金属@TiO_2核壳纳米粒子的制备及SERS研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属@TiO_2复合纳米粒子由于其特殊的结构及性质,在催化等领域中具备潜在的应用前景。表面增强拉曼光谱(SERS)具有极高的检测灵敏度以及可提供丰富的结构信息,在化学生物等领域也备受关注。若将两者的功能复合则可提供一种既具有光催化效应又兼备SERS效应的复合材料。一方面可利用TiO_2良好的催化性能结合紫外光获得可循环再生的SERS基底;另一方面利用SERS的高灵敏度的特点,现场实时检测TiO_2表面限域内的反应过程,发展一种分子水平上研究光催化机理的高灵敏度检测技术。本文在上述前提下,主要开展了下列一系列的工作:
     (1)完善了层层组装技术,利用聚电解质的静电吸附作用,基于硅片或ITO等基底,在不同尺寸的Au,Ag等贵金属纳米粒子表面包裹上不同层数的TiO_2前驱体—TALH,通过退火或水解制备得到不同粒径大小、不同壳层厚度的Au@TiO_2及Ag@TiO_2核壳纳米粒子。以SEM,TEM,UV-vis谱以及Raman光谱等手段对不同包裹阶段核壳纳米粒子的表面形貌、尺寸及TiO_2的晶型进行了表征。
     (2)以苯硫酚(TP),对巯基苯甲酸(MBA)以及亚甲基蓝(MB)等为探针分子考察了该基底的SERS长程增强作用的有效性。此外,结合紫外光催化技术实现了该基底的可循环使用,对其重现性及稳定性等进行了研究。此类新型复合基底为将SERS技术拓展到高灵敏度的定量或半定量分析提供实验基础。
     (3)以亚甲基蓝、苯胺等污染物为模型分子对所合成的不同尺寸、不同壳层厚度的Au@TiO_2纳米粒子的光催化效率和可循环使用性能进行表征。考察了石英管内壁组装上Au@TiO_2纳米粒子后实际废水的降解效率。结果表明:该材料对废水具有良好的降解性能,并能循环使用。
     (4)发展了一种新型光催化机理研究的高灵敏度技术。通过将TiO_2壳层独特的光催化和贵金属内核的巨大SERS效应的长程作用相结合,现场实时研究了光催化过程中表面物种的变化情况,从分子水平上提供了此类复合材料表面吸附及光催化过程机理。通过借助于SERS手段来实时检测MB等染料分子在Au@TiO_2表面光催化降解中间过程,并根据其谱峰的位移及相对强度的变化情况,详细研究了模型分子在此类具有催化活性二氧化钛外壳的可能的降解机理。
Metal@TiO_2 composite nanoparticles have tremendous potential application in the fields of catalysis. Surface-enhanced Raman spectroscopy(SERS) has also aroused great attention due to its high sensitivity, along with its rich structural information of the spectrum. By combing the above aspects, a novel composite would be obtained, possessing both the photocatalysis property and the SERS effects. On the one hand, a recyclable SERS substrate could be acquired by using the catalytic ability of TiO_2 under the ultraviolet irradiation; on the other hand, a high sensitive detection technique on the molecular level would be developed to study the reaction processes on the interfacial of the TiO_2 by utilizing high-sensitivity of SERS effect. The paper was focused on the following issues:
     (1) By the layer-by-layer technique, various layers of TALH (precursor of TiO_2) were coated on Au or Ag nanoparticles with different diameters immobilized on the substrate of silicon wafer or ITO. After annealing treatment, the Au@TiO_2 and Ag@TiO_2 core-shell nanoparticles were thus prepared with different core sizes and TiO_2 shell thicknenss. SEM, TEM, UV-vis and Raman spectroscopy were employed to characterize the surface morphology, size and crystal type of the TiO_2 at different coating stages.
     (2) Thiophenol (TP), mercaptobenzoic acid (MBA) and methylene blue(MB) were served as model probes to study the feasibility of SERS long-range enhancement. In addition, by combining the photocatalytic technique, the recyclable usage as SERS substrate was achieved. The reproducibility and stability were explored in SERS detection. The novel composite substrate provided the experimental basis for extending SERS to the high-sensitive quantitative and semi-quantitative analysis.
     (3) The photodegradation of pollutants such as methylene blue (MB), aniline (AN) molecules were utilized to characterize the catalytic activity and recyclable capacity of the Au@TiO_2 core-shell nanoparticles with different sizes and shell thickness. Besides, Au@TiO_2 core-shell nanoparticles were also assembled onto the inner wall of the quartz tube. The catalytic efficiency was also studied by the degradation rate of the waste water. The result showed that the composite nanoparticles exhibted a high catalytic ability and recyclable performance.
     (4)Developing a novel high-sensitive technique to in situ study the mechanism of the photocatalysis by combining the unique photocatalytic property of the TiO_2 shell with the considerable SERS effect of the noble metal core. The changes of the species among the photocatalytic process could be detected with the in-situ SERS technique to afford the absorption and degradation mechanism at the molecular level. The photocatalytic process of methylene blue (MB) was also investigated on Au@TiO_2 under UV illumination with in-situ SERS technique. The possible degradation mechanism was thus detailed discussed according to the changes of the spectral feature.
引文
[1] Fujishima A., Honda K., Nature, 1972, 238, 38.
    [2] Frank Steven N., Bard A. J., J. Am. Chem. Soc., 1977, 99, 4667.
    [3] Fujishima A., Rao T N., Tryk D A., J. Photochem. Photobiol .C: Photochem. Rev., 2000, 1, 1.
    [4] Farrauto R. J., Heck R.M., Catal . Today, 2000, 55, 179.
    [5] Baba R., Nakabayashi S., Fujishima A., Honda K., J. Phys. Chem. 1985, 89, 1902.
    [6] Heller A., Nato Asi Ser., Ser. C, 1986, 15.
    [7] Kalyanasundaram K., Graetzel M., Pelizzetti.E.C., Chem. Rev., 1986, 69, 57.
    [8] Henglein, A. Chem. Rev., 1989, 89, 1861.
    [9] Kamat P. V., J. Phys. Chem. B, 2002, 106, 7729.
    [10] Kamat P. V., Flumiani M., Dawson A., Colloids Surf. A, 2002, 202, 269.
    [11] Kamat P. V., Meisel D., Colloid Interface Sci., 2002, 7, 282.
    [12] Zhang J. Z., Acc. Chem. Res., 1997, 30, 423.
    [13] George T. K., Kamat P. V., Acc. Chem. Res., 2003, 36, 888.
    [14] Mulvaney P., Grieser F., Meisel D., Langmuir, 1990, 6, 567.
    [15] Kraeutler B., Bard A.J., J. Am. Chem. Soc., 1978, 100, 4317.
    [16] Nosaka Y., Norimatsu K., Miyama H., Chem. Phys. Lett., 1984, 106, 128.
    [17] Xu D., Xu Y., Chen D., Chen D., Guo G., Gui L., Tang Y., Chem. Phys. Lett., 2000, 325, 340.
    [18] Burda C., Lou Y.B., Chen X.B., Nano Letters, 2003, 13, 1049.
    [19] Martra G., Applied Catalysis A, 2000, 200, 275.
    [20]王传义,刘春艳,沈涛,高等化学学报, 1998 , 19, 2013.
    [21] Serpone N. T., Exier I., Emelin A.V., J.Photochem. Photobiol.A:Chemistry 2000, 136,145.
    [22] Tristao J. C., Magalhaes F., Corio P., J.Photochem. Photobiol. A:Chemistry 2006, 181,152.
    [23] Bessekhouad Y., Chaoui N., Trzpit M., J.Photochem. Photobiol. A:Chemistry, 2006, 183, 218.
    [24] Hou L.R., Yuan C. Z., Peng Y., J. Hazardous Materia1s, 2007,139, 31.
    [25] Dodd A., McKinley A., Saunders M., Nanotechnology, 2006, 17, 692.
    [26] CuiY., Rare Meta1s, 2006, 25, 649.
    [27] Lee B.T., Han J. K., Gain A. K., Materials Letters, 2006, 60, 2101.
    [28] Liu J., Yang R., Li S., Rare Meta1s, 2006, 25, 636.
    [29] Mohamed M. M., Bayoumy W. A., Khairy M., Microporous andMesoporousMateria1s, 2006, 97, 66.
    [30] Xiao G. C., Lu W. S., Li D. Z., Chin. J. Inorg.Chem. 2005, 21, 551
    [31] Cho I.W., Term I. A., H O.A., Phys. Chem, 1994, 98, 3669.
    [32] Rom I.P., Liu J.B., Journal of the Air and Waste Management Association, 1999, 49, 1246.
    [33]张金龙,赵文娟,陈海军等.物理化学学报, 2004, 20, 424.
    [34]鄂磊,徐明霞,雅菁等.稀有金属材料与工程, 2008, 31,138.
    [35] Nosaka Y., IshizukaY., Miyama H., Ber. Bunsen-Ges., Phys. Chem. 1986, 90, 1199.
    [36] Henglein A., Ber. Bunsen-Ges., Phys. Chem. 1995, 99, 903.
    [37] Ikeda S., Sugiyama N., Pal B., Marci G., Palmisano L., Noguchi H.,Uosaki K., Ohtani B., Phys. Chem. Chem. Phys. 2001, 3, 267.
    [38] Dawson A., Kamat P.V., J. Phys. Chem. B 2001, 105, 960.
    [39] Szabo B. E., Czili H., Horvath A., J. Photochem. Photobiol A:Chemistry, 2003, 154, 195.
    [40] Brown P.; Kamat P. V., J. Am. Chem. Soc. 2008, 130, 8890.
    [41] Farrow B.; Kamat P. V., J. Am. Chem. Soc. 2009, 131, 11124.
    [42] Williams G.; Kamat P. V., Langmuir 2009, 25, 13869.
    [43] Zeng H.; Cai W.; Liu P.; Xu X.; Zhou H.K.,lingshirn C.; Kalt H., ACS Nano 2008, 2, 1661
    [44] Subramanian V., Wolf E. E., Kamat P.V., J. Am. Chem. Soc. 2004. 126, 4945.
    [45] Kamat P.V., Flumiani M., Hartland G. V., J. Phys. Chem. B 1998, 102, 3123.
    [46] Link S., Burda C., Nikoobakht B., El-Sayed M. A., J. Phys. Chem.B 2000, 104, 6152.
    [47] Bradley J. S.,VCH:Weinheim, 1994.
    [49] Gittins D. I., Caruso F., J. Phys. Chem. B, 2001, 105, 6846.
    [50] Mayya K. S., Gittins D. I., Caruso F., Chem. Mater. 2001, 13, 3833.
    [51] Yu Y. T., Mulvaney P., Korean J. Chem. Eng., 2003, 20, 1176.
    [52] Yu Y. T., Mulvaney P., Materials Transactions 2004, 45, 964.
    [53] Jing L., Hua C. Z., Angew. Chem. Int. Ed. 2005, 44, 4342.
    [54] Isabel P. S., Koktysh D. S., Mamedov A. A., Giersig M., Kotov N. A., Liz-Marzan L. M., Langmuir 2000, 16, 2731.
    [55] Zhang D., Song X. M., Zhang R. W., Zhang M., Liu F.Q., Eur. J. Inorg. Chem. 2005, 12,1643.
    [56] Feischmann M., Hendra P.J., Mcquillan A.J., Chem.Phys.Lett.,1974, 26, 163.
    [57] Jeanmaire D. L., Van Duyne R. P., J. Electroanal. Chem. 1977, 84, 1.
    [58] Albrecht M. G., Creighton J. A., J. Am. Chem. Soc. 1977, 99, 5215.
    [59] Chang R. K., Fucak T. E., Plenum Press: New York, 1982.
    [60] Campion A., Kambhampati P., Chem. Soc. Rev. 1998, 27, 241.
    [61] Tian Z. Q., Ren B., Meyers.R. A.(Ed.) John Wiley& Sons Ltd. Chichester 2000, 9162.
    [62] Tian Z. Q., Ren B., Encyclopedia of Electrochemistry, Wiley-VCH, 2001.
    [63] Tian Z. Q., Ren B., Chin. J. Chem., 2000, 18, 315.
    [64] Moskovits M., Rev. Mod. Phys., 1985, 57, 783.
    [65] Otto A., Cardona M., Guntherodt G., Light Scattering in Solid, 1984, 4, 289.
    [66] Campion A., Kambhampati P., Chem. Soc. Rev., 1998, 27, 241.
    [67] Otto A., J. Raman. Spectrosc. 2005, 36, 497.
    [68] Moskovits M., Rev. Mod. Phys. 1985, 57, 783.
    [69] Gersten J. I., J. Chem. Phys. 1980, 72, 5779.
    [70] Chen C. Y., Phys. Rev. Lett. 1980, 45, 1287.
    [71]杨志林.金属纳米粒子的光学性质及过渡金属表面增强拉曼散射的电磁场机理研究. [D].厦门大学,博士, 2006.
    [72] Xiong Y., Mclellan J. M., Chen J., Yin Y., Li Z. Y., Xia Y., J Am. Chem Soc. 2005, 127, 17118.
    [73] McLellan J. M., Xiong Y., Hu M., Xia Y., Chem Phys Lett. 2006, 417, 230.
    [74] Abdelsalam M. E., Mahajan S., Bartlett P. N., Baumberg J. J., Russell A. E., J. Am. Chem. Soc. 2007, 129, 99.
    [75] Gersten J., Nitzan A., J. Chem. Phys. 1980, 73, 3023.
    [76] Lombardi J. R., Birke R. L., J. Chem. Phys. 2007, 126, 244709.
    [77] Michaels A. M., Jiang J., Brus L., J. Phys.Chem. B. 2000, 104, 11965.
    [78] Bosnick K. A., Jiang J., Brus L. E., J. Phys. Chem.B. 2002, 106, 8096.
    [79] Otto A., Bruckbauer A., Chen Y. X., J. Mol. Struct. 2003, 661, 501.
    [80] Otto A., Indian Journal of Physics, B. 2003, 77, 249.
    [81] Haslett T. L., Tay L., Moskovits M., J. Chem. Phys. 2000, 113, 1641.
    [82] Kneipp K., Wang Y., Kneipp H., Itzkan I., Dasari R. R., Feld M. S., Phys. Rev. Lett. 1996, 76, 2444.
    [83] Brolo A. G., Sanderson A. C., Smith A. P., Phys. Rev. B: Condens. Matter. 2004, 69, 045424.
    [84] Kambhampati P., Child C. M., Foster M. C., Campion A., J. Chem. Phys. 1998, 108, 5013.
    [85] Campion A., Ivanecky J. E., Child C. M., Foster M., J. Am. Chem. Soc. 1995, 117, 11807.
    [86] Zhou Q., Fan Q., Zhuang Y., Li Y., Zhao G., Zheng J., J. Phys. Chem. B. 2006, 110, 12029.
    [87] Wang Y., Sun Z., Wang Y., Hu H., Zhao B., Xu W., Lombardi J. R., Spectrochim. Acta, Part A. 2007, 66, 1199.
    [88] Wang Y., Sun Z., Hu H., Jing S., Zhao B., Xu W., Zhao C., Lombardi J. R., J. Raman Spectrosc. 2007, 38, 34.
    [89] Livingstone R., Quagliano L. G., Perez-Paz N., Munoz M., Tamargo M. C., Jean-Mary F., Lombardi J. R., Proceedings of SPIE-The International Society for Optical Engineering. 2005, 6008, 60080
    [90] Quagliano L. G., J. Am. Chem. Soc. 2004, 126,7393.
    [91] Seki H., Philpott M. R., J. Chem. Phys. 1980, 73, 5376.
    [92] Saito H., Ikezawa Y., Toda G., Chem. Phys. Lett. 1984, 110, 291.
    [93] Kester J. J., J. Chem. Phys. 1983, 78, 7466.
    [94]atanabe T., Yanagihara N., Honda K., Pettinger B., Moerl L., Chem. Phys. Lett. 1983, 96, 649.
    [95] Osawa M., Matsuda N., Yoshii K., Uchida I., J. Phys. Chem. 1994, 98, 12702.
    [96] Furtak T. E., Macomber S. H., Chem. Phys. Lett. 1983, 95, 328.
    [97] Demuth J. E., Sanda P. N., Phys. Rev. Lett. 1981, 47, 57.
    [98] Oldenburg S. L., Westcatt S. L., Averitt R. D., Halas N. J., J. Chem. Phys., 1999, 111, 4729.
    [99] Kahl M., Voges E., Kostrewa S., Viets C., Hill W., Sensors and Actuators B Chem., 1998, 51, 285.
    [100] Kahl M., Voges E., Phys. Rev. B, 2000, 61, 14078.
    [101] Jensen T. R., Schatz G. C., Van Duyne R. P., J. Phys. Chem. B, 1999, 103, 2394.
    [102] Freeman R. G., Grabar K. C., Allison K. J., et al., Science,1995, 267, 1627.
    [1]左演声,陈文哲等.材料现代分析方法,北京工业大学出版社, 2000.
    [2]余海湖,姜德生,光谱学与光谱分析, 2002, 22, 511.
    [3]林旭锋,铑电极的表面增强拉曼光谱:从可见光到紫外光,厦门大学硕士学位论文,2003.
    [4] Tian Z.Q., Ren, B., Raman spectroscopy of electrode surfaces, Encyclopedia of elctrochemistry (Ed. A. J. Bard), 2003, 3, 572.
    [5]胡建强,金属纳米粒子的尺寸和形状可控合成及其表征,厦门大学博士学位论文, 2003.
    [1] Li X.H., Chen G. Y., Yang L. B.,Jin Z.,Liu J. H., Adv. Funct. Mater. 2010, 20, 2815.
    [2] Jing L., Hua C. Z., Angew. Chem. Int. Ed,. 2005, 44, 4342.
    [3] Dawson A., Kamat, P. V., J. Phys. Chem. B 2001, 105, 960.
    [4] Ubramanian V.; Wolf E. E.; Kamat, P. V., Langmuir 2003, 19, 469.
    [5] Zanella R., Giorgio S., Henry C. R., Louis C., J. Phys. Chem. B 2002, 106, 7634.
    [6] Yu Y.T., Mulvaney P., Korean J.Chem.Eng.,2003, 20, 1176.
    [7] Yu Y.T., Mulvaney P., Materials Transactions 2004, 45, 964.
    [8] Kwon H.W., Lim Y. M., Triparhy S.K., Kim B. G., Lee M. S., Yu Y.T., Japanese J. Applied Physics 2007, 46, 2567.
    [9] Isabel P. S., Koktysh D. S., Mamedov A. A., Giersig M., Kotov N. A., Liz-Marzan L. M., Langmuir 2000, 16, 2731.
    [10] Mayya K. S., Gittins D. I., Caruso F., Chem.Mater. 2001, 13, 3833.
    [11] Aravind P. K., Nitzan A., Metiu H., Surf. Sci., 1981, 110, 189.
    [12] Li J. F., Hu J. W., Ren B., Tian Z. Q., Acta Phys.-Chim. Sin., 2005, 21, 825.
    [13] Frens G. J. Nature Phys. Sci., 1973 , 241.
    [14] Gittins D. I., Caruso F., J. Phys.Chem.B 2001, 105, 6846.
    [15] Karpovich D. S.; Blanchard G.. J., Langmuir 1994, 10, 3315.
    [16] Yan W.F., Chen B., Mahurin S. M., Schwartz V., Mullins D. R., Lupini A. R., Pennycook S. J., Dai S., S. Overbury H., J. Phys. Chem. B 2005, 109, 10676
    [17] Subramanian V., Wolf E. E., Kamat P.V., J. Am. Chem. Soc. 2004. 126, 4945.
    [18] Mulvaney P., Langmuir 1996, 12, 788.
    [19] Gittins D. I., Caruso F., Adv.Mater., 2000, 12, 1947.
    [20] Gittins D. I., Caruso F., J. Phys. Chem. B 2001, 105, 6846.
    [21] Swamy V., Kuznetsov A., Dubrovinsky L. S., Caruso R. A., Shchukin D.G., Muddle B.C., Phys. Rev. B 2005, 71, 184302.
    [22] Choi H. C.,Jung Y. M., Kim S. B., Vib. Spectrosc. 2005, 37, 33.
    [23] Ohsaka T., Izumi F., Fujiki Y., J.Raman Spectroscopy.1978, 7, 321.
    [24]许小燕,李淑瑾,吴德印,顾仁敖,化学学报, 2007, 65, 1095.
    [25] Shi X. Y., Cassagneau T., Caruso F.. Langmuir, 2002, 18, 904.
    [26] Tian Z. Q., Ren B., Li J. F., Yang Z. L.. Chem. Commun., 2007, 3514.
    [27]范晓敏,邹文君,顾仁敖,姚建林,高等学校化学学报, 2008, 29, 130.
    [28] Lee.P.C., Meisel D. P., J. Phys. Chem., 1982, 86, 3391
    [1] Li J. F., Huang Y. F., Ding Y., Yang Z. L., Li S. B., Zhou X. S., Fan F. R., Zhang, W., Zhou Z. Y., Wu D. Y., Ren B.,Wang Z. L., Tian Z. Q., Nature. 2010, 464, 392.
    [2] Schmidt H., Nguyen B. H., Jens P., Hans A., Heinz-Detlef K., Grazyna K., Mar. Pollut. Bull. 2004, 49, 229.
    [3] Nabiev I., Chpurpa I., Manfait M., J. Raman Spectrosc., 1994, 25, 13.
    [4] Fabian H., Anzenbacher P., Vib.Spectrosc., 1993, 4, 125.
    [5] Li W. Y., Camargo P. H. C., Lu X. M., Xia Y. N., Nano Lett. 2009, 9, 485.
    [6] Zhang B. H., Wang H. S., Lu L. H., Ai K. L., Zhang G. , Cheng X. L. ,Adv. Funct. Mater. 2008, 18, 2348 .
    [7] Thompson W. R., Pemberton J. E., Anal. Chem. 1994, 66, 3362.
    [8] CuiY., Rare Meta1s, 2006, 25, 649.
    [9] Lee B.T., Han J. K., Gain A. K., Materials Letters, 2006, 60, 2101.
    [10] Xiao G.N., Man S.Q., Chem. J. Chinese Universities, 2005, 26, 2090.
    [1] Malik P. K., J. Hazard.Mater. 2004, 113, 81.
    [2] Heller A., Acc. Chem. Res. 1995, 28, 503.
    [3] Sun B., Reddy E. P.; Smirniotis P. G., J. Catal. 2006, 237, 314.
    [4] Daly E., Habib H. A., Dyes Pigm. 2003, 57, 197.
    [5] Oldenburg S. J., Averitt R. D., Westcott S. L., Halas N., J. Chem. Phys. Lett. 1998, 288, 243.
    [6] Caruso F., Adv. Mater. 2001, 13, 11.
    [7] Lakshmi S., Renganathan R., Fujita S., J. Photochem. and Photobiol. A: Chemistry 1995, 88, 163.
    [8] Houas A., Lachheb H., Ksibi M., Elaloui E., Guillard Chantal., Herrmann M., Applied Catalysis B: Environmental 2001, 31, 145.
    [9] Baskaran S., Song L., Liu J., Chen Y. L., Graff G. L., J. Am. Ceram. Soc. 1998, 81, 401.
    [10] Nicolai S. H. A., Rubim J. C., Langmuir 2003, 19, 4291.
    [11]肖桂娜,满石清.高等学校化学学报, 2009, 29, 849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700