基于新型纳米复合材料电化学生物传感器的构建及其分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感器技术是一种实用的分析技术,具有较强的生物特异性和高灵敏度,装置体积小,成本低。目前,生物传感器在许多领域有很广泛的应用,如环境监测和生物过程控制,食品工业和农业质量控制,以及临床医学的应用。近年来,生物材料,尤其是实用性强的纳米材料的快速发展,以及新的传感技术的出现,给电化学生物传感器的设计和构建带来了新的发展机遇。由于其具有良好的生物相容性,高的催化活性,很强的吸附能力和大的比表面积,这些纳米材料可以大大提高生物传感器的性能。鉴于纳米材料拥有优越的物理和化学性能,本论文制备了不同的纳米材料,将这些纳米材料用于酶的固定化构建了电化学酶传感器。另外,利用金属纳米材料直接作为电氧化活性成份构建了无酶电化学传感器。所构建的生物传感器具有较快的响应速度,较高的灵敏度和较低的检测下限,同时还具有很好的重现性和稳定性,可用于实际样品的检测。本论文主要研究工作如下:
     (1)采用水热法合成了大小均一有序的纳米羟基磷灰石(nano-HA),利用nano-HA较强的吸附作用将酪氨酸酶固定到电极界面,构建了一种新颖的酚类传感器。Nano-HA为酪氨酸酶的固定提供了良好的微环境,有利于保持酪氨酸酶的生物活性。酚类化合物通过酪氨酸酶催化产生的醌在-0.25 V(对饱和甘汞电极)直接还原而测定。实验研究了各种因素,如pH、工作电位、温度等对传感器响应电流的影响。在优化的实验条件下,传感器对邻苯二酚响应的线性范围为10 nM~7μM,灵敏度为2.11×103μAmM-1 cm-2,检测下限为5 nM(S/N=3)。传感器对邻苯二酚,苯酚,间甲酚的表观米氏常数分别为3.16, 1.31和3.52μM。同时,该传感器具有良好的稳定性和重现性,可用于实际样品检测(第2章)。
     (2)基于纳米氧化镁-壳聚糖(nano-MgO-chit)复合物为基底构建了一种新颖的辣根过氧化酶(HRP)电化学生物传感器。Nano-MgO-chit复合物的形貌通过扫描电镜表征。Nano-MgO和HRP之间的相互作用通过紫外可见光谱进行了表征。该复合材料综合了无机纳米粒子和有机聚合物的优点。固定在纳米复合基底中的HRP对H2O2的还原表现出优良的电催化作用。利用计时电流法对实验变量,如pH,工作电位对传感器响应电流的影响进行了考察。在优化的实验条件下,传感器对H2O2浓度的改变响应非常快速(小于10 s),线性范围为0.1~1300μM,检测下限为0.05μM(S/N=3)。同时,实验结果表明该传感器具有良好的稳定性和重现性(第3章)。
     (3)结合碳纳米管(CNTs)优良的导电性能和催化性能以及介孔二氧化硅(SBA-15)大的比表面积和较强的吸附能力,基于CNTs-SBA-15纳米复合膜固定HRP,构建了一种新颖的第三代H2O2传感器。利用紫外可见光谱对固定在复合膜中的酶的生物活性进行了表征。固定在纳米复合基体中的HRP对H2O2有良好的电催化作用。利用计时电流法对实验变量,如溶液pH值和工作电位进行了优化。在最优的实验条件下,传感器对H2O2检测的线性范围为1μm~7 mM,检测下限为0.5μM(S/N=3)。此外,实验结果表明该传感器具有良好的稳定性和重现性(第4章)。
     (4)以多孔聚碳酸酯膜为模板结合电化学沉积技术,首次合成高度有序的镍纳米线阵列(NiNWA)。利用扫描电子显微镜和透射电子显微镜对其形貌进行了表征。在碱性介质中,NiNWA电极对葡萄糖表现出很强的电催化作用。基于此,我们构建了一个灵敏的无酶电化学葡萄糖传感器。传感器对葡萄糖检测的线性范围为0.5μM~3 mM,相关系数为0.999。检测下限为0.1μM(S/N=3),灵敏度高达1.043×103μAmM-1 cm-2。同时实验结果表明,该传感器具有良好的重现性,长期稳定性以及很好的选择性(第5章)。
     (5)制备了纳米钯-石墨烯(PdNPs-graphene)纳米杂化物并用于构建无酶葡萄糖传感器。PdNPs-graphene纳米杂化物通过原位还原方法合成。首先,将graphene-Nafion组装到电极表面用于化学吸附钯离子,然后用水合肼将钯离子原位还原为PdNPs。在碱性介质中,PdNPs-graphene杂化物修饰电极对葡萄糖的电氧化表现出很高的电催化活性。在最优的实验条件下,所构建的传感器对葡萄糖在10μM~5 mM范围有很好的线性响应,相关系数为0.998。检测下限为1μM(S/N=3)。同时实验结果还表明,该传感器具有很好的重现性,稳定性和良好的选择性(第6章)。
     (6)基于原位电聚合罗丹明B(PRhB)传感膜构建了亚硝酸盐传感器。PRhB修饰电极对亚硝酸盐的电化学氧化表现出很好的催化作用。实验研究了各种因素对该传感器性能的影响,如:膜的厚度,溶液的pH值,工作电位。PRhB修饰电极对NO2-响应迅速,在0.5μM~0.7 mM浓度范围之内呈很好的线性关系,检测下限为0.1μM(S/N=3),灵敏度为308.1μAmM-1 cm-2。同时实验结果表明,该传感器具有很好的重现性,稳定性和良好的选择性(第7章)。
Biosensor technology is a powerful alternative to conventional analytical techniques, harnessing the specificity and sensitivity of biological systems in small, low cost devices. Biosensors are being developed for different applications, including environmental and bio-process control, quality control of food, agriculture, military, and, particularly, medical applications. The rapid growth in biomaterials, especially the availability, application and combination of a wide range of nanomaterials with new sensing techniques, has caused a remarkable innovation in the design and construction of electrochemical biosensors. Owing to their biocompatibility, catalytic properties, strong adsorption capacity and high accessible surface area, these nanomaterials can greatly improve the performance of biosensor. Base on the superior physical and chemical properties of nano-materials, many nanomaterials with different morphology were synthesized in this thesis. These nanomaterials were used to fabricate novel biosensors and electrochemically nonenzymatic sensors. The prepared biosensors exhibited fast response, high sensitivity and low detection limit. These biosensors also showed good reproducibility and stability and could be used for the detection of real samples.
     (1)A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at -0.25 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7μM, with a high sensitivity of 2.11×103μAmM-1 cm-2, and a limit of detection down to 5 nM (based on S/N=3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52μM for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results(in chapter 2).
     (2)A novel horseradish peroxidase (HRP) electrochemical biosensor based on a MgO nanoparticles (nano-MgO)-chitosan (chit) composite matrix was developed. The morpology of nano-MgO-chit nanocomposite was examined by scanning electron microscopy (SEM). The interaction between nano-MgO-chit nanocomposite matrix and enzyme was characterized with UV-vis spectra. This proposed composite material combined the advantages of inorganic nanoparticles and organic polymer chit. The HRP immobilized in the nanocomposite matrix displayed excellent electrocatalytic activity to the reduction of H2O2 in the presence of hydroquinone as a mediator. The effects of the experimental variables such as solution pH and the working potential were investigated using steady-state amperometry. The present biosensor (HRP-modified electrode) had a fast response towards H2O2 (less than 10 s), and excellent linear relationships were obtained in the concentration range of 0.1~1300μM, with a detection limit of 0.05μM (S/N=3). Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results (in chapter 3).
     (3)A new third-generation biosensor for H2O2 assay was developed on the basis of the immobilization of horseradish peroxidase (HRP) in a nanocomposite film of carbon nanotubes(CNTs)-mesoporous silicas(SBA-15) modified gold electrode. The biological activity of HRP immobilizing in the composite film was characterized by UV-vis spectra. The HRP immobilized in the nanocomposite matrix displayed excellent electrocatalytic activity to the reduction of H2O2. The effects of the experimental variables such as solution pH and the working potential were investigated using steady-state amperometry. Under the optimal conditions, the resulting biosensor showed a linear range of 1μM to 7 mM and a detection limit of 0.5μM (S/N=3). Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results (in chapter 4).
     (4)Highly ordered Ni nanowire arrays(NiNWAs) were synthesized for the first time using a template-directed electropolymerization strategy with a nanopore polycarbonate (PC) membrane template, and their morphological characterization were examined by scanning electron microscopy (SEM) and transmission electron microscope (TEM). A NiNWAs based electrode exhibited very high electrochemical activity for electrocatalytic oxidation of glucose in alkaline medium, which has been utilized as the basis of the fabrication of a nonenzymatic biosensor for electrochemical detection of glucose. The biosensor can be applied to the quantification of glucose with a linear range covering from 5.0×10-7 to 7.0×10-3 M, a high sensitivity of 1.043×103μAmM-1 cm-2, and a low detection limit of 1×10-7 M. The experiment results also showed that the sensor exhibited good reproducibility and long-term stability, as well as high selectivity with no interference from other oxidable species (in chapter 5).
     (5) A nonenzymatic electrochemical biosensor was developed for the detection of glucose based on an electrode modified with palladium nanoparticles (PdNPs)-functioned graphene (nafion-graphene). The palladium nanoparticle-graphene nanohybrids were synthesized using an in-situ reduction process. Nafion-graphene was first assembled onto an electrode to chemically adsorb Pd2+. And Pd2+ was subsequently reduced by hydrazine hydrate to form PdNPs in-situ. Such a PdNPs-graphene nanohybrids-based electrode shows a very high electrochemical activity for electrocatalytic oxidation of glucose in alkaline medium. The proposed biosensor can be applied to the quantification of glucose with a wide linear range covering from 10μM to 5 mM (R=0.998) with a low detection limit of 1μM. The experiment results also showed that the sensor exhibited good reproducibility and long-term stability, as well as high selectivity with no interference from other potential competing species (in chapter 6).
     (6) The fabrication of an electropolymerized Rhodamine B (PRhB) sensing film based electrochemical sensor and its application for electrochemical detection of nitrite were described. The PRhB film modified GC electrode exhibited good catalytic activity towards the electrochemical oxidation of nitrite. The effects of the experimental variables such as the thickness of the film, solution pH values and the working potential were investigated using steady-state amperometry. The present sensor (PRhB-modified electrode) had a fast response towards NO2- ( less than 10 s), and excellent linear relationships were obtained in the concentration range of 0.5μM~7.0 mM, with a detection limit of 0.1μM (S/N=3). The sensitivity of the sensor was calculated to be 308.1μAmM-1 cm-2. The possible interferences from several common ions were tested. Moreover, the stability and reproducibility of this sensor were evaluated with satisfying results (in chapter 7).
引文
[1] Wang J, Tian B, Rogers K R. Thick-film electrochemical immunosensor based on stripping potentiometric detection of a metal ion label. Analytical Chemistry, 1998, 70(9): 1682-1685
    [2] Niwa O, Xu Y, Halsall H B, et al. Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay. Analytical Chemistry, 1993, 65(11): 1559-1563
    [3] Kalab T, Skladal P. Disposable multichannel immunosensors for 2, 4-dichloro- phenoxyacetic acid using acetylcholinesterase as an enzyme label. Electroanalysis, 1997, 9(2): 293-297
    [4] Wang J, Chen L, Hocevar S B, et al. One-step electropolymeric co-immobilization of glucose oxidase and heparin for amperometric biosensing of glucose. Analyst, 2000, 125(8): 1431-1434
    [5] Hedenmo M, Narvaez A, Dominguez E, et al. Improved mediated tyrosinase amperometric enzyme electrode. Journal of Electroanalytical Chemistry, 1997, 425(1): 1-11
    [6] Vanderlaan M, Watkins B E, Stanker L. Environmental monitoriby immunoassar. Environmental Science and Technology, 1998, 22(2): 247-254
    [7] Thevenot D R, Toth K, Durst R A, et al. Electrochemical biosensors: recommended definitions and classification. Pure and Applied Chemistry, 1999, 71(12): 2333-2348
    [8] Turner A P, Karube I, Wilson S W. Biosensors. Fundamentals and Applications. Oxford: Oxford Science Publications, 1987, 770-795
    [9] Powner E T, Yalcinkaya F. Intelligent biosensors. Sensor Review, 1997, 17(2): 107-116
    [10] Michel C, Ouerd A, Battaglia-Brunet F, et al. Cr(VI) quantification using an amperometric enzyme-based sensor: interference and physical and chemical factors controlling the biosensor response in ground waters. Biosensors and Bioelectronics, 2006, 22(2): 285-290
    [11] Hervas-Perez J P, Sanchez-Paniagua L M, Lopez-Cabarcos E, et al. Amperometric tyrosinase biosensor based on polyacrylamide microgels, Biosensors and Bioelectronics, 2006, 22(3): 429-439
    [12] Tatsumi H, Katano H, Ikeda T. Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor. Analytical Biochemistry, 2006, 357(2): 257-261
    [13] Guilbaul G G, Montalvo J G. An enzyme electrode for substrate urea. Journal of the American Chemical Society, 1970, 92(8): 2533-2534
    [14] Nikolelis D P, Krull U J. Establishment and control of artificial ion-conductive zones for lipid-membrane biosensor development. Analytica Chimica Acta, 1992, 257(2): 239-245
    [15] Zhylyak G A, Dzyadevich S V, Korpan Y I, et al. Application of urease conductometric biosensor for heavy-metal ion determination. Sensors and Actuators B-Chemical, 1995, 24(1): 145-148
    [16] Clark L C, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 1962, 102(1): 29-32
    [17] Updike S J, Hicks G P. The enzyme electrode. Nature, 1967, 214(6): 986-988
    [18] Wilson R, Turner A P. Glucose oxidase: An ideal enzyme. Biosensors and Bioelectronics, 1992, 7(3): 165-185
    [19] Cui G, Kim S J, Choi S H, et al. A disposable amperometric sensor screen printed on a nitrocellulose strip: a glucose biosensor employing lead oxide as an interference-removing agent. Analytical Chemistry, 2000, 72(8): 1925-1929
    [20] Ricci F, Palleschi G. Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosensors and Bioelectronics, 2005, 21(3): 389-407
    [21] Zhang Z N, Liu H Y, Deng J Q. A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode. Analytical Chemistry, 1996, 68(9): 1632-1638
    [22] Sun Y X, Zhang J T, Huang S W, et al. Hydrogen peroxide biosensor based on the bioelectrocatalysis of horseradish peroxidase incorporated in a new hydrogel film. Sensors and Actuators B: Chemical, 2007, 124(2): 494-500
    [23] Ganesan N, Gadre A P, Paranjape M, et al. Gold layer-based dual crosslinking procedure of glucose oxidase with ferrocene monocarboxylic acid provides a stable biosensor. Analytical Biochemistry, 2005, 343(1): 188-191
    [24] Muguruma H, Kase Y, Uehara H. Nanothin ferrocene film plasma polymerized over physisorbed glucose oxidase: high-throughput fabrication of bioelectronic devices without ehemical modifications. Analytical Chemistry, 2005, 77(20): 6557-6562
    [25] Wang J, Park D S, Pamidi P V. Tailoring the macroporosity and performance of sol-gel derived carbon composite glucose sensors. Journal of Electronanalytical Chemistry, 1997, 434(1): 185-189
    [26] Kandimalla V B, Tripathi V S, Ju H X. A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application.Biomaterials, 2006, 27(7): 1167-1174
    [27] Wang, J. Electrochemical glucose biosensors. Chemical Reviews, 2008, 108(2): 814-825
    [28] Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta, 2006, 556(1): 46-57
    [29] Malitesta C, Palmisano F, Torsi L, et al. Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Analytical Chemistry, 1990, 62(24): 2735-2740
    [30] Sasso S, Pierce R, Walla R, et al. Measurement of acid dissociation constants of weak acids by cation exchange and conductometry. Analytical Chemistry, 1990, 62(11): 1111-1117
    [31] Palmisano F, Centonze D, Guerrieri A, et al. An interference-free biosensor based on glucose oxidase electrochemically immobilized in a non-conducting poly(pyrrole) film for continuous subcutaneous monitoring of glucose through microdialysis sampling. Biosensors and Bioelectronics, 1993, 8(9-10): 393-399
    [32] Kang T, Wang F, Lu L, et al. Methyl parathion sensors based on gold nanoparticles and nafion film modified glassy carbon electrodes. Sensors and Actuators B: Chemical, 2010, 145(1): 104-109
    [33] Bindra D S, Wilson G S. Pulsed amperometric detection of glucose in biological fluids at a surface-modified gold electrode. Analytical Chemistry, 1989, 61(22): 2566-2570
    [34] Moussy F, Jakeways S, Harrison D J, et al. In vitro and in vivo performance and life time of perfluorinated ionomer-coated glucose sensors after high-temperature curing. Analytical Chemistry, 1994, 66(22): 3882-3888
    [35] Zhang Y, Hu Y, Wilson G S, et al. Elimination of the acetaminophen interference in an implantable glucose sensor. Analytical Chemistry, 1994, 66(7): 1183-1188
    [36] Karaykin A, Gitelmacher O, Karaykina E. Prussian blue-based first-generation biosensor, a sensitive amperometric electrode for glucose. Analytical Chemistry, 1995, 67(14): 2419-2423
    [37] Karaykin A. Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis, 2001, 13(10): 813-819
    [38] Karyakin A A, Karyakina E E, Gorton L. The electrocatalytic activity of Prussian blue in hydrogen peroxide reduction studied using a wall-jet electrode with continuous flow. Journal of Electroanalytical Chemistry, 1998, 456(1-2): 97-104
    [39] Lukachova L V, Kotelnikova E A, Dottavi D, et al. Electrosynthesis of poly-o-diaminobenzene on the Prussian blue modified electrodes for improvement ofhydrogen peroxide transducer characteristics. Bioelectrochemistry, 2002, 55(1-2): 145-148
    [40] Zhang X, Wang J, Ogorevc B, et al. Glucose nanosensor based on Prussian-blue modified carbon-fiber cone nanoelectrode and an integrated reference electrode. Electroanalysis, 1999, 11(13): 945-949
    [41] Ohalloran M P, Pravda M, Guilbault G G. Prussian blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors. Talanta, 2001, 55(3): 605-611
    [42] Liu Y, Chu Z Y, Zhang Y N, et al. Amperometric glucose biosensor with high sensitivity based on self-assembled Prussian blue modified electrode. Electrochimica Acta, 2009, 54(28): 7490-7494
    [43] Tsujimura S, Kojima S, Kano K, et al. Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor. Bioscience Biotechnology & Biochemistry, 2006, 70(3): 654-659
    [44] Loughran M G, Hall J M, Turner A F. Development of a pyrroloquinoline quinine mediated glucose oxidase enzyme electrode for detection of glucose in fruit juice. Electroanalysis, 1996, 8(10): 870-875
    [45] Lau K, De-Fortescu S, Murphy L J, et al. Disposable glucose sensors for flow injection analysis using substituted 1, 4-benzoquinone mediators. Electroanalysis, 2003, 15(11): 975-981
    [46] Zhao G, Xu M, Zhang Q. A novel hydrogen peroxide sensor based on the redox of ferrocene on room temperature ionic liquid film. Electrochemistry Communications, 2008, 10(12), 1924-1926
    [47] Mulchandani A, Pan S. Ferrocene-conjugatedm-phenylenediamine conducting polymer-incorporated peroxidase biosensors. Analytical Biochemistry, 1999, 267(1): 141-147
    [48] Carr P W, Browers L D. Immobilized enzyme in analytical chemistry. In advances in biochemical engineering/biotechnology. Heidelberg, Germany: Springer Berlin, 1980, 89-129
    [49] Cass A, Davis G, Francis G D, et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry, 1984, 56(4): 667-671
    [50] Liu H H, Huang X J, Gu B S, et al. Alternative route to reconstitute an electrical contact of enzyme on a single-walled carbon nanotube-ferrocene hybrid. Journal of Electroanalytical Chemistry, 2008, 621(1): 38-42
    [51] Koide S S, Yokoyama K J. Electrochemical characterization of an enzyme electrode based on a ferrocene-containing redox polymer. Journal of Electroanalytical Chemistry,1999, 468(2): 193-201
    [52] Liu S, Ju H. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosensors and Bioelectronics, 2003, 19(3): 177-183
    [53] Yi X, Patolsky F, Katz E, et al. Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle. Science, 2003, 299(5614): 1877-1881
    [54] Basu S, Kang W P, Davidson J L, et al. Electrochemical sensing using nanodiamond microprobe. Diamond and Related Materials, 2006, 15(2-3): 269-274
    [55] Yang H, Zhu Y. Size dependence of SiO2 particles enhanced glucose biosensor. Talanta, 2006, 68(3): 569-574
    [56] Kong Y T, Boopathi M N, Shim Y B. Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode. Biosensors and Bioelectronics, 2003, 19(3): 227-232
    [57] Liu X W, Hu Q, Wu Q, et al. Aligned ZnO nanorods: a useful film to fabricate amperometric glucose biosensor. Colloids and Surfaces B: Biointerfaces, 2009, 74(1): 154-158
    [58] Jia J B, Wang B Q, Wu A G, et al. A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. Analytical Chemistry, 2002, 74(9): 2217-2223
    [59] Qi H L, Zhang C X, Li X R. Amperometric third-generation hydrogen peroxide biosensor incorporating multiwall carbon nanotubes and hemoglobin. Sensors and Actuators B: Chemical, 2006, 114(1): 364-370
    [60] Kandimalla V B, Ju H. Binding of acetylcholinesterase to multiwall carbon nanotube-cross-linked chitosan composite for flow-injection amperometric detection of an organophosphorous insecticide. Chemistry-A European Journal, 2006, 12(4): 1074-1080
    [61] Jeykumari D, Narayanan S. A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes. Biosensors and Bioelectronics, 2008, 23(9): 1404-1411
    [62] Liu Q, Lu X, Li J, et al. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosensors and Bioelectronics, 2007, 22(12): 3203-3209
    [63] Shan C S, Yang H F, Song J F, et al. Direct dlectrochemistry of glucose oxidase and biosensing for glucose based on graphene. Analytical Chemistry, 2009, 81(6): 2378-2382
    [64] Zhang Q, Qiao Y, Hao F, et al. Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chemistry-A European Journal, 2010, 16(27): 8133-8139
    [65] Xu S Y, Han X Z. A novel method to construct a third-generation biosensor: self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) nanospheres. Biosensors and Bioelectronics, 2004, 19(9): 1117-1120
    [66] Du Y, Luo X L, Xu J J, et al. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry, 2007, 70(2): 342-347
    [67] Chen S, Yuan R, Chai Y, et al. Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on the layer-by-layer assembly films of gold colloidal nanoparticles and toluidine blue. Electroanalysis, 2006, 18(5): 471-477
    [68] Wu F, Xu J, Tian Y, et al. Direct electrochemistry of horseradish peroxidase on TiO2 nanotube arrays via seeded-growth synthesis. Biosensors and Bioelectronics, 2008, 24(2): 198-203
    [69] Lu X, Zou G, Li J. Hemoglobin entrapped within a layered spongy Co3O4 based nanocomposite featuring direct electron transfer and peroxidase activity. Journal of Materials Chemistry, 2007, 17(14): 1427-1432
    [70] Xian Y, Hu Y, Liu F, et al. Template synthesis of highly ordered Prussian blue array and its application to the glucose biosensing. Biosensors and Bioelectronics, 2007, 22(12): 2827-2833
    [71] Lu X, Hu J, Yao X, et al. Composite system based on chitosan and room temperature ionic liquid: direct electrochemistry and electrocatalysis of hemoglobin. Biomacromolecules, 2006, 7(3): 975-980
    [72] Xi F, Liu L, Wu Q, et al. One-step construction of biosensor based on chitosan-ionic liquid-horseradish peroxidase biocomposite formed by electrodeposition. Biosensors and Bioelectronics, 2008, 24(1): 29-34
    [73] Zhang Q, Wu S Y, Zhang L, et al. Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosensors and Bioelectronics, 2011, 26(5): 2632-2637
    [74] Zhang T, Tian B Z, Kong J L, et al. A sensitive mediator-free tyrosinase biosensor based on an inorganic-organic hybrid titania sol-gel matrix. Analytica Chimica Acta, 2003, 489(2): 199-206
    [75] Li T, Yao Z H, Ding L. Development of an amperometric biosensor based on glucose oxidase immobilized through silica sol-gel film onto Prussian blue modified electrode.Sensors and Actuators B: Chemical, 2004, 101(1-2): 155-160
    [76] Haccoun J, Piro B, Noel V, et al. The development of a reagentless lactate biosensor based on a novel conducting polymer. Bioelectrochemistry, 2006, 68(2): 218-226
    [77] Lu Q, Li C M. One-step co-electropolymerized conducting polymer-protein composite film for direct electrochemistry-based biosensors. Biosensors and Bioelectronics, 2008, 24(4): 767-772
    [78] Kang X, Wang J, Tang Z, et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic-inorganic film of chitosan/sol-gel/carbon nanotubes. Talanta, 2009, 78(1): 120-125
    [79] Wu S, Ju H, Liu Y. Conductive mesocellular silica-carbon nanocomposite foams for immobilization, direct electrochemistry, and biosensing of proteins. Advanced Functional Materials, 2007, 17(4): 585-592
    [80] Bai Y, Yang H, Yang W W, et al. Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sensors and Actuators B: Chemical, 2007, 124(1): 179-186
    [81] Gavin J R. The importance of monitoring blood glucose. In US endocrine disease. Atlanta, GA, USA: Touch briefings, 2007, 1-3
    [82] Wang J, Thomas D F, Chen A. Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Analytical Chemistry, 2008, 80(4): 997-1004
    [83] King H, Aubert R E, Herman W H. Global burden of diabetes. 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care, 1998, 21(9): 1414-1431
    [84] Wild S H, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5): 1047-1053
    [85] Kang X H, Mai Z B, Zou X Y, et al. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Analytical Biochemistry, 2007, 363(1): 143-150
    [86] Chen X M, Lin Z J, Chen D J, et al. Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosensors and Bioelectronics, 2010, 25(7): 1803-1808
    [87] Bai H Y, Han M, Du Y Z, et al. Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor. Chemical Communications, 2010, 46(10): 1739-1741
    [88] Safavi A, Maleki N, Farjami E. Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosensors and Bioelectronics, 2009, 24(6): 1655-1660
    [89] Liu Y, Teng H, Hou H Q, et al. Nonenzymatic glucose sensor based on renewableelectrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosensors and Bioelectronics, 2009, 24(11): 3329-3334
    [90] Pang H, Lu Q Y, Wang J J, et al. Glucose-assisted synthesis of copper micropuzzles and their application as nonenzymatic glucose sensors. Chemical Communications, 2010, 46(12): 2010-2012
    [91] Xia Y, Huang W, Zheng J F, et al. Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosensors and Bioelectronics, 2011, 26(8): 3555-3561
    [92] Bai Y, Sun Y Y, Sun C Q. Pt-Pb nanowire array electrode for enzyme-free glucose detection. Biosensors and Bioelectronics, 2008, 24(4): 579-585
    [93] Chriswell C D, Chang R C, Frltz J S. Chromatographic determination of phenols in water. Analytical Chemistry, 1975, 47(8): 1325-1329
    [94] Poerschmann J, Zhang Z, Kopinke F D, et al. Solid phase microextraction for determining the distribution of chemicals in aqueous matrixes. Analytical Chemistry, 1997, 69(4): 597-600
    [95] Sanket T, Meena K, Shaukat I. Development of electrochemical biosensor based on tyrosinase immobilized in composite biopolymeric film. Analytical Biochemistry, 2006, 349(1): 72-77
    [96] Yu J, Liu S, Ju H. Mediator-free phenol sensor based on titania sol-gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method. Biosensors and Bioelectronics, 2003, 19(5): 509-514
    [97] Chang S, Rawson K, McNeil C. Disposable tyrosinase-peroxidase bi-enzyme sensor for amperometric detection of phenols. Biosensors and Bioelectronics, 2002, 17(11-12): 1015-1023
    [98] Nistor C, Emneus J, Gorton L, et al. Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds. Analytica Chimica Acta, 1999, 387(3), 309-326
    [99] Zhang J, Lei J P, Liu Y Y, et al. Highly sensitive amperometric biosensors for phenols based on polyaniline-ionic liquid-carbon nanofiber composite. Biosensors and Bioelectronics, 2009, 24(7): 1858-1863
    [100] Freire R S, Ferreira M M, Duran N, et al. Dual amperometric biosensor device for analysis of binary mixtures of phenols by multivariate calibration using partial least squares. Analytica Chimica Acta, 2003, 485(2): 263-269
    [101] Ameer Q, Adeloju S B. Development of a potentiometric catechol biosensor by entrapment of tyrosinase within polypyrrole film. Sensors and Actuators B: Chemical,2009, 140(1): 5-11
    [102] Berlin P, Klemm D, Jung A, et al. Film-forming aminocellulose derivatives as enzyme-compatible support matrices for biosensor developments. Cellulose, 2003, 10 (4): 343-367
    [103] Kotte H, Grundig B, Vorlop K D, et al. Methylphenazonium-modified enzyme sensor based on polymer thick films for subnanomolar detection of phenols. Analytical Chemistry, 1995, 67(1): 65-70
    [104] Deng Q, Guo Y, Dong S. Cyro-hydrogel for the construction of a tyrosinase-based biosensor. Analytica Chimica Acta, 1996, 319(1-2): 71-77
    [105] Sampath S, Lev O. Membrane-free, rhodium-modified, methyl silicate-graphite amperometric biosensor. Journal of Electroanalytical Chemistry, 1997, 426(1-2): 131-137
    [106] Glezer V, Lev O. Sol-gel vanadium pentaoxide glucose biosensor. Journal of the American Chemical Society, 1993, 115(6): 2533-2534
    [107] Shan D, Cosnier S, Mousty C. Layered double hydroxides: an attractive material for electrochemical biosensor design. Analytical Chemistry, 2003, 75(15): 3872-3879
    [108] Lvov Y, Munge B, Giraldo O, et al. Films of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorption. Langmuir, 2000, 16(23): 8850-8857
    [109] Zhou Y, Hu N, Zeng Y, et al. Heme protein-clay films:direct electrochemistry and electrochemical catalysis. Langmuir, 2002, 18(1): 211-219
    [110] Yuan Y, Tang S L, Hong H, et al. Synthesis of nanoscaled hydroxyapatite and its anti tumor activity. Chinese Journal of Biomedical Engineering, 2005, 24(1): 27-30
    [111]秦玉华,张袁健,徐修冬,等.细胞色素c在羟基磷灰石修饰玻碳电极上的直接电化学.化学学报, 2004, 62(9): 860-863
    [112] Yang L, Wei W Z, Gao X H, et al. A new antibody immobilization strategy based on electrodeposition of nanometer-sized hydroxyapatite for label-free capacitive immunosenser. Talanta, 2005, 68(1): 40-46
    [113] Mahabole M P, Aiyer R C, Ramakrishna C V, et al. Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bulletin of Material Science, 2005, 28(6): 535-545
    [114] Nagai M, Saeki T, Nishino T. Carbon dioxide sensor mechanism of porous hydroxyapatite ceramics. Journal of the American Ceramic Society, 1990, 73(5): 1456-1460
    [115] Petrucelli G C, Kawachi E Y, Kubota L T, et al. Hydroxyapatite-based electrode: a new sensor for phosphate. Analytical Communications, 1996, 33(7): 227-229
    [116] Wang S P, Lei Y, Zhang Y, et al. Hydroxyapatite nanoarray-based cyanide biosensor. Analytical Biochemistry, 2010, 398(2): 191-197
    [117] Renbutsu E, Hirose M, Omura Y, et al. Preparation and biocompatibility of novel UV-curable chitosan derivatives. Biomacromolecules, 2005, 6(5): 2385-2388
    [118] Luo X L, Xu J J, Du Y. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition. Analytical Biochemistry, 2004, 334(2): 284-289
    [119] Zhou Y, Yang H, Chen H Y. Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes. Talanta, 2008, 76(2): 419-423
    [120] Solanki P R, Kaushik A, Ansari A A, et al. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition. Sensors and Actuators B: Chemical, 2009, 137(2): 727-735
    [121] Lu X B, Zhang Q, Zhang L, et al. Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochemistry Communications, 2006, 8(5): 874-878
    [122] Darder M, Colilla M, Ruiz-Hitzky E. Chitosan-clay nanocomposites: application as electrochemical sensors. Applied Clay Science, 2005, 28(1-4): 199-208
    [123] Ding Y J, Liu J, Wang H, et al. A piezoelectric immunosensor for the detection ofα-fetoprotein using an interface of gold/hydroxyapatite hybrid nano- material. Biomaterials, 2007, 28(12): 2147-2154
    [124]王庆良,葛世荣,朱华,等.常温常压下纳米羟基磷灰石晶体的合成及结构研究.中国矿业大学学报, 2004, 33(5): 533-536
    [125] Ragupathy D, Gopalan A, Lee K. Synergistic contributions of multiwall carbon nanotubes and gold nanoparticles in a chitosan-ionic liquid matrix towards improved performance for a glucose sensor. Electrochemistry Communications, 2009, 11(2): 397-401
    [126] Khan R, Dhayal M. Electrochemical studies of novel chitosan/TiO2 bioactive electrode for biosensing application. Electrochemistry Communications, 2008, 10(2): 263-267
    [127] Liu Z, Liu B, Kong J, et al. Probing trace phenols based on mediator-free alumina sol-gel-derived tyrosinase biosensor. Analytical Chemistry, 2000, 72(19): 4707-4712
    [128] Ozoner S K, Yalvac M, Erhan E. Flow injection determination of catechol based on polypyrrole-carbon nanotube-tyrosinase biocomposite detector. Current AppliedPhysics, 2010, 10(1): 323-328
    [129] Abdullah J, Ahmad M, Karuppiah N, et al. Immobilization of tyrosinase in chitosan film for an optical detection of phenol. Sensors and Actuators B: Chemical, 2006, 114(2): 604-609
    [130] Lutz M, Burestedt E, Emneus J, et al. Effects of different additives on a tyrosinase based carbon paste electrode. Analytica Chimica Acta, 1995, 305(1-3): 8-17
    [131] Tsai Y, Chiu C. Amperometric biosensors based on multiwalled carbon nanotube-nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds. Sensors and Actuators B: Chemical, 2007, 125(1): 10-16
    [132] Sapelnikova S, Dock E, Ruzgas T, et al. Amperometric sensors based on tyrosinase-modified screen-printed arrays. Talanta, 2003, 61(4): 473-483
    [133] Zhang J Z, Li B, Xu G B, et al. Self-gelatinizable graft copolymer of poly(vinyl alcohol) with 4-vinylpyridine as an immobilization matrix for the construction of a tyrosinase-based amperometric biosensor. Analyst, 1999, 124(5): 699-703
    [134] Zhou X Q, Yu T, Zhang Y H, et al. Nanozeolite-assembled interface towards sensitive biosensing. Electrochemistry Communications, 2007, 9(7): 1525-1529
    [135] Wang S F, Tan Y M, Zhao D M, et al. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosensors and Bioelectronics, 2008, 23(12): 1781-1787
    [136] Vedrine C, Fabiano S. Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. Talanta, 2003, 59(3): 535-544
    [137] Carralero V, Mena M L, Gonzalez-Cortes A, et al. Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles. Biosensors and Bioelectronics, 2006, 22(5): 730-736
    [138] Campuzano S, Serra B, Pedrero M, et al. Amperometric flow-injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensors. Analytica Chimica Acta, 2003, 494(1-2): 187-197
    [139] Mbouguen J K, Ngameni E, Walcarius A. Organoclay-enzyme film electrodes. Analytica Chimica Acta, 2006, 578(2): 145-155
    [140] Wang B Q, Dong S J. Organic-phase enzyme electrode for phenolic determination based on a functionalized sol-gel composite. Journal of Electroanalytical Chemistry, 2000, 487(1): 45-50
    [141] Chen L Y, Gu B X, Zhu G P, et al. Electron transfer properties and electrocatalytic behavior of tyrosinase on ZnO nanorod. Journal of Electroanalytical Chemistry, 2008,617(1): 7-13
    [142] Wang L, Wang E. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochemistry Communications, 2004, 6(2): 225-229
    [143] Matsubara C, Kawamoto N, Takamura K. Oxo[5, 10, 15, 20-tetra(4-pyridyl)porphyri- nato] titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst, 1992, 117(11): 1781-1784
    [144] Hurdis E C, Romeyn J H. Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Analytical Chemistry, 1954, 26(2): 320-325
    [145] Nakashima K, Maki K, Kawaguchi S, et al. Peroxyoxalate chemiluminescence assay of hydrogen peroxide and glucose using 2,4,6,8-Tetrathio-morpholinopyrimido[5,4-d] pyrimidine as a Fluorescent Component. Analytical Science, 1991, 7(5): 709-714
    [146] Xiao Y, Ju H X, Chen H Y. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer. Analytica Chimica Acta, 1999, 391(1): 73-82
    [147] Lei C X, Hu S Q, Shen G L, et al. Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta, 2003, 59(5): 981-988
    [148] Song Y, Wang L, Ren C, et al. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode. Sensors and Actuators B: Chemical, 2006, 114(2): 1001-1006
    [149] Wang G, Xu J J, Ye L H, et al. Highly sensitive sensors based on the immobilization of tyrosinase in chitosan. Bioelectrochemistry, 2002, 57(1): 33-38
    [150] Dempsey E, Diamond D, Collier A. Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film. Biosensors and Bioelectronics, 2004, 20(2): 367-377
    [151] Rajesh W, Takashima K. Amperometric tyrosinase based biosensor using an electropolymerized PTS-doped polypyrrole film as an entrapment support. Reactive and Functional Polymers, 2004, 59(2): 163-169
    [152] Xue H, Shen Z. A highly stable biosensor for phenols prepared by immobilizing polyphenol oxidase into polyaniline-polyacrylonitrile composite matrix. Talanta, 2002, 57(2): 289-295
    [153] Korri-Youssoufi H, Desbenoit N, Ricoux R, et al. Elaboration of a new hydrogen peroxide biosensor using microperoxidase 8 (MP8) immobilized on a polypyrrole coated electrode. Materials Science and Engineering: C, 2008, 28(5): 855-860
    [154] Li J, Chia L S, Goh N K, et al. Mediated amperometric glucose sensor modified by the sol-gel method. Sensors and Actuators B: Chemical, 1997, 40(2-3): 135-141
    [155] Wang B, Zhang J, Dong S. Silica sol-gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor. Biosensors and Bioelectronics, 2000, 15(7-8): 397-402
    [156] Wang K, Li J, Yang X, et al. A chemiluminescent H2O2 sensor based on horseradish peroxidase immobilized by sol-gel method. Sensors and Actuators B: Chemical, 2000, 65(1-3): 239-240
    [157] Wei X, Zhang M G, Gorski W. Coupling the lactate oxidase to electrodes by ionotropic gelation of biopolymer. Analytical Chemistry, 2003, 75(9): 2060-2064
    [158] Zhang M, Mullens C, Gorski W. Chitosan-glutamate oxidase gels: synthesis, characterization, and glutamate determination. Electroanalysis, 2005, 17(23): 2114-2120
    [159] Tatsuma T, Sato T J. Self-wiring from tyrosinase to an electrode with redox polymers. Journal of Electroanalytical Chemistry, 2004, 572(1): 15-19
    [160] Anh T, Dzyadevych S V, Soldatkin A P, et al. Development of tyrosinase biosensor based on pH-sensitive field-effect transistors for phenols determination in water solutions. Talanta, 2002, 56(4): 627-634
    [161] Korkut S, Keskinler B, Erhan E. An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta, 2008, 76(5): 1147-1152
    [162] Rajesh W, Takashima K. Amperometric phenol biosensor based on covalent immobilization of tyrosinase onto an electrochemically prepared novel copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Sensors and Actuators B: Chemical, 2004, 102(2): 271-227
    [163] Wei X, Cruz J, Gorski W. Integration of enzymes and electrodes: spectroscopic and electrochemical studies of chitosan-enzyme films. Analytical Chemistry, 2002, 74(19): 5039-5046
    [164] Zhang M G, Smith A, Gorski W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Analytical Chemistry, 2004, 76(17): 5045-5050
    [165] Zhang M G, Mullens C, Gorski W. Coimmobilization of dehydrogenases and their cofactors in electrochemical biosensors. Analytical Chemistry, 2007, 79(6): 2446-2450
    [166] Gorton L, Lindgren A, Larsson T, et al. Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Analytica Chimica Acta, 1999, 400(1): 91-108
    [167] Pan M, Guo X, Cai Q, et al. A novel glucose sensor system with Au nanoparticles based on microdialysis and coenzymes for continuous glucose monitoring. Sensors and Actuators A: Physical, 2003, 108(1-3): 258-262
    [168] Xiao X L, Luan Q F, Yao X, et al. Single-crystal CeO2 nanocubes used for the direct electron transfer and electrocatalysis of horseradish peroxidase. Biosensors and Bioelectronics, 2009, 24(8): 2447-2251
    [169] Shan D, Wang S X, Xue H G, et al. Direct electrochemistry and electro-catalysis of hemoglobin entrapped in composite matrix based on chitosan and CaCO3 nanoparticles. Electrochemistry Communications, 2007, 9(4): 529-534
    [170] Kaushik A, Khan R, Solanki P R, et al. Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosensors and Bioelectronics, 2008, 24(4): 676-683
    [171] Wang B, Zhang J J, Pana Z Y, et al. A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica-hydroxyapatite hybrid film. Biosensors and Bioelectronics, 2009, 24(5): 1141-1145
    [172] Chen L, Gorski W. Bioinorganic composites for enzyme electrodes. Analytical Chemistry, 2001, 73(13): 2862-2868
    [173] Bian S W, Ma Z, Cui Z M, et al. Synthesis of micron nano structured magnesium oxide and its high catalytic activity in claisen-schmidt condensation reaction. The Journal of Physical Chemistry C, 2008, 112(30): 11340-11344
    [174] Zhan J, Bando Y, Hu J, et al. Bulk synthesis of single-crystalline magnesium oxide nanotubes. Inorganic Chemistry, 2004, 43(8): 2462-2464
    [175] Yu J C, Xu A, Zhang L, et al. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. The Journal of Physical Chemistry B, 2004, 108(1): 64-70
    [176] Zhang Z P, Zheng Y J, Chen J P, et al. Facile synthesis of monodisperse magnesium oxide microspheres via seed-induced precipitation and their applications in high-performance liquid chromatography. Advanced Functional Materials, 2007, 17(14): 2447-2454
    [177] Umar A, Rahman M M, Hahn Y B. MgO polyhedral nanocages and nanocrystals based glucose biosensor. Electrochemistry Communications, 2009, 11(7): 1353-1357
    [178] Miao Y Q, Tan S W. Amperometric hydrogen peroxide biosensor based on immobilization of peroxidase in chitosan matrix crosslinked with glutaraldehyde. Analyst, 2000, 125(9): 1591-1594
    [179] Okuma H, Watanabe E. Flow system for fish freshness determination based on double multi-enzyme reactor electrodes. Biosensors and Bioelectronics, 2002, 17(5): 367-372
    [180] Odaci D, Timur S, Telefoncu A. Bacterial sensors based on chitosan matrices. Sensors and Actuators B: Chemical, 2008, 134(1): 89-94
    [181] Zhang M G, Gorski W. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. Journal of the American Chemical Society, 2005, 127(7): 2058-2059
    [182] Zhang M G, Gorski W. Electrochemical sensing based on redox mediation at carbon nanotubes. Analytical Chemistry, 2005, 77(13): 3960-3965
    [183] Zhang M G, Mullens C, Gorski W. Amperometric glutamate biosensor based on chitosan enzyme film. Electrochimica Acta, 2006, 51(21): 4528-4532
    [184] Zhu Y C, Cheng G J, Dong S J. Structural electrochemical study of hemoglobin by in situ circular dichroism thin layer spectroelectrochemistry. Biophysical Chemistry, 2002, 97(2): 129-138
    [185] Kristinsson H G. Acid-induced unfolding of flounder hemoglobin: evidence for a molten globular state with enhanced pro-oxidative activity. Journal of Agricultural and Food Chemistry, 2002, 50(26): 7669-7676
    [186] Feng J J, Zhao G, Xu J J, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Analytical Biochemistry, 2005, 342(2): 280-286
    [187] Zhao G, Feng J J, Xu J J, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film. Electrochemistry Communications, 2005, 7(7): 724-729
    [188] Luo X L, Xu J J, Zhang Q, et al. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosensors and Bioelectronics, 2005, 21(1): 190-196
    [189] Liu G D, Wu Z Y, Wang S P, et al. Renewable amperometric immunosensor for schistosoma japonium antibody assay. Analytical Chemistry, 2001, 73(14): 3219-3226
    [190] Lai G S, Zhang H L, Han D Y. A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode. Sensors and Actuators B: Chemical, 2008, 129(2): 497-503
    [191] Zhu J T, Shi C G, Xu J J, et al. Direct electrochemistry and electrocatalysis of hemoglobin on undoped nanocrystalline diamond modified glassy carbon electrode. Bioelectrochemistry, 2007, 71(2): 243-248
    [192] Xiao Y, Ju H X, Chen H Y. A reagentless hydrogen peroxide sensor based on incorporation of horseradish peroxidase in poly(thionine) film on a monolayer modified electrode. Analytica Chimica Acta, 1999, 391(3): 299-306
    [193] Dai Z, Xiao Y, Yu X Z, et al. Direct electrochemistry of myoglobin based on ionic liquid-clay composite films. Biosensors and Bioelectronics, 2009, 24(6): 1629-1634
    [194] Xu Q, Mao C, Liu N N, et al. Immobilization of horseradish peroxidase on o-carboxymethylated chitosan/sol-gel matrix. Reactive and Functional Polymers, 2006, 66(8): 863-870
    [195] Li W J, Yuan R, Chai Y Q, et al. Immobilization of horseradish peroxidase on chitosan/silica sol-gel hybrid membranes for the preparation of hydrogen peroxide biosensor. Journal of Biochemical and Biophysical Methods, 2008, 70(6): 830-837
    [196] Razola S, Ruiz B, Diez N, et al. Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode. Biosensors and Bioelectronics, 2002, 17(11): 921-928
    [197] Zhang Y, He P L, Hu N F. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bio- electrocatalysis. Electrochimica Acta, 2004, 49(12): 1981-1988
    [198] Zong S Z, Cao Y, Zhou Y M, et al, Hydrogen peroxide biosensor based on hemoglobin modified zirconia nanoparticles-grafted collagen matrix. Analytica Chimica Acta, 2007, 582(2): 361-366
    [199] Chen X, Li C C, Liu Y L, et al. Electrocatalytic activity of horseradish peroxidase/chitosan/carbon microsphere microbiocomposites to hydrogen per- oxide. Talanta, 2008, 77(1): 37-41
    [200] Camachoa C, Chicoa B, Caob R, et al. Novel enzyme biosensor for hydrogen peroxide via supramolecular associations. Biosensors and Bioelectronics, 2009, 24(7): 2028-2033
    [201] Deng C Y, Chen J H, Chen X L, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosensors and Bioelectronics, 2008, 23(8): 1272-1277
    [202] Tangkuaram T, Ponchio C, Kangkasomboon T, et al. Design and development of a highly stable hydrogen peroxide biosensor on screen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan. Biosensors and Bioelectronics, 2007, 22(9-10): 2071-2078
    [203] Wang F C, Yuan R, Chai Y Q, et al. Probing traces of hydrogen peroxide by use of a biosensor based on mediator-free DNA and horseradish. Analytical and Bioanalytical Chemistry, 2007, 387(2): 709-717
    [204] Liu Z M, Yang Y, Wang H, et al. A hydrogen peroxide biosensor based on nano-Au/PAMAM dendrimer/cystamine modified gold electrode. Sensors and ActuatorsB: Chemical, 2005, 106(1): 394-400
    [205] Lei C X, Hu S Q, Gao N, et al. An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode. Bioelectrochemistry, 2004, 65(1): 33-39
    [206] Sanz V, De Marcos S, Galban J. Hydrogen peroxide and peracetic acid determination in waste water using a reversible reagentless biosensor. Analytica Chimica Acta, 2007, 583(2): 332-339
    [207] Wang G H, Zhang L M. Using novel polysaccharide-silica hybrid material to construct an amperometric biosensor for hydrogen peroxide. The Journal of Physical Chemistry B, 2006, 110(49): 24864-24868
    [208] Qian L, Yang X R. Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta, 2006, 68(3): 721-727
    [209] Morrin A, Moutloali R M, Killard A J, et al. Electrocatalytic sensor devices: (I) cyclopentadienylnickel(II) thiolato Schiff base monolayer self-assembled on gold. Talanta, 2004, 64(1): 30-38
    [210] Yao S J, Xu J H, Wang Y, et al. A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 Nanoparticles and dihexadecyl hydrogen phosphate composite film. Analytica Chimica Acta, 2006, 557(1): 78-84
    [211] Pagona G, Tagmatarchis N. Carbon nanotubes: materials for medicinal chemistry and biotechnological applications. Current Medicinal Chemistry, 2006, 13(15): 1789-1799
    [212] Kim S N, Rusling J F, Papadimitrakopoulos F. Carbon nanotubes for electronic and electrochemical detection of biomolecules. Advanced Materials, 2007, 19(20): 3214-3228
    [213] Yun Y H, Dong Z Y, Shanov V, et al. Nanotube electrodes and biosensors. Nano Today, 2007, 2(6): 30-37
    [214] Patolsky F, Weizmann Y, Willner I. Long-range electrical contacting of redox enzymes by SWCNT connectors. Angewandte Chemie International Edition, 2004, 43(16): 2113-2117
    [215] Wang J X, Li M X, Shi Z J, et al. Direct electrochemistry of Cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Analytical Chemistry, 2002, 74(9): 1993-1997
    [216] Gooding J J, Wibowo R, Liu J Q, et al. Protein electrochemistry using aligned carbon nanotube arrays. Journal of the American Chemical Society, 2003, 125(30): 9006-9007
    [217] Cosnier S, Senillou A, Gratzel M, et al. A glucose biosensor based on enzyme entrapment within polypyrrole films electrodeposited on mesoporous titanium dioxide.Journal of Electroanalytical Chemistry, 1999, 469(2): 176-181
    [218] Xu Y, Peng W L, Liu X J, et al. A new film for the fabrication of an unmediated H2O2 biosensor. Biosensors and Bioelectronics, 2004, 20(3): 533-537
    [219] Lei C, Lisdat F, Wollenberger U, et al. Cytochrome c/clay-modified electrode. Electroanalysis, 1999, 11(4): 274-276
    [220] Lei C, Deng J. Hydrogen peroxide sensor based on coimmobilized methylene green and horseradish peroxidase in the same montmorillonite-modified bovine serum albumin-glutaraldehyde matrix on a glassy carbon electrode surface. Analytical Chemistry, 1996, 68(19): 3344-3349
    [221] Ikeda O, Ohtani M, Yamaguchi T, et al. Direct electrochemistry of Cytochrome c at a glassy carbon electrode covered with a microporous alumina membrane. Electrochimica Acta, 1998, 43(8): 833-839
    [222] Yu J, Ju H. Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor deposition method. Analytical Chemistry, 2002, 74(14): 3579-3583
    [223] Fan J, Lei J, Wang L M, et al. Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies. Chemical Communications, 2003, 17(125): 2140-2141
    [224] Dai Z H, Liu S Q, Ju H X, et al. Direct electron transfer reactivity and enzymatic activity of hemoglobin in a hexagonal mesoporous silica membrane. Biosensors and Bioelectronics, 2004, 19(8): 861-867
    [225] Han Y J, Stucky G D, Butler A. Mesoporous silicate sequestration and release of proteins. Journal of the American Chemical Society, 1999, 121(42): 9897-9898
    [226] Washmon-Kriel L, Jimenez V L, Balkus K J. Cytochrome c immobilization into mesoporous molecular sieves. Journal of Molecular Catalysis B: Enzymatic, 2000, 10(5): 453-469
    [227] Wang F, Yang J, Wu K. Mesoporous silica-based electrochemical sensor for sensitive determination of environmental hormone bisphenol A. Analytica Chimica Acta, 2009, 638(1): 23-28
    [228] Zhao D, Huo Q, Feng J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024-6036
    [229] Li F, Feng Y, Wang Z, et al. Direct electrochemistry of horseradish peroxidase immobilized on the layered calcium carbonate-gold nanoparticles inorganic hybrid composite. Biosensors and Bioelectronics, 2010, 25(10): 2244-2248
    [230] C Q Sun, W J Li, Y P Sun, et al. Fabrication of multilayer films containing horseradish peroxidase based on electrostatic interaction and their application as a hydrogen peroxide sensor. Electrochimica Acta, 1999, 44(19): 3401-3407
    [231] Liu G Z, Gooding J J. An interface comprising molecular wires and poly(ethylene glycol) spacer units self-assembled on carbon electrodes for studies of protein electrochemistry. Langmuir, 2006, 22(17): 7421-7430
    [232] Zhao X J, Mai Z B, Kang X H, et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite. Biosensors and Bioelectronics, 2008, 23(7): 1032-1038
    [233] Chen H J, Dong S J. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol-gel-derived ceramic-carbon nanotube nanocomposite film. Biosensors and Bioelectronics, 2007, 22(8): 1811-1815
    [234] Ma L P, Yuan R, Chai Y Q. Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on DNA-silver nanohybrids and PDDA-protected gold nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2009, 56(4): 215-220
    [235] Kamin R A, Willson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Analytical Chemistry, 1980, 52(8): 1198-1205
    [236] Shi L H, Liu X Q, Niu W X, et al. Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode. Biosensors and Bioelectronics, 2009, 24(5): 1159-1163
    [237] Wang B Q, Li B, Wang Z X, et al. Sol-gel thin-film immobilized soybean peroxidase biosensor for the amperometric determination of hydrogen peroxide in acid medium. Analytical Chemistry, 1999, 71(10): 1935-1939
    [238] Turner A P, Chen B, Piletsky S. In vitro diagnostics in diabetes: meeting the challenge. Clinical Chemistry, 1999, 45(9): 1596-1601
    [239] Salimi A, Sharifi E, Noorbakhsh A, et al. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity. Biosensors and Bioelectronics, 2007, 22(12): 3146-3153
    [240] Liu J, Agarwal M, Varahramyan K. Glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer. Sensors and Actuators B: Chemical, 2008, 135(1): 195-199
    [241] Liu X Q, Shi L H, Niu W X, et al. A novel biosensor based on activation effect of thiamine on the activity of pyruvate oxidase. Biosensors and Bioelectronics, 2008, 23(12): 1887-1890
    [242] Beden B F, Largeaud K B, Kokoh C. Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of glucose: identification of reactive intermediates and reaction products. Electrochimica Acta, 1996, 41(5): 701-709
    [243] Bae I T, Yeager E, Xing, X, et al. In situ infrared studies of glucose oxidation on platinum in an alkaline medium. Journal of Electroanalytical Chemistry, 1991, 309(1-2): 131-145
    [244] Hsiao M W, Adzic R R, Yeager E B. Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer. Journal of The Electrochemical Society, 1996, 143(3): 759-763
    [245] Sun Y, Buck H, Mallouk T E. Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors. Analytical Chemistry, 2001, 73(7): 1599-1603
    [246] Ye J S, Wen Y, Zhang W D, et al. Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochemistry Communications, 2004, 6(1): 66-70
    [247] Lin Y, Cui X, Ye X. Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochemistry Communications, 2005, 7(3): 267-274
    [248] Mena M L, Yanez-Sedeno P Y, Pingarro J M. A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes. Analytical Biochemistry, 2005, 336(1): 20-27
    [249] Welch C M, Compton R G. The use of nanoparticles in electroanalysis: a review. Analytical and Bioanalytical Chemistry, 2006, 384(3): 601-619
    [250] Tominaga M, Shimazoe T, Nagashima M, et al. Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions. Electrochemistry Communications, 2005, 7(2): 189-193
    [251] Tominaga M, Shimazoe T, Nagashima M, et al. Electrocatalytic oxidation of glucose at gold-silver alloy, silver and gold nanoparticles in an alkaline solution. Journal of Electroanalytical Chemistry, 2006, 590(1): 37-46
    [252] Casella I G, Gatta M, Guascito M R, et al. Highly-dispersed copper microparticles on the active gold substrate as an amperometric sensor for glucose. Analytica Chimica Acta, 1997, 357(1-2): 63-71
    [253] Batchelor-McAuley C, Du Y, Wildgoose G, et al. The use of copper(II) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide. Sensors and Actuators B: Chemical, 2008, 135(1): 230-235
    [254] Rong L Q, Yang C, Qian Q Y, et al. Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta, 2007, 72(2):819-824
    [255] Cui H F, Ye J S, Zhang W D, et al. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites. Analytica Chimica Acta, 2007, 594(2): 175-183
    [256] Holt-Hindle P, Nigro S, Asmussen M, et al. Amperometric glucose sensor based on platinum-iridium nanomaterials. Electrochemistry Communications, 2008, 10(10): 1438-1441
    [257] Luo P, Zhang F, Baldwin R P. Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates, amino acids and related compounds in flow systems. Analytica Chimica Acta, 1991, 244(1): 169-178
    [258] Casella I B, Desimoni E, Cataldi T. Study of a nickel-catalysed glassy carbon electrode for detection of carbohydrates in liquid chromatography and flow injection analysis. Analytica Chimica Acta, 1991, 248(1): 117-125
    [259] Fermier A M, Colon L A. Capillary electrophoresis with constant potential amperometric detection using a nickel microelectrode for detection of carbohydrates. Journal of High Resolution Chromatography, 1996, 19(11): 613-616
    [260] You T, Niwa O, Chen Z, et al. An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Analytical Chemistry, 2003, 75(19): 5191-5196
    [261] Cheng X, Zhang S, Zhang H, et al. Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a nano-nickel oxide modified carbon paste electrode. Food Chemistry, 2008, 106(2): 830-835
    [262] Salem A K, Chen M, Hayden J, et al. Directed assembly of multisegment Au/Pt/Au nanowires. Nano Letters, 2004, 4(6): 1163-1165
    [263] Granot E, Katz E, Basnar B, et al. Enhanced bioelectrocatalysis using Au-nanoparticle/polyaniline hybrid systems in thin films and microstructured rods assembled on electrodes. Chemistry of Materials, 2005, 17(18): 4600-4608
    [264] Salimi A, Roushani M. Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol-gel dispersed renewable carbon ceramic electrode. Electrochemistry Communications, 2005, 7(9): 879-887
    [265] Lin Y H, Lu F, Tu Y, et al. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters, 2004, 4(2): 191-195
    [266] Zhao C Z, Shao C L, Li M H, et al. Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode. Talanta, 2007, 71(4): 1769-1773
    [267] Luo P F, Kuwana T, Paul D K, et al. Electrochemical and XPS study of the Nickel-Titanium electrode surface. Analytical Chemistry, 1996, 68(19): 3330-3337
    [268] Xu Q, Zhao Y, Xu J Z, et al. Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor. Sensors and Actuators B: Chemical, 2006, 114(1): 379-386
    [269] Zhao J, Wang F, Yu J J, et al. Electro-oxidation of glucose at self-assembled monolayers incorporated by copper particles. Talanta, 2006, 70(2): 449-454
    [270] Katakis I, Dominguez E. Characterization and stabilization of enzyme biosensors. Trends in Analytical Chemistry, 1995, 14(7): 310-319
    [271] Yuan J, Wang K, Xia X. Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Advanced Functional Materials, 2005, 15(5): 803-809
    [272] Xiao F, Zhao F Q, Mei D P, et al. Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosensors and Bioelectronics, 2009, 24(12): 3481-3486
    [273] Li L, Zhang W, Ye J. Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis, 2008, 20(20): 2212-2216
    [274] Lim S H, Wei J, Lin J Y, et al. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto nafion-solubilized carbon nanotube electrode. Biosensors and Bioelectronics, 2005, 20(11): 2341-2346
    [275] Miao F J, Tao B R, Sun L, et al. Amperometric glucose sensor based on 3D ordered nickel-palladium nanomaterial supported by silicon MCP array. Sensors and Actuators B: Chemical, 2009, 141(1): 338-342
    [276] Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183-191
    [277] Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008, 3(2): 101-105
    [278] Li X L, Zhang G Y, Bai X D, et al. Highly conducting graphene sheets and langmuir blodgett films. Nature Nanotechnology, 2008, 3(9): 538-542
    [279] Shao Y Y, Wang J, Wu H, et al. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis, 2010, 22(10):1027-1036
    [280] Vickery J L, Patil A J, Mann S. Fabrication of grapheme-polymer nanocomposites with higher-order three-dimensional architectures. Advanced Materials, 2009, 21(21): 2180-2184
    [281] Guo S J, Dong S J, Wang E K. Three-dimensional Pt-on-Pd bimetallic nanodendritessupported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano, 2010, 4(1): 547-555
    [282] Chen S, Zhu J W, Wu X D, et al. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano, 2010, 4(5): 2822-2830
    [283] Wang Y, Shao Y Y, Matson D W, et al. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano, 2010, 4(4): 1790-1798
    [284] Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials, 1999, 11(3): 771-778
    [285] Tang L H, Wang Y, Li Y M, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Advanced Functional Materials, 2009, 19(17): 2782-2789
    [286] Mermoux M, Charbe Y, Rousseau A. FTIR and 13C NMR study of graphite oxide. Carbon, 1991, 29(3): 469-474
    [287] Toghill K, Xiao L, Phillips M, et al. The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode. Sensors and Actuators B: Chemical, 2010, 147(2): 642-652
    [288] Malea K B, Hrapovic S, Liu Y L, et al. Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Analytica Chimica Acta, 2004, 516(1-2): 35-41
    [289] Park S, Chung T D, Kim H C. Nonenzymatic glucose detection using mesoporous platinum. Analytical Chemistry, 2003, 75(13): 3046-3049
    [290] Lijinsky W, Epstein S S. Nitrosamines as environmental carcinogens. Nature, 1970, 225(5227): 21-23
    [291] Morcos E, Wiklund N P. Nitrite and nitrate measurement in human urine by capillary electrophoresis. Electrophoresis, 2001, 22(13): 2763-2768
    [292] Bru M, Burguete M I, Galindo F, et al. Cross-linked poly(2-hydroxyethylmethacrylate) films doped with 1,2-diaminoanthraquinone (DAQ) as efficient materials for the colorimetric sensing of nitric oxide and nitrite anion. Tetrahedron Letters, 2006, 47(11): 1787-1791
    [293] Mikuska P, Vecera Z. Simultaneous determination of nitrite and nitrate in water by chemiluminescent flow-injection analysis. Analytica Chimica Acta, 2003, 495(1-2): 225-232
    [294] Ferreira I, Silva S. Quantification of residual nitrite and nitrate in ham by reverse-phasehigh performance liquid chromatography/diode array detector. Talanta, 2008, 74(5): 1598-1602
    [295] Szoko E, Tabi T, Halasz A, et al. High sensitivity analysis of nitrite and nitrate in biological samples by capillary zone electrophoresis with transient isotachophoretic sample stacking. Journal of Chromatography A, 2004, 1051(1-2): 177-183
    [296] Zeng J X, Wei W Z, Zhai X R, et al. Assemble-electrodeposited ultrathin conducting poly(azure A) at a carbon nanotube-modified glassy carbon electrode, and its electrocatalytic properties to the reduction of nitrite. Microchimica Acta, 2006, 155(3-4): 379-389
    [297] Brylev O, Sarrazin M, Roue L, et al. Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Electrochimica Acta, 2007, 52(21): 6237-6247
    [298] Sun W L, Zhang S, Lin X R, et al. Electrocatalytic reduction of nitrite at a carbon fiber microelectrode chemically modified by palladium(II)-substituted Dawson type heptadecatungstodiphosphate. Journal of Electroanalytical Chemistry, 1999, 469(1): 63-71
    [299] Caro C A, Bedioui F, Zagal J H. Electrocatalytic oxidation of nitrite on a vitreous carbon electrode modified with cobalt phthalocyanine. Electrochimica Acta, 2002, 47(9): 1489-1494
    [300] Chen X W, Wang F, Chen Z L. An electropolymerized nile blue sensing film-based nitrite sensor and application in food analysis. Analytica Chimica Acta, 2008, 623(2): 213-220
    [301] Zhao K, Song H Y, Zhuang S Q, et al. Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes. Electrochemistry Communications, 2007, 9(1): 65-70
    [302] Lin C Y, Vasantha V S, Ho K C. Detection of nitrite using poly (3, 4-ethylene- dioxythiophene) modified SPCEs. Sensors and Actuators B: Chemical, 2009, 140(1): 51-57
    [303] Zen J M, Kumar A S, Wang H F. A dual electrochemical sensor for nitrite and nitric oxide. Analyst, 2000, 125(12): 2169-2172
    [304] Malinauskas A. Electrocatalysis at conducting polymers. Synthetic Metals, 1999, 107(2): 75-83
    [305] Schlereth D D, Karyakin A A. Electropolymerization of phenothiazine, phenoxazine and phenazine derivatives: characterization of the polymers by UV-visible difference spectroelectrochemistry and fourier transform IR spectroscopy. Journal ofElectroanalytical Chemistry, 1995, 395(1-2): 221-232
    [306] Chen S M, Fa Y H. The electropolymerization and electrocatalytic properties of polymerized new fuchsin film modified electrodes. Journal of Electroanalytical Chemistry, 2003, 553(1): 63-75
    [307] Karyakin A A, Karyakina E E, Schuhmann W, et al. New amperometric dehydrogenase electrode based on electrocatalytic NADH oxidation at poly(methyleneblue)-modified electrodes. Electroanalysis, 1994, 6(10): 821-829
    [308] Agrisuelas J, Gimenez-Romero D, Garcia-Jareno J J, et al. Vis/NIR spectroelec- trochemical analysis of poly-(Azure a) on ITO electrode. Electrochemistry Communications, 2006, 8(4): 549-553
    [309] Karyakin A, Karyakina E, Schmidt H. Electropolymerized azines: a new group of electroactive polymers. Electroanalysis, 1999, 11(3): 149-155
    [310] Karyakin A, Karyakina E, Schuhmann W, et al. Electropolymerized azines: Part II. In a search of the best electrocatalyst of NADH oxidation. Electroanalysis, 1999, 11(8): 553-557
    [311] Barsan M M, Pinto E M, Brett C M A. Electrosynthesis and electrochemical characterisation of phenazine polymers for application in biosensors. Electrochimica Acta, 2008, 53(11): 3973-3982
    [312] Zhou D M, Fang H Q, Chen H Y, et al. The electrochemical polymerization of methylene green and its electrocatalysis for the oxidation of NADH. Analytica Chimica Acta, 1996, 329(1-2): 41-48
    [313] Qu F L, Yang M H, Jiang J H, et al. Novel poly (neutral red) nanowires as a sensitive electrochemical biosensing platform for hydrogen peroxide determination. Electrochemistry Communications, 2007, 9(10): 2596-2600
    [314] Chiorcea-Paquim A, Pauliukaite R, Christopher M, et al. AFM nanometer surface morphological study of in situ electropolymerized neutral red redox mediator oxysilane sol-gel encapsulated glucose oxidase electrochemical biosensors. Biosensors and Bioelectronics, 2008, 24(2): 297-305
    [315] Lu L M, Wang S P, Qu F L, et al. Synthesis and characterization of poly(toluidine blue) nanowires and their application in amperometric biosensors. Electroanalysis, 2009, 21(10): 1152-1158
    [316] Yao Y L, Shiu K K. Low potential detection of glucose at carbon nanotube modified glassy carbon electrode with electropolymerized poly(toluidine blue) film. Electrochimica Acta, 2007, 53(2): 278-284
    [317] Komura T, Ishihara M, Yamaguchi T, et al. Charge-transporting properties ofelectropolymerized phenosafranin in aqueous media. Journal of Electroanalytical Chemistry, 2000, 493(1-2): 84-92
    [318] Selvaraju T, Ramaraj R. Simultaneous determination of ascorbic acid, dopamine and se- rotonin at poly(phenosafranine) modified electrode. Electrochemistry Communications, 2003, 5(8): 667-672
    [319] Hinckly D A, Saybold P G, Borris D P. Solvatochromism and thermochromism of rhodamine solutions. Spectrochimica Acta Part A, 1986, 42(6): 747-754
    [320] Mandal K, Pearson T, Demas J N. Luminescent quantum counters based on organic dyes in polymer matrixes. Analytical Chemistry, 1980, 52(13): 2184-2189
    [321] Ma Y J, Zhou M, Jin X Y, et al. Flow-injection chemiluminescence determination of ascorbic acid by use of the cerium(IV)-Rhodamine B system. Analytica Chimica Acta, 2002, 464(2): 289-293
    [322] Chen H, Zhou M, Jin X Y, et al. Chemiluminescence determination of ultramicro DNA with a flow-injection method. Analytica Chimica Acta, 2003, 478(1): 31-36
    [323] Zhou D M, Chen H Y. The electrochemical polymerization of redox dye-nile blue for the amperometric determination of hemoglobin. Electroanalysis, 1997, 9(5): 399-402
    [324] Huang X, Li Y X, Chen Y L, et al. Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sensors and Actuators B: Chemical, 2008, 134(2): 780-786
    [325] Chen L H, Zang J B, Wang Y H, et al. Electrochemical oxidation of nitrite on nanodiamond powder electrode. Electrochimica Acta, 2008, 53(8): 3442-3445
    [326] Gabriela M, Silveira C, Moura J. Biosensing nitrite using the system nitrite redutase/nafion/methyl viologen-a voltammetric study. Biosensors and Bioelectronics, 2007, 22(11): 2485-2492
    [327] Tian Y, Wang J X, Wang Z, et al. Electroreduction of nitrite at an electrode modified with polypyrrole nanowires. Synthetic Metals, 2004, 143(3): 309-313
    [328] Li Y C, Zhang S X, Li Y Z, et al. Amperometric nitrite sensor based on PVP-Os entrapped in titania sol-gel matrix. Electroanalysis, 2004, 16(19): 1637-1641
    [329] Liu L, Tian L, Xu H D, et al. Electrochemical properties of organo-titanium substituted heteropolytungstate and its electrocatalytic reduction of nitrite. Journal of Electroanalytical Chemistry, 2006, 587(2): 213-219
    [330] Yang W W, Bai Y, Li Y C, et al. Amperometric sensor of nitrite based on hemoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a titania sol-gel film. Analytical and Bioanalytical Chemistry, 2005, 382(1): 44-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700