交互式屏幕共享的低复杂度压缩和低延时传输方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着个人电脑、智能手机和智能电视机等数字设备的发展,融合多个数字设备,以获得更好的用户体验的需求逐渐增加。而交互式计算机屏幕共享技术就是实现这种需求的一种重要技术。本文对于交互式屏幕共享中的一些关键技术进行了研究。交互式计算机屏幕共享需要做到以很低的端到端延时实现屏幕内容共享。一方面,这需要做到低复杂度的屏幕编解码,另一方面,这需要实现低延时传输。本文对于这两个方面进行了研究。此外,万维网上广泛存在的复合图像,是一种特殊类型的计算机屏幕内容,但是有着不同的需求和处理方法,因此本文也做了相应研究。最后,基于对交互式计算机屏幕共享的研究,本文提出多设备协作的浏览器系统以改善客厅环境中的网页浏览体验。
     具体而言,本文的研究工作和创新之处包括以下方面。
     首先,针对交互式屏幕共享对于压缩算法的需求,本文提出了一种基于块的低复杂度计算机屏幕序列压缩方法。这个方法通过检测相邻帧之间相同内容的区域来进行帧间编码,而将其余部分分类为图像块和文本块进行帧内编码。块分类算法利用了图像内容和文本内容的块级别的统计特性。本文设计了一种低复杂度并且有效的文本块压缩算法,包括量化方法和熵编码方法。实验结果显示,这个方法编码720P图像的时间小于30ms,同时在编码典型的屏幕图像时获得了与JPEG2000和X264帧内编码可比或者更高的编码效率(甚至高达13~15dB),并且有更好的视觉质量。此外,与X264相比,本文方法在压缩阅读文档等典型的屏幕序列时最低只产生了其32%的比特率。
     其次,万维网上的复合图像是一种特殊的屏幕内容,本文描述了一种浏览器友好的复合图像编码器以应对它们区别于一般屏幕内容的需求。这里首先提出一种简单而有效的块分类方法将编码块分类为图像块和文本块,进而将原始图像分为图像层和文本层。接下来提出有效的量化方法等对文本层内容进行预处理,然后采用PNG作为熵编码方法。由于图像层和文本层具有不同的量化方法和量化步长,这里提出了联合质量控制方法来平衡二者的量化误差。测试结果显示,本文提出的方法在压缩效率方面比JPEG2000高最多达16dB,大幅优于JPEG和PNG,而且在视觉质量方面的性能优于JPEG, JPEG2000和DjVu。
     再次,本文研究了计算机屏幕的低延时传输方法,以满足用户对于屏幕共享系统的交互性需求。本文首先提出了一种低延时传输框架。接下来,分析了视频编码方法和屏幕编码方法的差异,并在此基础上分析了屏幕传输中采用不同传输差错控制方法所导致的延时。最后,提出了一种改进的ARQ方法以降低传输延时。实验结果表明,本文方法的延时比RDP等广泛使用的计算机屏幕共享系统低40%~70%。
     最后,基于对交互式计算机屏幕共享技术的研究,本文提出了一种多设备协作浏览系统来改善网页浏览体验。本文首先提出了一种基于代理服务器的瘦客户端网页浏览器框架,并且以这个相同的框架支持PC、移动设备和智能电视机上的丰富体验的网页浏览。接下来,本文设计了一种基于智能手机的触屏控制器,并且提出了一种可伸缩屏幕编码方法使得可以在单一码流中支持控制器和浏览器对于网页图像压缩的不同需求。最后,本文提出了一种浏览进程迁移机制以充分发挥多种设备的优势,这个方法可以保持迁移过程中网页内容的连续性。测试结果表明,首先,基于瘦客户端浏览器框架的手机浏览器的载入延时只有IE Mobile的1/4,同时有较低的网络带宽占用和比Skyfire更好的视觉质量;其次,可伸缩编码方法所带来的编码效率和编码复杂度方面的额外开销很小,可以忽略;最后,网页浏览进程迁移方法可以在最多0.8秒内实现浏览内容连续的浏览进程迁移。
With the fast development of the digital devices, such as PC, smart phone and smart TV, the requirement to combine multiple devices to achieve excellent user experience is increasing. Interactive screen sharing is a technology to fulfill such requirements. Some key technologies of interactive screen sharing are studied in this paper. Extremely low end-to-end latency is required in interactive screen sharing systems. Therefore, the screen compression algorithms with very low complexity, as well as the low-latency screen transmission methods are required. These two aspects are studied in this paper. In addition, the compound images spread over the World Wide Web can be considered as a special type of the computer screen. However there are some different requirements of them from the screen. Thus the compression method of such images is studied in this paper. What's more, based on the work about interactive screen sharing, a multi-device cooperative browsing system is proposed to improve the web experience in living room.
     First, interactive screen sharing systems require low-complexity screen compres-sion method. This paper presents a block-based screen compression method. The iden-tical regions between two successive frames are detected for inter-frame coding, and the rest of the frame is classified as pictorial blocks and textual blocks for intra-frame coding. The block classification method utilizes the block-level statistical features. We propose a low-complexity and efficient textual block compression method, including a quantization method and an entropy-coding method. Experimental results show that this codec can encode a720P image within30ms. It achieves comparable or higher (by at most13~15dB) coding efficiency than JPEG2000and X264intra coding on typical screen images, while it achieves better visual quality. Besides, it only consumes about32%bits of X264when compressing the sequence of reading a document.
     Second, the compound images spread over the World Wide Web can be considered as a special type of screen content. This paper proposes a browser-friendly compound image compression method. A simple and efficient classification method is proposed to classify the blocks as pictorial blocks and textual blocks. The compound image is then s-plit into two layers, a pictorial layer and a textual layer, based on the block-classification result. The textual layer is preprocessed with proposed quantization scheme, followed by PNG as entropy coder. A joint quality control method is proposed to balance the quantization errors of the pictorial layer and the textual layer. The evaluation results show that the codec outperforms JPEG2000by at most16dB in coding efficiency, and its visual quality is better than JPEG, JPEG2000and PNG at the same time.
     Third, this paper studies the low-latency screen transmission method to achieve in-teractive screen sharing. A low-latency transmission framework is proposed first. Then the latency caused by different transmission error control methods in screen sharing s-cenario is analyzed. An improved ARQ method is proposed to decrease the latency. The experimental results show that the latency of the proposed method is lower than the popular screen sharing systems, such as RDP, by40%-70%.
     Finally, this paper proposes a multi-device cooperative browsing system based on our work about interactive screen sharing. A proxy-based thin-client browser frame-work is presented, which enables full-feature web browsing in the devices of TV and mobile browser. A touch controller based on smart phone for TV browser is then p-resented, and a scalable screen compression scheme is proposed to provide multiple screen resolutions and frame rates in single bit stream. To leverage the strength of multiple devices, a browsing session migration scheme is proposed, and the browsing states can be fully preserved. The evaluation results show that the page-loading laten-cy of the thin-client-based mobile browser is about1/4of IE Mobile, and it consumes less bandwidth and provides better visual quality against Skyfire. Also the overhead of compression efficiency and complexity from scalable coding is ignorable. Besides, the browsing session can be migrated among different devices seamlessly within0.8s, while the web browsing experience is not broken down during migration.
引文
[1]Lu Y, Li S, Shen H. Virtualized Screen:A Third Element for Cloud-Mobile Convergence. Multimedia, IEEE, 2011,18(2).
    [2]Microsoft Remote Desktop Protocol. Online:http://fastflip.googlelabs.com/,2010.
    [3]Chen Y, Farley T, Ye N. QoS Requirements of Network Applications on the Internet. Information, Knowledge, Systems Management,2004,4(1):55-76.
    [4]Scheifler R W, Gettys J. The X Window System. ACM Transactions on Graphics,1986,5(2):79-109.
    [5]Microsoft Remote Desktop Protocol. Online:http://msdn.microsoft.com/en-us/library/aa383015.aspx,2010.
    [6]Richardson T, Stafford-Fraser Q, Wood K R, et al. Virtual Network Computing. IEEE Internet Computing, 1998,2(1):33-38.
    [7]Baratto R A, Kim L N, Nieh J. THINC:a virtual display architecture for thin-client computing. SIGOPS Oper. Syst. Rev.,2005,39:277-290.
    [8]Mixed Raster Content (MRC). ISO/IEC 16485,2005.
    [9]Queiroz R, Buckley R, Xu M. Mixed raster content (MRC) model for compound image compression. Proc. IS&T/SPIE Symp. on Electronic Imaging, Visual Communications and Image Processing, volume 3653. Cite-seer,1999.1106-1117.
    [10]Queiroz R L. Compression of compound documents. Image Processing,1999. ICIP 99. Proceedings.1999 International Conference on, volume 1. IEEE,1999.209-213.
    [11]Haffner P, Howard P G, Simard P, et al. High quality document image compression with "DjVu". Journal of Electronic Imaging,1998,7(3):410-425.
    [12]Huttenlocher D, Felzenszwalb P, Rucklidge W. Digipaper:a versatile color document image representation. Image Processing,1999. ICIP 99. Proceedings.1999 International Conference on, volume 1. IEEE,1999. 219-223.
    [13]De Queiroz R, Fan Z, Tran T. Optimizing block-thresholding segmentation for multilayer compression of compound images. Image Processing, IEEE Transactions on,2000,9(9):1461-1471.
    [14]Zaghetto A, Queiroz R L. Iterative pre-and post-processing for MRC layers of scanned documents. Image Processing,2008. ICIP 2008.15th IEEE International Conference on. IEEE,2008.1009-1012.
    [15]Zaghetto A, De Queiroz R L. Improved layer processing for MRC compression of scanned documents. Image Processing (ICIP),2009 16th IEEE International Conference on. IEEE,2009.1993-1996.
    [16]Feng G, Cheng H, Bouman C. High quality MRC document coding, in Proc. Image Processing, Image Quality, Image Capture Systems Conference. Citeseer,2001.
    [17]Feng G, Bouman C A. High-quality MRC document coding. Image Processing, IEEE Transactions on,2006, 15(10):3152-3169.
    [18]Lin T, Hao P. Compound image compression for real-time computer screen image transmission. Image Processing, IEEE Transactions on,2005,14(8):993-1005.
    [19]Said A, Drukarev A. Simplified segmentation for compound image compression. Image Processing,1999. ICIP 99. Proceedings.1999 International Conference on, volume 1. IEEE,1999.229-233.
    [20]Said A. Compression of compound images and video for enabling rich media in embedded systems. SPIE Proc. of VCIP,2004.69-82.
    [21]Ding W, Liu D, He Y, et al. Block-based fast compression for compound images. Multimedia and Expo,2006 IEEE International Conference on. IEEE,2006.809-812.
    [22]Li X, Lei S. Block-based segmentation and adaptive coding for visually lossless compression of scanned documents. Image Processing,2001. Proceedings.2001 International Conference on, volume 3. IEEE,2001. 450-453.
    [23]Juliet S E, Florinabel D J. Efficient block prediction-based coding of computer screen images with precise block classification. IET Image Processing,2011,5(4):306-314.
    [24]Francisco N, Rodrigues N, Silva E, et al. Scanned compound document encoding using multiscale recurrent patterns. Image Processing, IEEE Transactions on,2010,19(10):2712-2724.
    [25]Ding W, Lu Y, Wu F. Enable efficient compound image compression in H.264/AVC intra coding. Image Processing,2007. ICIP 2007. IEEE International Conference on, volume 2. IEEE,2007. II-337.
    [26]Lan C, Shi G, Wu F. Compress compound images in H.264/MPGE-4 AVC by exploiting spatial correlation. Image Processing, IEEE Transactions on,2010,19(4):946-957.
    [27]Zaghetto A, De Queiroz R L. Using H.264/AVC-Intra for Segmentation-Driven Compound Document Cod-ing. Image Processing,2007. ICIP 2007. IEEE International Conference on, volume 2. IEEE,2007.11-333.
    [28]Zaghetto A, De Queiroz R L. Segmentation-driven compound document coding based on H.264/AVC-INTRA. Image Processing, IEEE Transactions on,2007,16(7):1755-1760.
    [29]Zaghetto A, Queiroz R L, Mukherjee D. MRC compression of compound documents using threshold segmen-tation, iterative data-filling and H.264/AVC-INTRA. Computer Vision, Graphics & Image Processing,2008. ICVGIP'08. Sixth Indian Conference on. IEEE,2008.679-686.
    [30]Zaghetto A, Queiroz R L. High quality scanned book compression using pattern matching. Image Processing (ICIP),2010 17th IEEE International Conference on. IEEE,2010.2165-2168.
    [31]Wang S, Lin T. United coding for compound image compression. Image and Signal Processing (CISP),2010 3rd International Congress on, volume 2. IEEE,2010.566-570.
    [32]W3C. Graphics Interchange Format, Version 89a.1990.
    [33]Information technology-Computer graphics and image processing-Portable Network Graphics (PNG): Functional specification. ISO/IEC 15948:2003 (E),2003.
    [34]Langdon G, Rissanen J. Compression of black-white images with arithmetic coding. Communications, IEEE Transactions on,1981,29(6):858-867.
    [35]Moffat A. Two-level context based compression of binary images. Data Compression Conference,1991. DCC'91. IEEE,1991.382-391.
    [36]Boncelet Jr C G. Block arithmetic coding for source compression. Information Theory, IEEE Transactions on,1993,39(5):1546-1554.
    [37]Reavy M D, Boncelet C G. An algorithm for compression of bilevel images. Image Processing, IEEE Trans-actions on,2001,10(5):669-676.
    [38]Witten I H, Bell T C, Emberson H, et al. Textual image compression:Two-stage lossy/lossless encoding of textual images. Proceedings of the IEEE,1994,82(6):878-888.
    [39]Broder A, Mitzenmacher M. Pattern-based compression of text images. Data Compression Conference,1996. DCC'96. Proceedings. IEEE,1996.300-309.
    [40]Howard P. Lossless and lossy compression of text images by soft pattern matching. Data Compression Conference,1996. DCC'96. Proceedings. IEEE,1996.210-219.
    [41]Howard P. Text image compression using soft pattern matching. The Computer Journal,1997,40(2 and 3):146-156.
    [42]Mohiuddin K, Rissanen J, Arps R. Lossless binary image compression based on pattern matching. Proceedings of the International Conference on Computers, Systems, and Signal Processing, volume 447,1984.451.
    [43]Mohamed S A, Fahmy M M. Binary image compression using efficient partitioning into rectangular regions. Communications, IEEE Transactions on,1995,43(5):1888-1893.
    [44]Quddus A, Fahmy M M. A new compression technique for binary text images. Computers and Communica-tions,1997. Proceedings., Second IEEE Symposium on. IEEE,1997.194-198.
    [45]Quddus A, Fahmy M M. Binary text image compression using overlapping rectangular partitioning. Pattern recognition letters,1999,20(1):81-88.
    [46]Zahir S, Naqvi M. A new rectangular partitioning based lossless binary image compression scheme. Electrical and Computer Engineering,2005. Canadian Conference on. IEEE,2005.281-285.
    [47]Standardization of Group 3 facsimile terminals for document transmission. ITU-T Rec. T.4,1996.
    [48]Facsimile coding schemes and coding control functions for Group 4 facsimile apparatus. ITU-T Rec. T.6. 1988.
    [49]Information technology-Coded representation of picture and audio information-Progressive bi-level image compression. ISO/IEC 11544:1993,1993.
    [50]Information technology-Lossy/lossless coding of bi-level images.1SO/1EC 14492:2001,2001.
    [51]Ratnakar V. RAPP:Lossless image compression with runs of adaptive pixel patterns. Signals, Systems & Computers,1998. Conference Record of the Thirty-Second Asilomar Conference on, volume 2. IEEE,1998. 1251-1255.
    [52]Forchhammer S, Jensen O R. Content layer progressive coding of digital maps. Image Processing, IEEE Transactions on,2002,11(12):1349-1356.
    [53]Forchhammer S, Salinas J M. Progressive coding of palette images and digital maps. Data Compression Conference,2002. Proceedings. DCC 2002. IEEE,2002.362-371.
    [54]Ausbeck Jr P J. Context models for palette images. Data Compression Conference,1998. DCC'98. Proceed-ings. IEEE,1998.309-318.
    [55]Ausbeck Jr P J. A streaming piecewise-constant model. Data Compression Conference,1999. Proceedings. DCC'99. IEEE,1999.208-217.
    [56]Usbeck Jr P. The skip-innovation model for sparse images. Data Compression Conference,2000. Proceedings. DCC 2000. IEEE,2000.43-52.
    [57]Gilbert J, Brodersen R. A lossless 2-D image compression technique for synthetic discrete-tone images. Data Compression Conference,1998. DCC'98. Proceedings. IEEE,1998.359-368.
    [58]Christiansen B, Schauser K, Munke M. A Novel Codec for Thin Client Computing. Data Compression Conference,2000. Proceedings. DCC 2000. IEEE,2000.13-22.
    [59]Christiansen B O, Schauser K E, Munke M. Streaming Thin Client Compression. Data Compression Confer-ence,2001. Proceedings. DCC 2001. IEEE,2001.223-232.
    [60]Christiansen B, Schauser K. Fast Motion Detection for Thin Client Compression. Data Compression Confer-ence,2002. Proceedings. DCC 2002. IEEE,2002.332-341.
    [61]Information technology-Digital compression and coding of continuous-tone still images-Part 1:require-ments and guidelines. ISO/IEC 10918-1,ITU-T Rec. T.81,1993.
    [62]Loguinov D, Radha H. Measurement study of low-bitrate internet video streaming. Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement. ACM,2001.281-293.
    [63]Rhee I, Joshi S R. FEC-based loss recovery for interactive video transmission. Multimedia Computing and Systems,1999. IEEE International Conference on, volume 1. IEEE,1999.250-256.
    [64]Stockhammer T, Jenkac H, Weiβ C. Feedback and error protection strategies for wireless progressive video transmission. Circuits and Systems for Video Technology, IEEE Transactions on,2002,12(6):465-482.
    [65]Albanese A, Blomer J, Edmonds J, et al. Priority encoding transmission. Information Theory, IEEE Transac-tions on,1996,42(6):1737-1744.
    [66]Boyce J M. Packet loss resilient transmission of MPEG video over the Internet. Signal Processing:Image Communication,1999,15(l):7-24.
    [67]Horn U, Stuhlmuller K, Link M, et al. Robust internet video transmission based on scalable coding and unequal error protection. Signal Processing:Image Communication,1999,15(l):77-94.
    [68]Mohr A E, Riskin E A, Ladner R E. Graceful degradation over packet erasure channels through forward error correction. Data Compression Conference,1999. Proceedings. DCC'99. IEEE,1999.92-101.
    [69]Zhu W, Zhang Q, Zhang Y Q. Network-adaptive rate control with unequal loss protection for scalable video over Internet. Circuits and Systems,2001. ISCAS 2001. The 2001 IEEE International Symposium on, vol-ume 5. IEEE,2001.109-112.
    [70]Kim J, Mersereau R M, Altunbasak Y. Error-resilient image and video transmission over the Internet using unequal error protection. Image Processing, IEEE Transactions on,2003,12(2):121-131.
    [71]Zhang Q, Wang G, Zhu W, et al. Robust scalable video streaming over Internet with network-adaptive con-gestion control and unequal loss protection. Proc. Packet Video Workshop,2001.
    [72]Liang Y J, Apostolopoulos J G, Girod B. Model-based delay-distortion optimization for video streaming using packet interleaving. Signals, Systems and Computers,2002. Conference Record of the Thirty-Sixth Asilomar Conference on, volume 2. IEEE,2002.1315-1319.
    [73]Gallant M, Kossentini F. Rate-distortion optimized layered coding with unequal error protection for robust internet video. Circuits and Systems for Video Technology, IEEE Transactions on,2001,11(3):357-372.
    [74]Zhai F, Eisenberg Y, Pappas T, et al. Rate-distortion optimized hybrid error control for real-time packetized video transmission. Image Processing, IEEE Transactions on,2006,15(1):40-53.
    [75]Liang Y J, Girod B. Network-adaptive low-latency video communication over best-effort networks. Circuits and Systems for Video Technology, IEEE Transactions on,2006,16(1):72-81.
    [76]Miao Z. Ortega A. Optimal scheduling for streaming of scalable media. Signals, Systems and Computers, 2000. Conference Record of the Thirty-Fourth Asilomar Conference on. volume 2. IEEE,2000.1357-1362.
    [77]Miao Z, Ortega A. Expected run-time distortion based scheduling for delivery of scalable media. Proceedings of the International Packet Video Workshop,2002.
    [78]Chakareski J. Girod B. Rate-distortion optimized packet scheduling and routing for media streaming with path diversity. Data Compression Conference,2003. Proceedings. DCC 2003. IEEE,2003.203-212.
    [79]Chou P A, Miao Z. Rate-distortion optimized streaming of packetized media. Multimedia, IEEE Transactions on,2006,8(2):390-404.
    [80]Kalman M, Girod B. Rate-Distortion optimized video streaming with multiple deadlines for low latency applications. Proc. Packet Video Workshop, Irvine, USA,2004.
    [81]Setton E, Girod B. Congestion-distortion optimized scheduling of video over a bottleneck link. Multimedia Signal Processing,2004 IEEE 6th Workshop on. IEEE,2004.179-182.
    [82]Zhu X, Setton E, Girod B. Congestion-distortion optimized video transmission over ad hoc networks. Signal Processing:Image Communication,2005,20(8):773-783.
    [83]Setton E, Zhu X, Girod B. Congestion-optimized scheduling of video over wireless ad hoc networks. Circuits and Systems,2005. ISCAS 2005. IEEE International Symposium on. IEEE,2005.3531-3534.
    [84]Setton E, Noh J, Girod B. Congestion-distortion optimized peer-to-peer video streaming. Image Processing, 2006 IEEE International Conference on. IEEE,2006.721-724.
    [85]Setton E, Noh J, Girod B. Low latency video streaming over peer-to-peer networks. Multimedia and Expo, 2006 IEEE International Conference on. IEEE,2006.569-572.
    [86]Opera Mobile & Opera Mini. Online:http://www.opera.com/mobile/,2009.
    [87]Skyfire mobile web browser. Online:http://www.skyfire.com/product,2009.
    [88]Kindle Fire Silk Browser. Online:http://www.amazon.com/gp/help/customer/display.html?nodeId=200729650, 2011.
    [89]Kim J, Baratto R A, Nieh J. pTHINC:a thin-client architecture for mobile wireless web. Proceedings of the 15th international conference on World Wide Web,2006.143-152.
    [90]Information technology-JPEG 2000 image coding system. ISO/IEC 15444-1, ITU-T Rec. T.800,2000.
    [91]Information technology-Coding of audio-visual objects-Part 10:Advanced Video Coding.'ISO/IEC 14496-10:2012,2012.
    [92]The Independent JPEG Group's JPEG software, version 8d. Online:http://www.ijg.org/,2012.
    [93]JasPer, version 1.900.1. Online:http://www.jpeg.org/software,2012.
    [94]libpng, version 1.5.10. Online:http://www.libpng.org/,2010.
    [95]x264, version 0.120.x. Online:http://www.videolan.org/developers/x264.html,2011.
    [96]FFmpeg, version 0.9. Online:http://ffmpeg.org/,2011.
    [97]Information technology-JPEG XR image coding system-Part 2:Image coding specification. ISO/IEC 29199-2:2010,2010.
    [98]WebP:A new image format for the web. Online:http://developers.google.com/speed/webp/,2013.
    [99]GIF or PNG. available:http://www.w3.org/QA/Tips/png-gif,2013.
    [100]Heckbert P. Color image quantization for frame buffer display, volume 16. ACM,1982.
    [101]Document Express 6.5. Online:https://www.caminova.net/en/downloads/,2013.
    [102]Handley M, Floyd S, Padhye J, et al. TCP Friendly Rate Control (TFRC):Protocol Specification. RFC3448, 2003.
    [103]Reed I S, Solomon G. Polynomial codes over certain finite fields. Journal of the Society for Industrial& Applied Mathematics,1960,8(2):300-304.
    [104]Girod B, Farber N. Feedback-based error control for mobile video transmission. Proceedings of the IEEE, 1999,87(10):1707-1723.
    [105]Sachs D, Kozintsev I, Yeung M, et al. Hybrid ARQ for robust video streaming over wireless LANs. In-formation Technology:Coding and Computing,2001. Proceedings. International Conference on,2001.317-321.
    [106]Bose S K. An introduction to queueing systems. Springer,2002.
    [107]Microsoft Network Emulator for Windows Toolkit (NEWT) 2.1,2010.
    [108]TeamViewer 5.1.9385. Online:http://www.teamviewer.com,2010.
    [109]The top 100 web sites. Online:http://www.web100.com/web-100,2011.
    [110]Wireshark 1.4.4. Online:http://www.wireshark.org,2011.
    [111]Yang S J, Nieh J, Novik N. Measuring Thin-Client Performance Using Slow-Motion Benchmarking. Pro-ceedings of the USENIX 2001 Annual Technical Conference,2001.35-49.
    [112]Schwarz H, Marpe D, Wiegand T. Overview of the Scalable Video Coding Extension of the H.264/AVC Standard. Circuits and Systems for Video Technology, IEEE Transactions on,2007,17(9):1103-1120.
    [113]i-Bench version 4.0. Online:ftp://ftp.pcmag.com/Benchmarks/i-bench/.
    [114]SPB Wireless Monitor version 3.1. Online:http://www.spbsoftwarehouse.com/products/gprsmonitor/,2011.
    [115]Song H, Chu H, Kurakake S. Browser Session Preservation and Migration. In Poster Session of WWW 2002, Hawai,2002.7-11.
    [116]Canfora G, Di Santo G, Venturi G, et al. Migrating web application sessions in mobile computing. Special interest tracks and posters of the 14th international conference on World Wide Web, New York, NY, USA: ACM,2005.1166-1167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700