渗流型β相聚偏氟乙烯基复合厚膜材料的制备和介电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力电子设备发展的日新月异,高储能电容器向多功能,小型化的方向发展。高介电常数的柔性聚合物基电介质复合材料在电子工业领域可能有广泛的应用前景,它可以被用来制作具有任意形状的多层片式电容器,因此提高电介质材料的介电常数具有非常重要的意义。
     根据渗流理论,对于导体/聚合物复合材料,当导体的体积分数逼近渗流阈值时,复合材料的介电常数将发生非线性变化且大幅提高。因此,渗流理论对于制备高介电常数聚合物基复合材料是十分有意义的。
     本文利用渗流理论,研究了以聚偏氟乙烯(PVDF)柔性聚合物与聚偏氟乙烯/钛酸钡为基体,成本低廉的乙炔黑粉末作为填料制备的复合厚膜的微结构和介电性能。以DMF为溶剂,采用浸渍提拉法制备了PVDF厚膜,PVDF/AB复合厚膜,PVDF/BT复合厚膜,PVDF/BT/AB复合厚膜,利用XRD和SEM等手段对材料的物相组成和微结构进行了分析,利用阻抗分析仪等仪器对材料的介电性能进行了研究。
     研究结果表明,在较低温度下(60℃),由于基板的诱导作用,得到的PVDF厚膜呈β相结构,其介电常数比较高。热处理时间对其晶相的形成,晶相的含量和介电性能均无影响。当乙炔黑的体积分数在f=1.3%附近,亦即处于渗流阈值附近时,PVDF/AB复合厚膜呈现显著的渗流效应,材料的介电常数大幅度提高,介电常数达到56左右,是PVDF基体的7~8倍。在复合体系中,由于乙炔黑具有长条形链状结构,比球形颗粒更易相互连接形成渗流通路,其渗流阈值明显低于典型渗流阈值。此超低的渗流阈值,即极少的无机粒子添加量即可保证复合厚膜良好的弹性和加工性能。此外,PVDF/AB复合厚膜的介电损耗在渗流阈值附近保持在0.15以下可能是由于复合体系中的非晶相的存在。在低频下,PVDF/AB复合厚膜的介电常数并不随着频率的变化而变化,这表明了在复合体系中并不存在空间电荷极化效应。
     研究结果还表明,当钛酸钡体积分数等于30%,PVDF/BaTiO_3(BT)复合厚膜介电常数最大。当BaTiO_3体积分数小于30%,复合材料的介电常数随BaTiO_3体积分数的变化趋势与Maxwell-Garnett方程计算出的理论值相符;而当BaTiO_3体积分数大于30%时,复合材料的介电常数随BaTiO_3体积分数增加而下降,与Bruggemant方程计算理论值不相符。这是因为随着BT的含量的增加,PVDF不能很好结晶,复合厚膜的微观结构也出现较大孔洞,材料彻底失去弹性。在渗流阈值(f_(AB)=3.3%)附近,PVDF/BT(f_(BT)=30%)/AB复合厚膜的介电常数达到了652,是PVDF/BT基体的40多倍,是PVDF基体的90多倍。
     使用硅烷偶联剂KH550对BaTiO_3粒子表面处理,能有效解决BaTiO_3粒子在前驱体悬浊液中的沉降导致复合厚膜中BaTiO_3粒子分布不均和不稳定的问题,一定程度上改善了纳米BaTiO_3粒子的团聚现象,可以提高PVDF/BT/AB复合厚膜的介电常数。
With fast development of the electronic equipment, high-performance capacitors call for smaller size and multi-function. And the flexible composites with a high dielectric constant have a great future in the electronic industry field. The composites may be used to prepare a shape-bend mutilayer chip capacitors. Therefore, it is very significant for improving the dielectric constant of the composites.
    According to the percolation theory, as for the conductor/polymer composites, when the volume fraction of the conductor is close to the percolation threshold, the dielectric constant of such material will undergo a nonlinear transition and increases sharply. Therefore, it is meaningful to use the percolation theory to prepare the material with high dielectric constant.
    The microstructure and dielectric constant of composite films were studied, which were made of polymer matrix, such as polyvinylene fluoride (PVDF) or PVDF/BaTiO_3 (BT) , and cheap conductor filler, such as acetylene black (AB). PVDF/AB composite film, PVDF/BaTiO_3 composite film, and PVDF/ BaTiO_3/AB composite film were prepared by using dip-coating method with N,N-dimethyllformamide (DMF) as solvent. Phase structures and morphologies of the composite films were characterized by X-ray diffraction and Field Emission-Scan Electron Microscopy (FE-SEM) respectively. The dielectric properties of samples were measured using Agilent 4294A precision impedance analyzer in the frequency range of 100 Hz -10 MHz at room temperature.
    The experimental results reveal that, as for PVDF films, at lower heat treatment temperature (60°C) ,β-PVDF forms, and its dielectric constant is relatively higher; while, at higher heat treatment temperature (100°C), α-PVDF forms, and its dielectric constant is relatively lower. And the time for heat treatment has no effect on the crystalline phase formation, crystalline content and dielectric property of the PVDF film. As for PVDF/AB composite film, when AB volume fraction is close to the percolation threshold (f=1.3%), the dielectric constant of PVDF/AB composite film reach about 56, which is 7-8 times higher than that of PVDF film. Due to the long
    chain structure of AB particles, the percolation threshold (f_c=1.3%) of PVDF/AB film is much lower than the typical one (f_c=16%), which ensures the excellent flexibility and processing property. In addition, due to the existence of amorphous state, the dielectric loss of PVDF/AB film is below 0.15, when AB volume fraction is close to the percolation threshold. The fact that, dielectric constant of PVDF/AB film is independent of low frequency, shows no space charge polarization occurs.
    The experimental results also show that, when BaTiO_3 volume fraction is 30%, the dielectric constant of PVDF/ BaTiO_3 composite film is highest. When BaTiO_3 volume fraction is lower than 30%, the variation of dielectric constant of PVDF/ BaTiO_3 film with BaTiO_3 volume fraction is in good agreement with the data calculated by Maxwell-Garrett equation; when BaTiO_3 volume fraction is higher than 30%, the variation of dielectric constant of PVDF/BaTiO_3 film with BaTiO_3 volume fraction is not in agreement with the data calculated by Bruggemant equation. This is because when BaTiO_3 volume fraction is higher than 50%, the crystallinity of PVDF is low and the film quality deceases. When AB volume fraction is close to the percolation threshold (f=3.3%), the dielectric constant of PVDF/BaTiO_3/AB composite film reach about 652, which is 90 times higher than that of PVDF film and 40 times higher than that of PVDF/BT film.
    The problem of BaTiO_3 precipitation is solved by surface treating of BT particles using KH550. This method can not only solve the BT aggregation problem, but also enhance the dielectric constant of PVDF/BT/AB composite films.
引文
[1] 殷之文,《电介质物理学》,科学出版社,(2003),第二版。
    [2] 李宗全,陈湘明,《材料结构与性能》,浙江大学出版社,(2001),第一版。
    [3] 汤佩钊,《复合材料及其应用技术》,重庆大学出版社,(1998),第一版。
    [4] 李杰,韦平,汪根林,江平开,高介电复合材料及介电性能的研究,绝缘材料,(2003),5,3-6。
    [5] 党智敏,王海燕,彭勃,雷清泉,高介电常数的聚合物基纳米复合电介质材料,中国电机工程学报,(2006),26,(15),100-104.
    [6] Dang Z.-M., Shen Y., and Nan C.-W., Dielectric behavior of three-phase percolative Ni-BaTiO_3/polyvinylidene fluoride composites, Applied Physics Letters, (2002), 81, 4814-4816.
    [7] Nan C.-W., Comment on "Effective dielectric function of a random medium", Phys. Rev. B, (2001), 63, 176201-1.
    [8] Doyle W T, Jacobs I S, Effective cluster model of dielectric enhancement in metal-insulator composites, Phys. Rev. B, (1990), 42(15), 9319-9327.
    [9] Doyle W T, Jacobs I S, The influence of particle shape on dielectric enhancement in metal-insulator composites, J. Appl. Phys., (1992), 71(8), 3926-3936.
    [10] Jayasundere N, Smith B V., Dielectric constant for binary piezoelectric 0-3 composites, J. Appl. Phys., (1993), 73(5), 2462-2466.
    [11] 黄兴溢,柯清泉,江平开,韦平,汪根林,颗粒填充聚合物高介电复合材料,高分子通报,(2006),12,39-45。
    [12] Kawai H., Piezoelectric Effect in Polarized poly (vinylidene-fluoride), Jpn. J. Appl. Phys, (1969), 8, 975.
    [13] Bergman J. G., Jr., McFee J. H., Crane G. R., Pyroelectricity and optical second harmonic generation in polyvinylidene fluoride films. Appl. Phys. Lett., (1971), 18(5), 203-205.
    [14] Nakamura Kenichi, Wada Yasaku, Piezoelectricity, pyroelectricity, and the electrostriction constant of poly(vinylidene fluoride). J. Polym. Sci.,(1971), 9(1), 161-173.
    [15] Lovinger Andrew J., Davis G. T., Furukawa T., Broadhurst M. G., Crystalline forms in a copolymer of vinylidene fluoride and trifluoroethylene, Macromolecule, (1982), 15, 323-238.
    [16] Zhang Q. M., Bharti Vivek, Zhao X., Giant electrostdction and relaxor ferroelectdc behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer, Science,(1998), 280, 2101-2104.
    [17] 李吉超,王春雷,钟维烈,薛旭艳,王渊旭,聚偏氟乙烯β相全反式结构链的第一性原理计算,物理学报,(2002),51(4),776-781.
    [18] Bachmann M., Gordon W. L., The crystal structure of phase Ⅳ of poly(vinylidene fluoride), J. Appl. Phys.,(1980), 51(10), 5095-5099.
    [19] Bachmann M. A., Lando J. B., A reexamination of the crystal structure of phase Ⅱ of poly(vinylidene fluoride), Macromolecule, (1981), 14, 40-46.
    [20] Lando J. B., Olf H. G., Peterlin A., Nuclear magnetic resonance and x-ray determination of the structure of poly(vinylidene fluoride), J. Polym. Sci., (1966), 4(4), 941-951.
    [21] Hasegawa R., Kobayashi M. and Tadokoro H., Molecular Conformation and Packing of Poly(vinylidene Fluoride) Stability of Three Crystalline Forms and the Effect of High Pressure, Polym. J., (1972), 3, 591-99.
    [22] Hasegawa R., Takahashi Y., Chatam Y., Crystal Structures of Three Crystalline Forms of Poly(vinylidene Fluoride), Polymer J., (1972), 3, 600-609.
    [23] Takagi Y., Ferroelectricity and Antiferroelectricity of a Crystal Containing Rotatable Polar Molecules, Phys. Rev., (1952), 85, 315-324.
    [24] Banno H, Ogura K. Piezoelectric properties of 0-3 composite of polymer and ceramic powder mixture of PZT and PbTiO_3, Jap. J. Appl. Phys, (1991), 30(9B), 2247-2249.
    [25] David L, Winsor. J., Polym. Sci, Part B, (1996), 34, 2967-2977.
    [26] Davis G. T., McKinney J. E., Broadhurst M. G.. Electric-field-induced phase changes in poly (vinylidene fluoride), J. Appl. Phys., (1978), 49(10), 4998-5002.
    [27] 殷敬华,莫志深,《现代高分子物理学》,第六章,北京,科学技术出版社,(2001):155-182。
    [28] Lovinger Andrew J., Crystallization of the β phase of poly(vinylidene fluoride) from the melt, Polym.,(1981), 22(3), 412-413.
    [29] Gregorio Rinaldo, Jr., Cestari Marcelo, Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride), J. Polym. Sci. Part. B,(1994), 32(5), 859-870.
    [30] 傅万里,杜丕一,翁文剑,韩高荣,聚偏氟乙烯压电厚膜的制备及结构,材料研究学报,(2005),19(3):243-248。
    [31] Matsushige Kazumi, Takemura Tetuo, Melting and crystallization of poly(vinylidene fluoride) under high pressure, J. Polym. Sci, Polymer Physics Edition,(1978), 16(5), 921-934.
    [32] Hattori Takeshi, Hikosaka Masamichi, Ohigashi Hiroji, The crystallization behaviour and phase diagram of extended-chain crystal of poly(vinylidene fluoride) under high pressure, Polym., (1996), 37(1), 85-91.
    [33] Tashiro Kohji, Takano Kohji, Kobayashi Masamichi, Chatani Yozo, Tadokoro Hiroyuki., Phase transition at a temperature immediately below the melting point of poly(vinylidene luoride) from Ⅰ, A proposition for the ferroelectric cure point, Polym., (1983), 24(2), 199-204.
    [34] Huang Jin H., Nan Ce Wen, Li, Rui-Mu Micromechanics approach for effective magnetostriction of composite materials, J. Appl. Phys.,(2002), 91(11), 9261-9266.
    [35] Lisunova M. O., Mamunya Ye. P., Lebovka N. I., Melezhyk A. V., Percolation behavior of ultrahigh moleculear weight polyethylene/multi-walled carbon nanotubes composites, European Polymer Journal, (2007), 43(3), 949-958.
    [36] Pecharroman C. and Moya J. S., Experimental evidence of a giant capacitance in insulator-conductor composites at the percolation threshold, Adv. Mater., (2000), 12(4), 294-297.
    [37] 王建国,分形及渗流理论在材料科学中的应用,深圳大学学报(理工版),(1990),7,86-96.
    [38] Kittel Charles, Physical theory of ferromagnetic domains, Rev. Mod. Phys., (1949), 21(4), 541-583.
    [39] 黄集权,杜丕一,翁文剑,韩高荣,超高介电常数钛酸钡/乙炔黑复相材料的制备研究,无机材料学报,(2005),20(5),1106-1112。
    [40] 南策文,《非均质材料物理—显微结构—性能相关》,第五章,北京科学出版社,(2005),101-107.
    [41] Bergman D. J. and Imry Y., Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material, Phys. Rev. Lett.,(1977), 39(19), 1222-1225.
    [42] Dang Zhi-Ming, Nan Ce-Wen, Xie Dan, Zhang Yi-He, Tjong S. C., Dielectric behavior and dependence of percolation threshold on the conductivity of fillers in polymer-semiconductor composites, Appl. Phys. Lett., (2004), 85(1), 97-99.
    [43] 黄集权,洪兰秀,韩高荣,翁文剑,杜丕一,Fe-Ni-BaTiO_3复合陶瓷材料的介电行为及其机理研究,物理学报,(2006),55(7),3664-3669。
    [44] Wang, L Dang, Z. M. Carbon nanotube composites with high dielectric constant at low percolation threshold, Appl. Phys. Lett., (2005), 87(4), No. 042903.
    [45] Bai Y., Cheng Z. Y., Bharti V., Xu H. S., Zhang Q. M., High-dielectric-constant ceramic-powder polymer composites, Appl. Phys. Lett.,(2000), 76(25), 3804-3806.
    [46] Pecharroman C. and Esteban-Betegon Fatima, New Percolative BaTiO_3-Ni Composites with a High and Frequency-Independent Dielectric Constant, Adv. Mater.,(2001), 13(20), 1541-1544.
    [47] Dang Z. M., Fan L. Z., Shen Y. and Nan C. W., Study on dielectric behavior of a three-phase CF/(PVDF+BaTiO_3) composite, Chem. Phys. Lett.,(2003), 369, 95-100.
    [48] Nan C. W., Physics of inhomogeneous inorganic materials, Prog. Mater. Sci.,(1993), 37, 1-116.
    [49] 王玉成,傅成义,导电体与绝缘体复相陶瓷中的渗流现象,武汉理工大学学报,(2001),23(2),29-31。
    [50] Kirkpatrick S., Percolation and conduction, Rev. Mod. Phys., (1973), 45(4), 574-588.
    [51] 南策文,陈新政,Ti-Al_2O_3金属陶瓷的渗流模型,物理学报,(1987),36(4),511-513.
    [52] Harris A. B., Fisch R., Critical behavior of random resistor networks, Phys. Rev. Lett.,(1977), 38(15), 796-799.
    [53] Webman I., Jortner J., Cohen M. H., Critical exponents for percolation conductivity in resistor networks, Phys. Rev. B,(1977), 16(6), 2593-2596.
    [54] Webman I., ortnerJ. J, Cohen M. H., Numerical simulation of electrical conductivity in microscopically inhomogeneous materials, Phys. Rev. B,(1975), 11(8), 2885-2892.
    [55] Last B. J. and Thouless D. J., Percolation theory and electrical conductivity, Phys. Rev. Lett., (1971), 27(25), 1719-1721.
    [56] Fisch R., Harris A. B., Critical behavior of random resistor networks near the percolation threshold, Phys. Rev. B,(1978), 18(1), 416-420.
    [57] Saeed Khalid, Park, Soo-Young Preparation and properties of multiwalled carbon nanotube/polycaprolactone nanocomposites, Journal of Applied Polymer Science, (2007), 104, 1957-1963
    [58] Wu Defeng, ZhouChixing, Zhang Ming, Rheology of isothermally crystallized poly (butylene terephthalate) nanocomposites with clay loadings under the percolation threshold, Polym. Sci.: Part B, (2007), 45, 229-238.
    [59] Sachdev V. K., Panwar Varij, Singh H., Mehra N. C., Mehra R. M., Study of prelocallized graphite/styrene acrylonitrile conducting composites for device applications, Phys. Stat. Sol., (2006), 203(2), 386-396.
    [60] Alvarez M. P., Poblete V. H., Pilleux M. E., Fuenzalida V. M., Submicron copper-low-density polyethylene conducting composites: structural, electrical, and percolation threshold, Journal of Applied Polymer Science,(2006), 99, 3005-3008
    [61] Qi Lai, Lee Burtrand I., Samuels William D., Exarhs Gregory J., Parler Sam G., Jr., Three-phase percolative silver-BaTiO_3-epoxy nanocomposites with high dielectric constants, Journal of Applied Polymer Science,(2006), 102, 967-971.
    [62] Dang Z. M. Wu J. -B., Fan L. -Z., Nan C. -W., Dielectric behavior of Li and Ti co-doped NiO/PVDF composites, Chem. Phys. Lett., (2003), 376, 389-394.
    [63] Sandlund L., Fahlander M., Cedell T., Clark A. E., REstorff J. B., Wun-Fogle M., Magnetostriction, elastic moduli, and coupling factors of composite terfenoi-D, J. Appl. Phys., (1994), 75(10), 5656-5658.
    [64] Scher H., Zallen R., Critical density in percolation processes, J. Chem. Phys,(1970), 53, 3759.
    [65] Callen H. E., Goldberg N., Magnetostriction of polycrystalline aggregates, J. Appl. Phys., (1965), 36(3), 976-977.
    [66] Li Yun-Jia, Xu Man, Feng Jun-Qiang, Dielectric behavior of a metal-polymer composite with low percolation threshold, Appl. Phys. Lett., (2006), 89, 072902.
    [67] 南策文,张联盟,袁润章,功能梯度材料中的渗流现象,硅酸盐学报,(1993),21(3),272-274.
    [68] 党智敏,高介电无机/有机复合材料的研究,博士后研究报告,(2003),北京:清华大学。
    [69] Dang Zhimin, Lin Yuanhua, Nan Cewen, Novel ferroelectric polymer composite with high dielectric constant, Adv. Mater., (2003), 15(19), 1625-1629.
    [70] Huang Jiquan, Du Piyi, Hong Lanxiu, Dong Yanling, Hong Maochun, A percolative ferromagnetic-ferroelectric composite with significant and magnetic properties, Adv. Mater., (2007), 19, 437-440.
    [71] 高彦峰,王秀峰,罗宏杰,功能梯度材料中的渗流现象及其模型研究,(2000),12:10-12。
    [72] 王建国,分形及渗流理论在材料科学中的应用,深圳大学学报(理工版),(1990),7(1-2),86-96。
    [73] Li Ying, Wang Shifeng, Zhang Yong, Zhang Yinxi, Carbon black-filled immiscible polypropylene/epoxy blends, Journal of Applied Polymer Science, (2006), 99, 461-471.
    [74] Umar Abdurakhmanov, Shamil Sharipov, Yayra Rakhimova, Munira Karabaeva, Maksudbek Baydjanov, Conductivity and permittivity of nickel-nanoparticle-containing ceramic materials in the vicinity of percolation threshold,(2006), 89(9), 2946-2948.
    [75] Devaraju Naga Gopi, Lee Burtrand I., Dielectric behavior of three phase polyimide percolative nanocomposites, Journal of Applied Polymer Science,(2006), 99, 3018-3022.
    [76] Shi Sui-Lin, Liang Ji, Effect of multiwali carbon nanotubes on electrical and dielectric properties of yttria-stabilized zirconia ceramic, J.Am.Ceram.Soc, (2006), 89(11), 3533-3535.
    
    [77] Zhu Dan, Bin Yuzhen, Matsuo Masaru, Electrical conducting behaviors in polymeric composites with carbonaceous fillers, J. Polym.Sci.: Part B, (2007), 45,1037-1044.
    
    [78] Antonucci Vincenza, Faiella Gabriella, Giordano Michele, Nicolais Luigi, Pepe Gianpiero, Electriical properties of single walled carbon nanotube reinforced polystyrene composites, Macromol. Symp., (2007), 247,172-181.
    
    [79] Sichel E.K., "Carbon black-polymer composites", Marcel Dekker, New York, (1982).
    
    [80] Brosseau Christian, Queffelec Patrick, Tabot Philippe, Microwave characterization of filled polymers, J. Appl. Phys., (2001), 89 (8),4532-4540.
    
    [81] Zheng Qiang, Song Yihu, Wu Gang, Song Xubing, Relationship between the positive temperature coefficient of resistivity and dynamic rheological behavior for carbon black- filled high-density polyethylene, J.Polym.Sci.Part B, (2003), 41,983-992.
    
    [82] Thompson Russell B., Ginzburg Valeriy V., Matsen Mark W., Balazs Anna C, Predicting the mesophases of copolymer-nanoparticle composites, Science, (2001), 292,2469-2472.
    
    [83]Etienne S., Stochmil C, Bessede. J.L., Dielectric properties of polymer-based microhrterogeneous insulator, J.Alloys Compounds, (2000), 210,368-373.
    
    [84] Chen Wenming, Yuan Yang, Yan Lifeng, Preparation of organic/inorganic nanocomposites with polyacrylamide (PAM) hydrogel by ~(60)Co Y irradiation, Mater.Res.Bull., (2000), 35(5), 807-812.
    
    [85] Srivastava N.K., Sachdev V.K., Mehra R.M., Investigation of electrical and dielectric properties of prelocalized graphite/poly (vinyl chloride) composites near the percolation threshold, Journal of Applied Polymer Science, (2007), 104, 2027-2033.
    
    [86] Zhou Ping, Yu Wei, Zhou Chixing, Liu Feng, Hou Liming, Wang Jun, Morphology and electrical properties of carbon black filled LLDPE/EMA composites, Journal of Applied Polymer Science, (2007), 103,487-492.
    
    [87] Nam Young Wan, Kim Woo Nyon, Cho Yong Han, Chae Dong Wook, Kim Gwang Ho, Hong Seung Pyo, Hwang Seung Sang, Hong Soon Man, Morphology and Physical properties of binary blend based on PVDF and multi-walled carbon nanotube, Macromol. Symp., (2007), 249-250,478-484.
    
    [88] Chen Zhe, Brokken-Zijp Jose C.M., Michels M.A.J., Novel phthalocyanine crystals as a conductive filler in crosslinked epoxy materials: fractal particle networks and low percolation thresholds, J. Polym.Sci.:Part B, (2006), 44,33-47.
    
    [89] Jin Xin, Xiao Changfa, An Shulin, Jia Guangxia, Percolation threshold of electrically conductive master batch for polyester fibers application, Journal of Applied Polymer Science, (2006), 102,4144-4148.
    [90] Chan H. L .W., Cheung M. C, Choy C. L., Study on BaTiO_3/P(VDF-TrFe)0-3 composite, Ferroelectrics, (1999), 224,113-120.
    [91] Daben Y., Composite piezoelectric film made from PVDF polymer and PCM-PZT ferroelectric ceramics, Ferroelectrics, (1990), 101,291-296.
    
    [92] Das-Gupta D.K., Pyroelectricity in polymers, Ferroelectrics, (1991), 118,165-189.
    [93] Ngoma J.B., Cavaille J.Y., Paletto J., Perez J., Macchi F., Dielectric and piezoelectric properties of copolymer-ferroelectric composite, Ferroelectrics, (1990), 109, 205-210.
    [94] Banno H., Ogura K., Theoretical equations for dielectric, piezoelectric and elastic properties of flexible composite consisting of two different materials, Ferroelectrics, (1989), 95,111-115.
    [95] Xu J W, Wong C P, Low-loss percolative dielectric composite, Appl. Phys. Lett., (2005) ,87 (8), No. 082907.
    [96] Qi Lai, Lee Burtrand I., Chen Si hai I, Samuels William D., Exarhos.Gregory J., High-Dielectric-Constant Silver-Epoxy Composites as Embedded Dielectrics, Adv. Mater., (2005), 17(14), 1777-1781.
    [97] Nagata Kazuya, Kodama Souji, Kawasaki Hitoshi, Deki Shigehito, Mizuhata Minoru, Influence of polarity of polymer on inorganic particle dispersion in dielectric particle/polymer composite systems, J. Appl. Polym. Sci., (1995), 56(10), 1313-1321.
    [98] Huang Cheng, Zhang Q. M., Su Ji, High-dielectric-constant all-polymer percolative composites, Appl. Phys. Lett., (2003), 82 (20), 3502-3504.
    [99] Kuo Dong-Hau, Chang Chien-Chih, Su Te-Yeu, Wang Wun-Ku, Lin Bin-Yuan, Dielectric behaviours of multi-doped BaTiO_3/epoxy composites, J. Eur. Ceram.Soc., (2001), 21(9),1171-1177.
    [100] Bhattacharya S. K ., Tummala R. R., Integral passives for next generation of electronic packing, application of epoxy/ceramic nanocomposites as integral capacitors, Microelectronics Journal, (2001), 32(1),11-19.
    [101] Kim Bumsuk, Lee Jongjin, Yu Insuk, Electrical properties of single-wall carbon nanotube and epoxy composiyes, J. Appl. Phys., (2003), 94(10), 6724-6728.
    [102] Yu D. M., Wu J. S., Zhou L. M., Xie D. R., Wu S. Z., The dielectric and mechanical properties of a potassium-titanate-whisker-reinforced PP/PA blend, Comp. Sci. Tech., (2000), 60(4), 499-508.
    [103] Zhang Q. M., Li H. F., Poh M., Xia F., Cheng Z. Y., Xu H. S., Huang C., An all-organic composite actuator material with a high dielectric constant, Nature,(2002), 419, 284-287.
    [104] Taguchi Yoshinari, Saito Natsukaze, Kimura Isao, Tanaka Masato, Preparation of fine composite particles composed of inorganic solid powders and organic polymers by utilizing liquid-liquid dispersion, Colloids Surfaces A, Physiochem. Eng. Aspects, (1999), 153, 401-404.
    [105] Li Jun Rong, Xu Jia Rui, Zhang Ming Qiu, Rong Min Zhi, Electrical response to organic vapor of conductive composites from amorphous polymer/carbon black prepared by polymerization filling, Macromolecular Materials and Engineering,(2003), 288(2), 103-107.
    [106] Kalaitzidou Kyriaki, Fukushima Hiroyuki, Drzal Lawrence T., A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold, Composites science and technology, (2007), 67(10), 2045-2051.
    [107] Li Jing, Kim Jang-Kyo, Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets, Composites science and technology, (2007), 67(10), 2114-2120.
    [108] Zhou Zhen, Wang Shifeng, Lu Lan, Zhang Yong, Zhang Yinxi, Preparation and rheological characterization of poly(methyl methacrylate)/functionalized multi-walled carbon nanotubes composites, Composites science and technology, (2007), 67(9), 1861-1869.
    [109] Chen Li, Pang Xiujiang, Yu Zoulong, Study on polycarbonate/multi-walled carbon nanotubes composite produced by melting process, Materials Science and Engineering, A, (2007), 457(1-2), 287-291.
    [110] Xu Hai-ping, Dang Zhi-min, Electrical properties and microstructure analysis of poly(vinylidene fluoride)-based composites with different conducting fillers, Chemical Physics Letters, (2007), 438(4-6), 196-206.
    [111] Dalmas FIorent, Cavaille Jean-Yves, Gauthier Catherine, Chazeau Laurent, Dendievei Remy, Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites, Composites science and technology, (2007), 67(5), 829-839.
    [112] 何曼君,陈维孝,董西侠,《高分子物理》,第二章,复旦大学出版社,(2005),46。
    [113] Chen Qian, Du Piyi, Huang Wenyan, Jin Lu, Weng Wenjian, Han Gaorong, Ferrite with extraordinay electric and dielectric properties prepared from self-combustion technique, Applied Physics Letters, (2007), 90(13), 132907.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700