MWNTs/Co_(0.5)Ni_(0.5)Fe_2O_4/PI复合吸波材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰亚胺(PI)是一种重要的耐高温功能高分子材料,将多壁碳纳米管/铁氧体复合粉末与聚酰亚胺复合制备复合材料,对研制轻,薄,宽,强的耐高温吸波材料具有重要意义。
     本文采用氩等离子体修饰多壁碳纳米管,利用傅里叶红外,X光电子能谱仪,X射线衍射及拉曼光谱仪对修饰过的多壁碳纳米管(L-MWNTs)进行形貌及物相分析,并且解释了等离子体与碳管之间相互作用过程。采用化学共沉淀法制备了L-MWNTs/Co_(0.5)Ni_(0.5)Fe_2O_4复合粉末,利用透射电镜观察了铁氧体纳米颗粒在L-MWNTs上的分布,通过X射线衍射对铁氧体物相进行分析。采用溶胶—凝胶法制备了L-MWNTs/Co_(0.5)Ni_(0.5)Fe_2O_4/PI复合吸波材料,并对不同L-MWNTs含量的复合材料吸波性能进行了对比研究,利用扫描电镜观察了L-MWNTs在复合材料中分散性,利用透射电镜观察了碳管聚合前后的形貌变化,及对复合材料力学性能和热性能进行了表征分析。
     结果表明,在放电电压50V,放电电流0.3A,放电时间10min的处理条件下,经过氩等离子体修饰的多壁碳纳米管,其表面基团比例发生了改变,-COOH含量增多,提高其与聚酰亚胺的结合性。对比L-MWNTs/Co_(0.5)Ni_(0.5)Fe_2O_4/PI复合材料吸波性能发现,随L-MWNTs含量的增多,复合材料最大衰减增加,当L-MWNTs含量增加到0.75wt%时,最大衰减达到了-24.37dB,且衰减大于10dB的有效带宽变宽为5GHz,直到L-MWNTs含量增加到1 wt%时,有效带宽变窄,但是有向高频移动的趋势。复合材料的抗拉强度随L-MWNTs含量的增加而增加,当L-MWNTs含量增加到0.75wt%时,其抗拉强度达到了105MPa。同时,随L-MWMTs含量的增加,复合材料的玻璃化转变温度降低,但降低幅度较小,维持在260℃以上;相比于纯PI,复合材料的热分解温度有所降低,但也在500℃才开始分解。
Polyimide (PI) functions as an important high temperature polymer materials. It is important to develop polyimide matrix composites combining carbon nanotubes/ferrite composite powder for meeting the demand of light, thin, wide, strong for microwave absorbing materials served at high temperatures.
     In this thesis, multiwalled carbon nanotubes (MWNTs) were surface-modified by Ar plasma. The morphologies and structure of plasma modified MWNTs (denoted as L-MWNTs) were characterized by Fourier transform infrared spectroscopy (FT-IR),X-photoelectron spectrometer (XPS), X-ray diffraction (XRD) and Raman spectroscopy. The reaction between the Ar plasma and the MWNTs was illustrated. L-MWNTs/Co_(0.5)Ni_(0.5)Fe_2O_4 composite powder was obtained via chemical coprecipitation, the distribution and phase of ferrite nano particles on the surface of L-MWNTs were investigated by transmission electron microscope (TEM) and XRD. L-MWNTs/Co_(0.5)Ni_(0.5)Fe_2O_4/PI composites were prepared by Sol-Gel method in different contents and the absorbing properties were compared. Dispersity and morphology of L-MWNTs in the composites was characterized by scanning electron microscope (SEM) and TEM. The thermal and mechanical properties of the obtained nancomposites were also investigated.
     The results show that the proportions of functional groups on L-MWNTs have changed after Ar plasma treatment, which was carried out at 50 V with a current of 0.3 A, lasted for 10 min. Increase of carboxyl group is help to improve interfacial bonding between the MWNTs and PI matrix. Meanwhile, the reflection loss (RL) of the nanocomposites increases with the content of L-MWNTs increasing. When the content of L-MWNTs increased to 0.75 wt%, the reflection loss value of L-MWNTs/Co_(0.5)Ni_(0.5)Fe_2O_4/PI nanocomposites increases to -24.37 dB, the frequency range of RL value (dB) less than -10 dB is 5 GHz. When the content of L-MWNTs is 1 wt%, the reflection loss value of nanocomposites drops to -12.23 dB, and moves to high frequency range. It is obvious that tensile strength of nanocomposite increases with the content of L-MWNTs increasing from 0.25 wt% to 0.75 wt%, and when the content of L-MWNTs increases to 0.75 wt%, the tensile strength reaches 105 MPa. Besides, the results show that the glass transition temperature of nanocomposites was 261℃,and the thermostability is preserved at 500℃.
引文
[1]郑惠群,胡冬星,谈谈电磁污染[J],技术物理教学,2003,11(1):47-48.
    [2]刘顺华,郭辉进,电磁屏蔽与吸波材料,功能材料与器件学报,2002,8(3):213-217.
    [3]郑长进,纤维(毡)/环氧树脂电路模拟吸波材料的制备与性能研究[D],天津:天津大学,2005.
    [4]卢敬参,电磁污染与防护措施[J],中国标准导报,2004, (2):36-37.
    [5]王彦玲,电磁污染与电磁兼容[J],山西电子技术,2000,(5):45-48.
    [6]张雪峰,龚志军,侯小娟,等,电磁污染的危害和防护[J],包头钢铁学院学报,2003,22(2):189-192.
    [7]赵玉峰,赵冬平,于燕华,等,现代环境中的电磁污染[M],北京:电子工业出版社,2003,19-22.
    [8]施冬梅,邓辉,杜仕国,等,雷达隐身材料技术的发展.兵器材料科学与工程,2002,25(l):64一67.
    [9]胡传炘,隐身涂层技术[M],北京:化学工业出版社,2004,194-196.
    [10]李黎明,徐政,吸波材料的微波损耗机理及结构设计[J],现代技术陶瓷, 2004, 25(2):31-34.
    [11]吴晓光,车晔华,国外微波吸收材料[M],长沙:国防科技大学出版社,1992.
    [12] BE凯瑟,肖华亭,许昌清,雷有华,等,电磁兼容原理[M],北京:电子工业出版社,1985
    [13] S. Marchant, F. R. Jones, T. P. C. Wong, P. V. Wright. Free-space microwave characteristics of polypyrrole coated glass fibre[J]. Synthetic. Metals, 1998, 96:35-41.
    [14] P. Chandrasekhar, K. Naishadhma. Broadbnad microwave absoprtion and Shielding properties of a poly (aniline) [J]. Snythetic Metals, 1999, 105: 115-120.
    [15]张海军,姚熹,张良莹,等,X,U铁氧体的溶胶—凝胶合成及微波性能研究[J],功能材料,2003,34(1):39-41.
    [16] S.P. Ruan, B.K. Xu, H. Suo, etal. Microwave absorptive behavior of ZnCo- substituted W-type Ba hexaferrite nanocyrstallinecomposite material[J]. Journal of Magnetism and Magnetic Materials, 2000, 212: 175-177.
    [17]孔德明,胡慧芳,冯建辉,等,掺杂聚苯胺吸波材料的研究[J],高分子材料科学与工程,2000,16(3):169-171.
    [18]解家英,李国栋,台仔显康等.含稀土纳米材料微波吸收特性的研究[J],内蒙古大学学报,2001,32(6):625-627.
    [19]黄涛,黄英,贺金瑞,吸波材料研究进展[J],玻璃钢/复合材料,2003,(1):37-40 .
    [20] M.S. Cao, J. Zhu, J. Yuan, elat. Computation design and performance prediction towards multi-layer micorwave absorber[J]. Materials and Design, 2002, 23: 557-564.
    [21]徐劲峰,郭方方,徐政,六角晶系钡铁氧体纳米晶的制备和表征[J],同济大学学报(自然科学版),2004,32(7):929-938.
    [22]赵九蓬,李垚,吴佩莲,新型吸波材料研究动态[J],材料科学与工艺,2002,10(2):219-224.
    [23]郭亚平,导电聚苯胺/钡铁氧体吸波材料的制备及性能研究,哈尔滨工程大学[D],2005
    [24]焦桓,周万城,雷达吸波剂研究进展[J],材料导报,2000,14(3):11-12.
    [25] D. Shah, V. Pillal. Sythesis of High-coerecivity Cobalt ferrite particles es using water-in-oil microemulsions[J]. Journal of Magnetism and Magnetic Materlals, 1996, 163(l-2): 243-248.
    [26]曹莹,孙克宁,周育红,等,纳米雷达吸波涂层的研制[J],材料保护,2002,35(6): 23-24.
    [27]罗振华,张昌盛,陈树德,纳米晶铁基丝的制备及其导磁性能的研究[J],上海大学学报(自然科学版),2002, 8(5):437-440.
    [28]王海泉,陈秀琴,吸波材料的研究进展[J],材料导报,2003,(17):170-173.
    [29]孙晶晶,李建保,等,陶瓷吸波材料的研究现状[J],材料工程,2003(2):43-47.
    [30] Y. Wang, J.J. Ke. Preparation of nickel oxide powder by decomposition of basic nickel carbonate in microwave field with nickel oxide seed as a microwvave abasobring additive[J]. Materials Reseaer Bulletin, 1996, 31(l): 55-61.
    [31] X.L. Yu, X.C. Zhang, H.H. Li, etal. Simulation and design for stratified iorn fiber absorbing materials[J]. Maetrials&Design, 2002, 23(1): 51-57.
    [32]杨孚标,李永清,等,SiC纤维的B4C涂层研究[J],功能材料,2002,33(3):286-287,293 .
    [33]李玉莹,刘祖黎,等,不同螺旋体浓度旋波介质吸波性能的研究宇航材料工艺[J],2000,30(1):46-49.
    [34]曹茂盛,王彪,徐国忠,手性材料研究新进展[J],现代物理知识,1999, (6):24-25.
    [35] A. M. M. Allam. Chiral absorbing material[C]. Radio Science Conference, 2000. 17th NRSC '2000. Seventeenth National. Piscataway: The Institute of Electrical and Electronic Engineers, Inc, 2000: B3/1-B3/8.
    [36]李玉莹,徐晓文,刘祖黎,等,不同复合基底旋波介质的吸波特性研究[J],宇航材料工艺,2000,(6):39-42.
    [37]伍振尧,现代高新技术—等离子体技术及其应用[J],厦门科技,1994, (3): 29-31.
    [38]高识,独领风骚的等离子体隐形术[J],海峡科技,2002,(2):22.
    [39]赵选科,徐军,何俊发,等离子体隐身技术[J],大学物理,2002,21(5):38-40.
    [40] D. L. Tang, A. P. Sun, X. M. Qiu. Interaction of electromagnetic waves with a magnetized nonuniform plasma slab[J]. IEEE Transactions on Plasma Science, 2003, 31(3): 405-410.
    [41]夏新仁,邓发升,等离子体隐身技术的特点及应用[J],雷达与对抗,2002,(1):17-21.
    [42] V. Semenov, M. Lisak, D. Anderson. Electric field enhancement and power absorption in microwave TR-switches[J]. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(2): 286-292.
    [43]刘春生,等离子体技术在军事领域的应用[J],航天电子对抗,2000,(3):55-58.
    [44] S. Lijima. Helical microtubes of Iraphitic carbon[J], Nature, 1991, 358: 56-58.
    [45]朱宏伟,吴德海,徐才录,碳纳米管[M],北京:机械工业出版社,2003,41-133
    [46]王晨,聚合物基纳米吸波复合材料的制备及表征[D],清华大学,2005.
    [47]周克省,黄可龙,孔德明,等,纳米无机物/聚合物复合吸波功能材料[J],高分子材料科学与工程,2002,18(3):15-19.
    [48]卢佃清,刘学东,徐超,周朕,锂镧铁氧体/PANI纳米复合材料的磁性质和吸波性能[J],材料科学与工程学报,2011,29(1):30-34.
    [49] B. Mccarthy, A. B. Dal Ton, J. N. Col Eman, et al .Spectroscopic investigation of conjugated polymer/single-walled carbon nanotube interactions[J]. Chem. Phys. Lett, 2001, 350 (122) : 27-32.
    [50] G. Z. Chen, M. S. P. Shaffer, D. Col Eby, et al. Carbon nanotube and polypyrrole composites: coating and doping[J]. Adv.Mater, 2000 , 12 (7) : 522-526.
    [51] X. T. Zhang , J. Zhang , R. M. Wang, et al . Surfactant-directed polypyrrole/ CNT nanocables : synthesis , characterization , and enhanced electrical properties[J] . Chem. Phys. Chem, 2004 , 5 (7) :998-1002.
    [52]曹茂盛,高正娟,CNT/ployester复合材料的微波吸收特性研究[J],材料工程,2003(2):34-36.
    [53]孙晓刚,碳纳米管/聚合物复合吸波材料性能研究[J],塑料,2004,33(5):66-69.
    [54]沈曾民,赵东林,镀镍碳纳米管的微波吸收性能研究[J],新型炭材料,2001,16(1):1-3.
    [55] K. Laure, Allen, G.Micromachined polymer magnets[J], Proceeedings of the IEEE Micro Electro Mechanical Systems. 1996, (2): 11-15.
    [56]杜洁海,张振宇,李向山,等,塑料磁铁取向度对磁性的影响[J],科学通报,1996,41(2):122-124.
    [57] A. Milutinovic-Nlkolle, N. Talijna, K. Jeermle, et al. Optical fibers with composite magnetic coating[J]. Material Letters, 2002, 56: 148-155.
    [58] K. Seki, Y. Nakayama, S. Chlba etal. Pressure/photo sensor utilizing polymer magnetic composite[J]. IEEE Transactions on Magnetics, 1993, 29: 3189-3191.
    [59] S. E. Tang, S. Y. R. Hui, H.S. Chung. A low-profile power converter using printed-circuit board (PCB) power transformer with ferrite polymer composite[J]. IEEE Transactions on Power Electronics, 2001, 16: 493-498.
    [60]陈惠敏,高性能纤维的低温等离子体表面改性[J],表面技术,1999,28(5):9-11.
    [61] H. E. Wangner, R. Brandenburg, K. V. Kozlov. The barrier discharge: basic properties and applications to surface treatment[J]. Vacuum, 2003, 71(3): 417-436.
    [62] M. V. Naseh, A. A. Khodadadi, Y. Mortazavi, et al. Functionalization of Carbon Nanotubes Using Nitric Acid Oxidation and DBD Plasma[J].World Academy of Science, Engineering and Technology, 2009,49: 177-179.
    [63] M. V. Naseh, A. A. Khodadadi, Y.Mortazavi, et al. Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment[J].Carbon, 2009, 48: 1369-1379.
    [64] T. I. T. Okpalugo, P. Papakonstantinou, H, Murphy, et al. Oxidative functionalization of carbon nanotubes in atmospheric pressure filamentary dielectric barrier discharge (APDBD)[J]. Carbon, 2005, 43: 2951-2959
    [65] P. Delhaes, M. Couzi, M. Trinquecoste, et al. A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes[J].Carbon, 2006, 44: 3005-3013.
    [66] K. Esumi, M. Ishigami, A. Nakajima.Chemical treatment of carbon nanotubes[J]. Carbon, 1996, 34: 279-281.
    [67] C. Spudat, C. Meyer,C. M. Schneider. Oxidation induced shifts of Raman modes of carbon nanotubes[J]. Physica status solidi (b), 2008, 245(10): 2205-2208.
    [68] T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, et al. High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs[J]. Carbon, 2005,43: 153-161.
    [69] Y. Saito, T. Yoshikawa, M. Okuda. Cobalt particles wrapped in graphitic carbon prepared by an arc discharge method[J]. Journal of Applied Physics, 1994, 75(1): 134-137.
    [70]赵青,刘述章,童洪辉,等离子体技术及应用[J],北京:国防工业出版社,2009,2,181.
    [71]李兴鳌,低温等离子体对固体材料表面改性的机理分析[J],湖北民族学院学报(自然科学版),1999,17(1):74-76.
    [72]邱介山,低温等离子体技术在炭材料改性方面的应用[J],新型炭材料,2001,16(3):59.
    [73]于志远,碳纳米管的功能化及其复合材料的电磁性能研究[D],长春理工大学,2009.
    [74]王国建,王瑶,黄思浙,等,活性可控聚合制备水溶性单壁碳纳米管[J],新型炭材料,2008,23(1):25-29.
    [75] G.S. Ya, S.A. Maksimenko, A. Lakhtakia, et a1. Electromagnetic response ofcarbon nanotubes and nanotube ropes[J]. Synthet metals,2001,124: 121-123.
    [76]黄从树,多壁碳纳米管/聚酸亚胺复合薄膜的制备及其性能研究[D],兰州大学,2008.
    [77] M. Endo, K. Takeuchi, T. Hiraoka, T. Furuta, T. Kasai, X. Sun, et al. Stacking nature of graphene layers in carbon nanotubes and nanofibres[J]. Phys Chem Solid, 1997, 58: 1707-1712.
    [78] B. J. Ash, R.W. Siegel, L.S. Schadler. Mechanical behavior of alumina/poly(methyl methacrylate) nanocomposites[J]. Macromolecules,2004,37: 1358-1369.
    [79] K. Masenelli-Varlot, E. Reynaud, G. Vigier, J.Varlet. Mechanical properties of clay-reinforced polyamide[J ]. Polym Sci Polym Phys,2002, 40: 272-283.
    [80] W.D. Zhang, L. Shen, I.Y. Phang, T. Liu. Carbon nanotubes reinforced nylon-6 compsite prepared by simple melt-compounding[J]. Macromolecules. 2004, 37: 256-259.
    [81] M.S.P. Shaffer, A. H. Windle. Fabrication and characterization of carbon nanotubes/poly(vinyl alcohol) composites[J]. Adv Mater, 1999, 11: 937-941.
    [82] B. K. Zhu, S. H. Xie, Z. K. Xu, Y. Y. Xu. Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites[J]. Composites Science and Technology, 2005, 66: 548–554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700