [160]李娜.啤酒生产过程物质能量代谢与环境影响评价研究[D].北京:北京林业大学学位论文,2008.
    [161]姜文英,柴立元.循环经济建设中物质流分析的研究现状与进展[J].工业安全与环保,2006,32(4):48-50.
    [162]陈效逑,乔立佳.中国经济-环境的物质流分析[J].自然资源学报,2000,15(1):17-23.
    [163] Adriaanse A, Bringezu S, Hammond A, et a1. Resource flow-the material basis of industrial economies[C]. Washington, DC: World Resources Institute, 1997.
    [164] Environment Agency Japan. Quality of the environment in Japan 1992[R]. Environment Agency Japan, 1992.
    [165] Kleijn R. In=out: the trivial central paradigm of MFA?[J]. Journal of Industrial Ecology, 2000, 3(2-3): 8-10.
    [166] Von W E, Lovins A B, Lovins L H. Factor four: Doubling wealth-halving Resource use[C] . UK: Earthscan Publications Limited, 1997.
    [167] Schmidt-Bleek F. Das MIPS-Konzept: Weniger naturverbrauch-mehr lebensqualitaet durch faktor 10[C]. Germany: Droemersche Verlagsanstalt Th. Knaur Nachf, 1998.
    [168] Xia C Y. Review on studies of economy-wide material flow analysis[J]. Journal of Natural Resources, 2005, 20(3): 415-421.
    [169] Lee I G. Material flow analysis of nations based on sustainable development[J]. China Industrial Economy, 2004,(11): 11-18.
    [170] Liu J Z, Wang Q, Gu X W, et al. Direct material input and dematerialization analysis of Chinese economy[J]. Resources Science, 2005, 27(1): 46-51.
    [171] Xu M, Zhang T Z. Material input analysis of China economic system[J]. China Environmental Science, 2005, 5(3): 324-328.
    [172] Zhou G M, Feng D F, Ren Y. Key instruments for circular economy: Material flow analysis andmaterial flowmanagement(In: Senior Workshop on Circular Economy and Materials Flow Analysis). Sino-Japan Cooperation Project, PRCEE/JICA/SJC, 2005.
    [173] Gao G K, Zhang N J. Energy demand forecast for China and supplycountermeasure[J]. Electric Power Technologic Economics, 2005, 17(3): 9-14.
    [174]陆钟武.关于循环经济几个问题的分析研究[J].环境科学研究,2003,16(5):1-10.
    [175]阎冬.基于物质流分析法的水泥企业环境压力研究[D].峨眉山:西南交通大学学位论文,2006.
    [176]刘滨,王苏亮,吴宗鑫.试论以物质流分析方法为基础建立我国循环经济指标体系[J].中国人口、资源与环境,2005,15(4):32-36.
    [177] Eurostat. Economy-wide material flow accounts and derived indicators[R]. Luxembourg: Office for Official Publications of the European Communities, 2001: 15-43.
    [178] Marina F K. Society’s metabolism: the intellectual history of materials flow analysis, part I(1860-1970)[J]. Journal of Industrial Ecology, 1998, 2(1): 61-78.
    [179] Schiller F. Linking material and energy flow analyses and social theory[J]. Ecological Economics, 2009, 68(6): 1676-1686.
    [180] Kneese A V, Ayres R U, Arge R C. Economics and the environment: a materials balance approach. Washington: RFF Press, 1971: 30-48.
    [181] Xu Y J, Zhang T Z, Shi L, Chen J N.Material flow analysis in Guiyang[J]. Journal of Tsinghua University(Science and Technology), 2004, 44(12): 1688-1691.
    [182] Hendriks C, Obernosterer R, M ller D, et al.Material flow analysis: a tool to support environmental policy decision making Local Environment[J]. The International Journal of Justice and Sustainability, 2000, 5(3): 311-328.
    [183] Warren-Rhodes K, Koenig A.Escalating trends in the urban metabolism of Hong Kong: 1971-1997[J]. A Journal of the Human Environment, 2001, 30(7): 429-438.
    [184] Singh S J, Grünbhel C M, Schandl H, et al. Social metabolism and labour in a local context: changing environmental relations on Trinket Island[J]. Population and Environment, 2001, 23(1): 71-104.
    [185] Niels B S.The direct material inputs into Singapore's development.Journal of Industrial Ecology,2007,11(2):117-131.
    [186] Samuel N, Leonardo R, Paulo F. Urban metabolism[J]. Journal of Industrial Ecology, 2009, 13(3): 384-405.
    [187] Shi L, Lou Y. Methodology and procedure for urban-wide material flows analysis[J]. Research of Environmental Sciences, 2008, 21(4): 196-200.
    [188] Huang H P, Bi J, Li X M, et al. Material Flow Analysis(MFA)of an eco-economic system:a case study of Wujin District, Changzhou[J].ActaEcologica Sinica, 2006, 26(8): 2578-2586.
    [189] Huang X F, Zhu D J. Material input analysis of Shanghai economic and environmental system[J]. China Population, Resources and Environment, 2007, 17(3): 96-99.
    [190] Wang J, Zhou Y, Song Z W, et al. Practice of regional materials flow analysis[J]. Environment and Sustainable Development, 2006(6): 44-46.
    [191] Liu W, Ju M T, Yu J L, et al. Analysis on material flow of economic and environmental system in Tianjin[J]. Urban Environment and Urban Ecology, 2006, 19(6): 8-11.
    [192] Lou Y, Shi L. Analyzing iron and aluminum stocks in Handan City in 2005[J]. Resources Science, 2008, 30(1): 147-152.
    [193]陆钟武.冶金工业的能源利用[M].北京:冶金工业出版社,1986.
    [194]马中.环境与资源经济学概论[M].北京:高等教育出版社,2001.
    [195]杨雪梅.高浓度有机废水的超高温水解酸化研究[D].长春:吉林大学学位论文,2005.
    [196] Massey C, Pohland F G. Application of Two Phase Anaerobic Digestion[J]. Water Pollution Control Fed, 1978,(50): 2204.
    [197] Cohen A. Significance of partial pre-acidification of glucose for methanogenesis in an anaerobic-digestion process[J]. Applied Microbiology and Biotechnology, 1985, 21(6): 404-408.
    [198]任南琪,王宝贞.有机废水发酵法生物制氢技术[M].哈尔滨:黑龙江科学技术出版社,1994:24-35.
    [199]刘艳玲.两相厌氧系统底物转化规律与群落演替的研究[D].哈尔滨:哈尔滨工业大学学位论文,2001.
    [200] Shore M. Wastewater treatment of up-flow anaerobic sludge blanket (UASB) reactors[J]. Water Pollution Control, 1984,(83): 499-506.
    [201] Morris G G, Buegess S. Control of up-flow anaerobic sludge blanket (UASB) reactors[J]. Water Pollution Control, 1978,(83): 514-520.
    [202]陈兆波.膜生物反应器处理中药废水中试研究及其数学建模[D].哈尔滨:哈尔滨工业大学学位论文,2005.
    [203]梁铧丹. SMBR用于中水回用及其降解表面活性剂的特性研究[D].西安:西安建筑科技大学学位论文,2006.
    [204]韩芳.膜生物反应器在中水回用工程中的技术经济研究[D].重庆:重庆大学学位论文,2002.
    [205]陈兆波,陈志强,林海龙.污水处理系统数学模型[M].哈尔滨:哈尔滨工业大学出版社,2009.
    [206] Rodríguez J, Kleerebezem R, Lema J M, et al. Modeling product formation inanaerobic mixed culture fermentations[J]. Biotechnology and Bioengineering, 2006, 93(3): 592-606.
    [207] Kleerebezem R, Rodriguez J, Temudo M F, et al. Modeling mixed culture fermentations: the role of different electron carriers[J]. Water Science and Technology, 2008, 57(4): 493-497.
    [208] Kleerebezem R, Loosdrecht M C. Waste characterization for implementation in ADM1[J]. Water Science and Technology, 2006, 54(4): 167-174.
    [209] Hulsbeek J J W. A practical protocol for dynamic modelling of activated sludge systems[J]. Water Science and Technology, 2002, 45(6): 127-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700