基于几种纳米半导体基底的表面增强拉曼光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Research of Surface Enhanced Raman Scattering on Several Nanoscale Semiconductor Substrates
  • 作者:王蕴馨
  • 论文级别:博士
  • 学科专业名称:应用化学
  • 学位年度:2008
  • 导师:赵冰 ; 王洪艳
  • 学科代码:081704
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-06-01
摘要
表面增强拉曼光谱(SERS)能从分子水平上直接提供表面分子结构和动态过程等重要信息。但传统的SERS增强基底主要集中于贵金属、碱金属和过渡金属材料上。基底材料的匮乏限制了SERS的应用。本文主要研究了几种纳米半导体作为SERS基底的可能性,得到了一些创新结果,主要内容包括:
     1.制备了Pb3O4纳米粒子,用4-巯基吡啶(4-Mpy)分子修饰半导体纳米粒子,得到了高质量的基于Pb3O4基底的SERS谱图。比较了半导体基底和金属基底SERS信号的异同,揭示了半导体纳米粒子作为SERS基底的独特性质。
     2.利用简单的化学刻蚀得到了均匀有序的Zn/ZnO微纳米结构,我们由XPS和拉曼谱图分析及电化学刻蚀的锌箔可以证明,SERS的信号是来源于4-Mpy与ZnO的作用。通过传统方法的计算,增强因子达到104~105。
     3.分别蒸镀了5、15、30 nm Ag岛膜在CuO薄膜上,由于半导体和金属纳米粒子的相互作用,相比于纯Ag基底,复合基底的增强能力有了很大的提高。揭示了纳米半导体复合物CuO/Ag作为表面增强拉曼基底的独特性质。
     4.用一种简单的化学还原方法制备了银纳米粒子包覆的Cu2O纳米八面体,构筑了Cu2O/Ag复合体系,并研究了它的SERS活性。通过分析4-Mpy在Cu2O/Ag纳米复合物的拉曼光谱与纯银基底上的光谱的差异,发现SERS光谱主要来自4-Mpy-Cu的贡献,说明了4-Mpy与Cu2O基底是以Cu-S键结合进行化学吸附的。
Surface enhanced Raman scattering (SERS) can provide important information of surface molecular structure and kinetic process directly. SERS technique is becoming a strong hand in surface science and electrochemistry ,and widely used in trace analysis and even single molecule detecting(SM-SERS), medical chemistry, environmental sciences, biologic and medical systems, nano-materials and sensors. For many yeas SERS is still restricted primarily for analytes adsorbed onto coinage (Au, Ag, and Cu) or alkali (Li, Na, K) rough metallic surface. Our group have successfully gain high signal-noise SERS spectra from semiconductor substrates Since semiconductors are commonly considered to be non-SERS active, this work could be an important contribution, indicating a possible extension of the SERS effect from metal to semiconductor in order to widen the range of SERS substrate materials.We also obtained the SERS effect for noble metal to semiconductor. Boosted by the long-range effect of the enhanced electromagnetic (EM) field generated by the highly SERS-active Ag, the originally low surface enhancement of the semicondutor can be substantially improved. Our study is outlined as follows:
     1. Pb3O4 was prepared by sol-gel method, high signal-to-noise ratio (S/N) SERS spectra from low concentration of 4-Mpy molecules on Pb3O4 substrates were obtained. Compared with Raman spectra from Pb3O4 and Ag substrates, the particular features of semiconductor substrates from metal substrates have been revealed. The enhancement factor was estimated about 102. The enhancement mechanism: for most semiconductors, the plasmon resonance is typically in the infrared. This value is too far away from the 514.5 nm incident light thus plasmon resonances may be ruled out. The chemical enhancement mechanism should be responsible for the observed enhancement in Pb3O4. The Raman spectra under different exaction lines also demonstrate very good results.
     2. Further, micro-nanostructure Zn/ZnO film was prepared by a very simple chemical etching method. By analyzing XPS and Raman spectra, it is concluded 4-Mpy has chemisorptions on the ZnO film. The resulting Zn/ZnO film can serve as good surface enhanced Raman spectroscopy (SERS) substrates, exhibit about 104~105 enhancement factors. The results of the electrochemical roughening also confirm the SERS signal was from the interaction between 4-Mpy and ZnO. Similar enhancement was obtained from 2, 2-bipridine adsorbed Zn/ZnO film.
     3. We obtained the SERS signal from 4-mercaptopyridine (4-MPy) on nanoscale CuO thin film coated with a discontinuous layer of 5, 15 and 30nm Ag island film over CuO thin film substrates. We were not able to detect SERS signal of 4-MPy from CuO surface without the deposited Ag film. After coating with 5 nm, CuO thin film substrate exhibit a better SERS effect than the pure 5 nm Ag film. When the thickness of Ag island film reaches 30 nm, all the CuO thin film was almost covered Ag island films .Raman spectra of 4-Mpy adsorbed these two substrates are alike in most part. It is further confirmed the SERS signal (Ag island film<30 nm) was from the CuO thin film.By changing the thickness of Ag island films, we can gain a proper local electromagnetic field enhancement on CuO thin films to reach the best SERS effect. It is to be noted that the SERS effect of discontinuous Ag island films on which SERS activity degrade soon after preparation. To the contrast, SERS activity maintains about a week on CuO thin film.
     4. Cu2O/Ag composite was prepared by using a very simple chemical reduction method. First, The Cu2O nanooctahedron was sensitized by Sn2+ and then deoxidizes by the Ag (NH3)2+ with the reducing agent formaldehyde in aqueous solution on the surface. We fabricate Cu2O/Ag composites and gain comparable enhancement on SERS-inactive substrates as that before only gained on traditional SERS-active substrates.The enhancement factor was estimated 2.1×104. Therefore, one can detect adsorbed molecules on other semiconductor surfaces by borrowing enhancement generated by SERS active material and have a further understanding of structural information about adsorbed molecules. The difference spectrum was obtained between the Raman spectrum of Cu2O/Ag composites and pure Ag substrates. The bands and the relative intense of that spectrum were similar as the spectrum on the Cu nanoparticles. This phenomenon further confirms the chemisorptions between 4-Mpy and Cu2O were bonded by Cu-S.
     5. These researches will benefit to understand the mechanism of SERS: There are two main SERS enhancement mechanism: electromagnetic (EM) and chemical (CHEM) enhancement mechanisms. The EM enhancement is due to a large increase of the electric field caused by surface plasmon resonances induced by the laser light in nano-sized metal clusters on the surface. This effect is usually considered the most important, contributing about 104–106 of the total observed enhancement and is often called the physical effect, since allthat is required is that the molecules are physisorbed at or near the surface. In metals such as silver, the plasmon resonance is in the visible or near UV, making it suitable for enhancement of the Raman spectrum excited in that region. For most semiconductors, the plasmon resonance is typically in the infrared. This value is too far away from the 514.5 nm incident light to be responsible for the observed enhancement, thus plasmon resonances may be ruled out. The CHEM enhancement results from the chemisorption interaction and the photon-driven charge transfer, which leads to an increase in the polarizability of the molecule. The chemical effect is usually considered to contribute about 102 of the total observed enhancement. The exact chemical mechanism of the enhancement effect of SERS is still a matter of debate in the literature. We fabricate metal/semiconductor system and gain comparable enhancement on SERS-inactive substrates as that before only gained on traditional SERS-active substrates. Therefore, one can detect adsorbed molecules on other semiconductor surfaces by borrowing enhancement generated by SERS active material and have a further understanding of structural information about adsorbed molecules. With this method which borrowing strong electromagnetic from SERS active materials it is possible to observe the enhanced Raman scattering on other SERS-inactive substrate surfaces.
引文
[1] Haase F., Sauer J. J. Am. Chem. Soc. 1998, 120, 13503.
    [2] Chadwick A.V. Nature 2000, 408, 925.
    [3] Marray N .E .P., Tsai T., Barnet S. A. Nature 1999, 400, 649.
    [4] Wu N. L., Wang S. Y., Kusakova I. A. Science 1999, 285, 1375.
    [5] Ping X. E., Dalal V. Solid State Commun. 1992, 82, 14.
    [6] Kayanuma Y., kuroda K. Appl. Phys. A 1991, 51, 475.
    [7] Ho S. W., Houalla M., Hercules D. M. J. Phys. Chem. 1990, 94, 6396.
    [8] Esfarjani K., Farajian A. A., Hashi Y., Kawazoe Y. Appl. Phys. Lett. 1999, 74, 79.
    [9] Feltin N., Levy L., Ingert D., Pileni M. P. Adv. Mater. 1999, 11, 398.
    [10] Tamaki J. Sensor Lett. 2005, 3, 89.
    [11] Wei Y. H., Yao M. Q., Guo H. L., Hu L. Q., Hou L. F., Xu B. S. J. Adv. Mater. 2006, 40.
    [12] Parthangal P. M., Cavicchi R. E., Zachariah M. R. Nanotechnology 2006, 17, 3786.
    [13] Ball P., Garwin L. Nature 1992, 355, 761.
    [14]Cavicchi P. E., Silsbee, R. H. Phys. Rev. Lett 1984, 52, 1453.
    [15] Shi F., Tse M. K., Pohl M. M., Bruckner A., Zhang S. M., Beller M. Angew. Chem.-Int. Edit 2007, 46, 8866.
    [16] Centi G., Perathoner S. Micropor. Mesopor. Mat. 2008, 107, 3.
    [17] Magureanu M., Mandache N. B., Hu J. C., Richards R., Florea M., Parvulescu V. I. Appl. Catal. B-Environ. 2007, 76, 275.
    [18] Wang D. M., Huang C. P., Chen J. G., Lin H. Y., Shah S. I. Separation and Purification Technology 2007, 58, 129.
    [19] Liu Y. C., Kim M., Wang Y. J., Wang Y. A., Peng X. G. Langmuir 2006,22, 6341.
    [20] Klostranec J. M., Chan W. C. W. Adv. Mater. 2006, 18, 1953.
    [21] Roy R. Science 1987, 238, 166.
    [22] Komamemi S. J. Mater. Chem. 1992, 2, 1219.
    [23] Ricken M., Noelting J., Riess I., J. Solid State Chem., 1984, 54, 89.
    [24] Lee A. L. Z., Wang Y., Ye W. H., Yoon H. S., Chan S. Y., Yang Y. Y. Biomater. 2008, 29, 1224.
    [25] Wu C. L., Hong J. Q., Guo X. Q., Huang C. B., Lai J. P., Zheng J. S., Chen J. B., Mu X., Zhao Y. B. Chem. Comm. 2008, 6,750.
    [26] Pietsch T., Gindy N., Fahmi A. Polymer 2008, 49, 914.
    [27] Subawi H. J. Composite Mater. 2008, 42, 603.
    [28] Feng Q. Y., Li T. J., Yue H. Y., Qi K., Bai F. D., Jin J. Z. Appl. Surface Sci. 2008, 254, 2262.
    [29] Lin S. H., Chen F. R., Kai J. J. Appl. Surface Sci. 2008, 254, 3357.
    [30] Bruchez Jr. M., Moronne M., Gin P., Weiss S., Alivisatos A. P. Science 1998, 281, 2013.
    [31] Chan W. C. W., Nie S. M. Science 1998, 281, 2016.
    [32] Peng Z. A., Peng X. G. J. Am. Chem. Soc. 2001, 123, 183.
    [33] Wang X. Y., Qu L. H., Zhang J. Y., Peng X. G., Xiao M. Nano Letters 2003, 3, 1103.
    [34] Qu L. H., Peng Z. A., Peng X. G. Nano Letters, 2001, 1, 333.
    [35] Perez, J. M., Simeone, F. J., Saeki, Y., Josephson, L., Weissleder, R. J. Am. Chem. Soc. 2003, 125, 10192.
    [36] Patolsky F, Zheng G. F. ,Hayden O.,Lakadamyali, M. ZhuangX.W., Lieber C. M. PNAS,2004, 101, 14017.
    [37] Zhang T. T., Stilwell J. L., Gerion D., Ding L. H., Elboudwarej O., Cooke P. A., Gray J. W., Alivisatos A. P., Chen F. F. Nano Letters 2006, 6, 800.
    [38] Grodzinski P., Silver M., Molnar L. K. Expert Review of MolecularDiagnostics 2006, 6, 307.
    [39] Mulder W. J. M., Koole R., Brandwijk R. J., Storm G., Chin P. T. K., Strijkers G. J., Donega C. D., Nicolay K., Griffioen A. W. Nano Letters 2006, 6, 1.
    [40] Tomlinson I. D., Mason J. N., Blakely R. D., Rosenthal S. J. Nanobiotechnology Protocols 2005, 303, 51.
    [41] Derfus A. M., Chen A. A., Min D. H., Ruoslahti E., Bhatia S. N. Bioconjugate Chemistry 2007, 18, 1391.
    [42] Kaul Z., Yaguchi T., Kaul S. C., Wadhwa R. Ann N Y Acad Sci 2006, 1067, 469.
    [43] Raman C. V., Krishnan K. S., Nature, 1928, 121, 501.
    [44] Fleischmann M., Hendra P. J., McQuillan A. J. Chem. Phys. Lett. 1974, 26, 163.
    [45] Jeanmaire D. L., Van Duyne R. P. J. Electroanal. Chem. 1977, 84, 1.
    [46] Albrecht M. G., Creighton J. A. J. Am. Chem. Soc. 1977, 99, 5215.
    [47] Tessier P. M., Velev O. D., Kalambur A. T., Rabolt J. F., Lenhoff A. M., Kaler E. W. J. Am. Chem. Soc. 2000, 122, 9554.
    [48] Sibblad M. S., Chumanov G., Cotton T. M. J. Phys. Chem. 1996, 100, 4672.
    [49] Charles Cao Y. W., Jin R. C., Mirkin C. A., Science, 2002, 297, 1536.
    [50] Kneipp K., Kneipp H., Itzkan I., Dasari R. R., Feld M. S., Chem. Rev., 1999, 99, 2957.
    [51] Wang H., Levin C. S., Halas N. J., J. Am. Chem. Soc., 2005, 127, 14992.
    [52] Lee S. J., Morrill A. R., Moskovits M., J. Am. Chem. Soc., 2006, 128, 2200.
    [53] Moskovits M. Rev. Mod. Phys 1985, 57, 783.
    [54] Otto A., Mrozek I., Grabhorn H., Akemann W. J. Phys.:Condensed Matter 1992, 4, 1143.
    [55] Corset J., Aubard J. J. Raman Spectrosc. 1999, 29, 8.
    [56] King F. W., Van Duyne R. P., Schatz G. C. J. Chem. Phys. 1978, 69, 4472.
    [57] Efrima S., Metiu H. J. Chem. Phys. 1979, 70, 1602.
    [58] Efrima S., Metiu H. J. Chem. Phys. 1979, 70, 1939.
    [59] Efrima S., Metiu H. J. Chem. Phys. 1979, 70, 2297.
    [60] Surface Enhanced Raman Scattering Chang R. K., Furtak T. E. Eds. Plenum, New York, 1982, 35.
    [61] King F. W., Van Duyne R. P., Schatz G. C. J. Chem. Phys. 1978, 69, 4472.
    [62] Campion A., Kambhampati P. Chem. Soc. Rev. 1998, 27, 241.
    [63] Kerker M., Wang D. S., Chew H. Appl. Opt. 1980, 19, 4159.
    [64] McCall S. L., Platzman P. M., Wolff P. A. Phys. Lett. 1980, 77A, 381.
    [65] Gersten J. I. J. Chem. Phys. 1980, 72, 5779.
    [66] Gersten J. I. J. Chem. Phys. 1980, 72, 5780.
    [67] Gersten J. I., Nitzan A. J. Chem. Phys. 1980, 73, 3023.
    [68] McCall S. L., Platzman P. M., Wolff P. A. Phys. Lett. 1980, 77A, 381
    [69] 胡冰, 徐蔚青,王魁香,谢玉涛,赵冰 吉林大学自然科学学报 2001, 2, 57.
    [70] 胡冰 硕士学位论文 吉林大学,2001.
    [71] Johnson P. B., Christy R. W. Phys. Rev. B 1972, 6, 4370.
    [72] 李小灵 博士学位论文 吉林大学, 2004.
    [73] Gersten J. I. and Nitzan A. in: Surface Enhanced Raman Scattering Chang, R. K. and Furtak T. E. eds., pp. 35, Plenum Press, New York, 1982.
    [74] Burstein E., Chen C. Y., Lundquist S. In Light Scattering in Solids Birman, J. L. Ed., Plenum, New York, 1979, 479.
    [75] Demuth J. E., Christmann K., Sanda P. N. Chem. Phys. Lett. 1980, 76, 201.
    [76] Sanda P. N., Warlaumont J. M., Demuth J. E., Tsang J. C., Christmann K., Bradley J. A. Phys. Rev. Lett. 1980, 45, 1519.
    [77] Seki H., Philpott M. R. J. Chem. Phys. 1980, 73, 5376.
    [78] Furtak T. E., Roy D. Phys. Rev. Lett. 1983, 50, 1301.
    [79] Pettkofer C., Eickmans J., Erturk U., Otto A. Surf. Sci. 1985, 151, 9.
    [80] Kester J. J. J. Chem. Phys. 1983, 78, 7466.
    [81] Guy A. L., Pemberton J. E. Langmuir 1985, 1, 518.
    [82] Campion A., Kambhampati P. Chem. Soc. Rev. 1998, 27, 241.
    [83] Otto A., Surface-enhanced Raman scattering: “Classical” and “Chemical” origins in (Topics in Applied Physics, Vol 54) Light Scattering in Solids Ⅳ , Cardona M., Giintherodt G. Eds., Springer Berlin, 1984.
    [84] Chang R. K., Bunsenges Ber. Phys. Chem. 1987, 91, 296.
    [85] Creighton J. A. The Selection Rules for Surface-Enhanced Raman Spectroscopy. In Spectroscopy of Surfaces Clark, R. J. H., Hester, R. E. Eds. Wiley: Chichester, England, 1988.
    [86] Creighton J. A., Blatchford C. G., Albrecht M. G., J. Chem. Soc. Fraranday. Trans., 1979, 45, 790.
    [87] Otto A., Bomemann T., Erturk U. I. Mrozek Petennkofer C. Surf. Sci. 1989, 210, 363.
    [88] Lombardi J. R., Birke R. L., Sanchez L. A., Bernard I., Sun S. C. Chem. Phys. Lett. 1984, 104, 240.
    [89] Furtak T. E., Reyes J. Sur. Sci. 1980, 93, 351.
    [90] 贾慧颖 博士学位论文 吉林大学, 2006.
    [91] Rohr T. E., Cotton T., Fan N., Tarcha P. J., Anal. Biochem. 1989, 182, 388.
    [92] Dou X., Takama T., Yamaguchi Y.,Yamamoto, H.,Ozaki, Y. Anal. Chem., 1997, 69, 1492.
    [93] Isola N. R., Stokes D. L., Vo-Dinh T., Anal. Chem. 1998, 70, 1352.
    [94] Vo-Dinh T., Houck K., Stokes D. L. Anal. Chem. 1994, 66, 3379.
    [95] Wabuyele M. B., Vo-Dinh T., Anal. Chem. 2005, 77, 7810.
    [96] ElAmri C., Baron M. H., Maurel M. C. Spectrochim. Acta A 2003, 59, 2649.
    [97] Zhang, R.Y. ,Pang, D.W., Zhang, Z.L.,Yan, J.W., Tian, Z.Q.,Yao, J.L., Mao, B.W., Sun, S.G. J. Phys. Chem. B, 2002, 106, 11233.
    [98] Yamada H., Yamamoto Y., Tani N., Chem. Phys. Letters, 1978, 56, 591.
    [99] Yamada H., Yamamoto Y., Surface Sci., 1983, 134, 71.
    [100] Hayashi S., Koh R., Ichiyama Y., Yamamoto K., Phys. Rev. Lett., 1988, 60,1085.
    [101] Zhang P.,Wang Y. H.,He T. J., Zhang B.Z, Wang X.Y,Xin H.W, Liu F. C.,Chem. Phys. Letters, 1988, 153, 215.
    [102] Wen H., He T. J., Xu C.Y., Zuo J., Liu F. C., Molecular Physics, 1996, 88, 281.
    [103] Mou C. B., He T., Wang X., Liu F., Jiang J., Chen L. Wuli Huaxue Xuebao, 1996, 12, 841.
    [104] Wang X. Q., Wen H., He T. J., Zuo J., Xu C.Y., Liu F. C., Spectrochim. Acta A, 1997, 53, 1411.
    [105] Wang X. Q., Wen H., He T. J., Zuo J., Xu C.Y., Liu F. C., Spectrochim. Acta A, 1997, 53, 2495.
    [106] Kudelski A., Grochala W., Janik-Czachor M., Bukowska J., Szummer A., Dolata M., J. Raman Spectrosc., 1998, 29, 431.
    [107] Quagliano L. G., J. Am. Chem. Soc., 2004, 126, 7393.
    [108] Wang Y. F., Sun Z. H., Wang Y. X., Hu H. L., Zhao B., Xu W. Q., Spectrochim. Acta A, 2007, 66, 1199.
    [109] Sun Z. H., Zhao B., Lombardi J. R. Appl. Phys. Lett. 2007, 91.221106.
    [110] Wang Y. F., Sun Z. H., Hu H. L., Jing S. Y., Zhao B., Xu W. Q., Zhao C., Lombardi J. R. J. Raman Spectrosco. 2007, 38, 34.
    [111] Wang Y. F., Hu H. L., Jing S. Y., Wang Y. X., Sun Z. H., Zhao B., Zhao C., Lombardi J. R. Anal. Sci. 2007, 23, 787.
    [112] Wang Y. F., Zhang J. H., Jia H. Y., Li M. J., Zeng J. B., Yang B., Zhao B., Xu W. Q Lombardi J. R. J. Phys. Chem. C 2008, 112, 996.
    [113] Tian Z. Q., Ren B., Li J. F., Yang Z. L. Chem. Comm. 2007, 3514.
    [114] Matsui R,Verma P., Ichimura T., Inouye Y.,Kawata S. Appl. Phys. Lett. 2007, 90, 061906.
    [115] 马凤国,邵自强,宋缪毅,纳米级氧化铅粉体的合成,合成化学,2001,9(5), 449.
    [116] Moseley P. T., Cooper A., J. Power Sources. 1999, 78, 244.
    [117] 吴寿松, 谈红丹在蓄电池生产中的应用, 蓄电池, 2002, 2, 88.
    [118] Huynh W. U., Dittmer J. J., Alivisatos A. P. Science 2002, 295, 2425.
    [119] Cao M. H., Hu C. W., Peng G., Qi Y. J., Wang N.B. J. Am. Chem. Soc. 2003, 125, 4982.
    [120] Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, 1., Dasari, R. R., Felt, M. SPhys. ReV. Lett. 1997, 78, 1667.
    [121] Xu, H. X., Bjerneld, E. J., Kall, M.,. Borjesson, L Phys. Rev. Lett. 1999, 83, 4357
    [122] Zhang, X., Young, M. A., Lyandres, O.,Van Duyne, R. P. J. Am. Chem. Soc. 2005, 127, 4484.
    [123] Grubisha, D. S., Lipert, R. J., Park, H.Y., Driskell, J ,Porter, M. D. Anal. Chem. 2003, 75, 5936.
    [124] Li X.L., Zhang J.H., Xu W.Q., Jia H.Y., Wang X., Yang B., Zhao B., Li B.F., Ozaki Y. Langmuir 2003, 19, 4285.
    [125] Zhang, H.L., Evans, S. D., Henderson, J. R., Miles, R. E., Shen, T. J. Phys. Chem. B , 2003, 107, 6087.
    [126] Wang Z.J., Rothberg L.J., J. Phys. Chem. B , 2005, 109, 3387.
    [127] Yu H.Z., Xia N., Liu Z.F. Anal. Chem., 1999, 71, 1354.
    [128] Mark.A. Bryant, Susan L.Joa, Pemberton. J. E. Langmuir 1992, 8, 453.
    [129] Baldwin J. A., Vlckova B., Andrews M. P., Butler I. S. Langmuir , 1997,13, 3744.
    [130] Baldwin J., Schuhler N., Butler I. S., Andrews M. P. Langmuir 1996, 12, 6389.
    [131] Hu J. W., Zhao B., Xu W. Q., Li B. F., Fan Y. G., Spectrochim. Acta A, 2002, 58, 2827.
    [132] Bryant M. A., Pemberton J. E., J. Am. Chem. Soc., 1991, 113, 3629.
    [133] Maxwell D.J., Emory S.R., Nie S.M. Chem. Mater. 2001, 13, 1082.
    [134] Bozzini B., D’Urzo L., Mele C. J. Electrochem. Soc. 2005 152 (4), C255.
    [135] Pérez León C., Kador L., Peng B., Thelakkat M. J.Phys.Chem. B 2006, 110, 8723.
    [136] Sandhyarani N., Pradeep T. J. Colloid & Interface Sci. 1999, 218, 176.
    [137] Orendorff J., Gole A., Sau T. K., Murphy C. J. Anal. Chem. 2005, 77, 3261.
    [138] Cai W. B., Ren B., Li X. Q., She C. X., Liu F. M., Cai X.W., Tian Z. Q. Surf. Sci. 1998, 406, 9.
    [139] Park H. K., Yoon J. K., Kim K. Langmuir 2006, 22, 1626.
    [140] Ozgur U.,Alivov Y. I., Lui C.,, Teke A., Reshchikov M. A., Dogan S., Avrutin V., Cho S. J., Morkoc H., J. Appl. Phys. 2005, 98, 041301.
    [141] Kurtz M., Strunk J., Hinrichsen O., Muhler M., Fink K., Meyer B., W?ll C. Angew. Chem. Int. Ed. 2005, 44, 2790.
    [142] Chatterjee A. P., J. Mater. Sci. 1999, 34, 4225.
    [143] Chan H. Y. H.,Takoudis C. G.,Weaver M. J., J. Phys. Chem. B 1999, 103, 357.
    [144] Blajiev O.,Terryn H., Hubin A.,Soukupova L.,Geerlings P. J. Raman Spectrosc. 2006, 37, 777.
    [145] Liao L. B., Zhou H. Y., Xiao M. M., Chem. Phy., 2005, 316 (1-3), 164.
    [146] Min E. S., Nam S. I., Lee M. S. Bull. Chem. Soc. Jpn. 2002, 75, 677.
    [147] Khan A., Jadwisienczak W. M., Kordesch M. E. Physica E 2006, 33 331.
    [148] Danmen T. C., Porto S. P. S., Tell B. Phys. Rev. 1966 14, 570.
    [149] Exarhos G. J., Sharma S. K. Thin Solid Films 1995, 270, 27.
    [150] Chen M., Wang X., Yu Y. H., Pei Z. L., Bai X. D., Sun C., Huang R. F., Wen L. S. Appl. Surf. Sci. 2000, 158, 134.
    [151] Sandhyarani N., Pradeep T. J. Colloid & Interface Sci. 1999, 218, 176.
    [152] Bryant M. A., Joa S. L., Pemberton J. E. Langmuir 1992, 8, 753.
    [153] Green M., Liu F. M. J. Phys. Chem. B 2003, 107, 13015.
    [154] Sawaguchi T., Mizutani F., Yoshimoto S., Taniguchi I. Electrochimica Acta 2000, 45,2843.
    [155] Gu R. A., Shen X. Y., Liu G. K., Ren B., Tian Z. Q., J. Phys. Chem. B 2004, 108, 17519.
    [156] 顾仁敖, 沈晓英, 刘国坤, 田中群,高等学校化学学报 2005,26,8,1537.
    [157] Dai H J, Wong E W, Lu Y Z, Fan S ,Lieber C., Nature 1995, 375, 769.
    [158] Han W. Q., S S Fan, Li Q Q , Hu YD, Science,1997,277,1287.
    [159] Rout L., Sen T. K., Punniyamurthy T. Angew. Chem. Int. Edit. 2007, 46, 5583.
    [160] Zhang D. W., Yi T. H., Chen C. H. Nanotechnology 2005, 16, 2338.
    [161] Zou G. F., Li H., Zhang D. W., Xiong K., Dong D., Qian Y. T. J. Phys. Chem. B 2006, 110, 1632.
    [162] Anandan S. Sol. Energy Mat. Sol. C. 2007, 91, 843.
    [163] Jain G. H. Patil L. Sens. Actuators B 2007, 123, 246.
    [164] Park J. W., Baeg K. J. Electrochem. Solid-State Lett., 2007, 10, 340.
    [165] Xu J. F., Ji W., Shen Z. X., Tang S. H., Ye X. R., Jia Z., Xin X. Q., J. Solid State Chem. 1999, 147, 516.
    [166] Zhang J. T., Liu J. F., Peng Q., Wang X., Li Y. D. Chem. Mater. 2006,18, 867.
    [167] Oral A.Y., Mensur E., Aslan M. H. Mater. Chem. Phys. 2004, 83, 140.
    [168] Chen X. K., Irwin J. C., Franck J. P. Phys. Rev. B 1995, 52, R13130.
    [169] Cheng C. L., Ma Y. R., Chou M. H., Huang C. Y., Yeh V., Nanotechnology 2007, 18, 245604.
    [170] Yu T, Sow CH, Gantimahapatruni A, Cheong FC, Zhu YW, Chin KC, Xu XJ, Lim CT, Shen ZX, Thong JTL, Wee ATS Nanotechnology 2005, 16, 1238.
    [171] Li X. L., Xu W. Q., Zhang J. H., Jia H. Y., Yang B., Zhao B., Li B. F., Ozaki Y. Langmuir 2004, 20, 1298.
    [172] Malynych S. Z., Chumanov G. J. Vacuum Sci. & Tech. A 2003, 21, 723.
    [173] Li X. L., Xu W. Q., Jia H. Y., Wang X., Zhao B., Li B. F., Ozaki Y. Thin Solid Films 2005, 474, 181.
    [174] Zhang J. H., Li X. L., Liu K., Cui Z. C., Zhang G., Zhao B., Yang B. J. Colloid Interface Sci. 2002, 255, 115.
    [175] 王延飞 博士学位论文 吉林大学, 2007.
    [176] Shan, G. Y., Xu, L. H., Wang, G. R., Liu, Y. C. J. Phys. Chem. C 2007, 111, 3290.
    [177] Shen M. Y., Yokouchi T., Koyama S., Goto T., Phys. Rev. B 1997 56, 13066.
    [178] Shi W., Lim K., Liu X., J. Appl. Phys. 1997, 81 ,2822.
    [179] Briskman R. N., Sol. Energy Mater. Sol. Cells 1992, 27,361.
    [180] Olsen L.C., Addis F.W., Miller W., Sol. Cells 1982 7 ,247.
    [181] Hara M., Kondo T., Komoda M., Ikeda S., Shinohara K., Tanaka A., Kondo J. N., Domen K., Chem. Commun. 1998, 357.
    [182] Chen S., Chen X., Xue Z., Lia L., You X., J. Cryst. Growth, 2002, 246, 169.
    [183] Zhang X., Xie Y., Xu F., Liu X., Xu D., Inorg. Chem. Commun. 2003, 6,1390.
    [184] Dong Y., Li Y., Wang C., Cui A., Deng Z., J. Colloid Interface Sci. 2001, 243,85.
    [185] Hu J. W., Zhao B., Xu W. Q., Fan Y. G., Li B. F., Ozaki Y., J. Phys. Chem. B 2002, 106, 6500.
    [186] Huang C.C., Hwu J.R., Su W.C., Shieh D.B., Tzeng Y., Yeh C.S. Chem. Eur. J., 2006, 12, 3805.
    [187] Zhang H.G., Zhu Q., Wang Y.,.Zhang C.Y, Tao L.Materials Letters 2007, 61, 23-24 ,4508.
    [188] Hong C. S., Park H. H., Wang S. J., Moon J., Park H. H., Hill R.H., Appl. Surf. Sci. 2006, 252, 7739.
    [189] Balamurugan B., Mehta B. R., Avasthi D. K., Singh F., Arora A. K., Rajalakshmi M.,. Raghavan G., Tyagi A. K. and Shivaprasad S. M., J.Appl. Phys. 2002, 9, 3304.
    [190] Yu P. Y., Shen Y. R. Phys. Rev. Lett. 1974, 32, 17, 939.
    [191] Reimann K., Syassen K., Phys. Rev. B. 1989, 39, 11113.
    [192] Kall M.,Xu H. X., Johansson, P. J. Raman Spectrosc. 2005, 36, 510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700