新型SERS基底的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1974年表面增强拉曼散射现象(SERS)发现以来,由于其克服了普通拉曼光谱所固有的信号弱、易受干扰等缺点,而且具有检测灵敏度高,能够直接给出分子结构信息等特点,从而得到了人们广泛的关注。目前,SERS技术在理论和实验方面都取得了极大的发展,但由于传统SERS基底(按相态分为“固态基底”,“悬浮态基底”)所存在的一些不可克服的缺点,从而限制了SERS技术在实际中的应用。因此,发展一种新的基底制备体系,并获得稳定、全面、高效、重现性好的SERS信号,已成为SERS研究领域所面临的一个现实的挑战。主要内容如下:
     1.参考大量的文献,选取不同的合成方法,控制特定的反应条件,引入不同的表面活性剂,制备了多种具有不同表面化学性质、不同形貌和尺寸的纳米Au、Ag粒子,并利用紫外-可见光吸收光谱、透射电镜、扫描电镜等分析手段对纳米粒子的结构进行了表征。
     2.引入处理过的氧化石墨烯(GO)为“悬浮态”的承载平台,考查其对所得纳米粒子的负载能力,并得到了能在水中稳定悬浮的团聚体/GO复合基底。通过改变团聚条件,可以实现对团聚体尺寸、负载密度等因素的控制。
     3.选取球形银、立方银、无包覆剂银等不同类型纳米粒子作为SERS活性基底,以四巯基吡啶(4-Mpy)为探针分子,考查上述不同种类复合型基底的SERS特征。选取1600cm-1附近的振动,对比计算得出它们的SERS增强因子约为105左右,并讨论了其增强机制。
     4.将低浓度的牛血清蛋白(BSA)吸附到无包覆剂银所得的清洁基底上,得到了较好的SERS信号,而且在4℃下信号能够长时间稳定存在。利用这种基底对生物大分子的分析检测具有很大的发展前景。
Since the first discovery of surface-enhanced Raman scattering (SERS) on electrochemically roughened Ag electrode in 1974, it has been attracting our great attention for its enormous potential application. Previously Raman Scattering (RS) is limited by its inherent weakness, since only a small amount of light is inelastic scattered. In contrast, SERS is provided with greatly increased signal by orders of magnitude in the presence of nano-structured surfaces. At presnt, we have made great progress in SERS detection of many probe molecules with common substrate ("solid substrates" and "liquid substrates"), but there is still some imperfection, which limits practical use. It becomes urgent to develop a bran-new substrate system to gain stable, comprehensive, efficient, high-sensitive, repeatable SERS signal. The main conclusions are listed as follows.
     1. Firstly, we looked up abundant articles and made use of these methods. By controlling reaction factor and surfactant added, we synthesized various Au and Ag nanoparticles with different surface property, size and shape. UV-Vis absorption spectrophotometry and transmission eleetron microscopy (TEM) are mainly used to check the stability, size and shape of the colloidal sol.
     2. We introduced treated Graphene Oxide sheets (GO) with special size as suspended micro-platform to study the loading capacity to different nanoparticles. Then such aggregates/GO multiple substrates could suspend well in liquid phase. Moreover, it's feasible to regulate the size of aggregates and loading density by varying aggregating factor.
     3. Three kinds of different silver colloidal sol are prepared to aggregate on such platform to obtain substrates. And 4-Mpy was selected as probe molecule to test SERS spectra on these substrates. In SERS spectra, some change in intensity and shift in frequency can be observed compared to normal Raman spectrum due to interaction between molecules and SERS substrates. The representative band at approximate 1600 cm-1(C=C stretching) is selected to calculate the enhancement factor values, and they are around 105.
     4. We also tested enhancement capacity to Bovine Serum Albumin (BSA) by such substrates. Upon simple mixture of BSA and substrates, apparent SERS signals were immediately obtained. Above all, the mixture could keep stable at 4℃for long, and SERS signals barely changed. It showed the potential of this aggregate system as a convenient and powerful SERS-active substrate for biological detection.
引文
[1]Raman C V, Krishnan K S. A New Type of Secondary Radiation [J]. Nature,1928,121 (3048): 501-502.
    [2]张明生.激光光散射谱学[M].科学出版社,2008.
    [3]Rank D H. Some Spectral Characteristics of Mercury Arcs for Use In Study of the Raman Effect [J]. J. Opc. Soc. Am.1948,38 (3):279-280.
    [4]Gilson T R, Hendra P J. Laser Raman Spectroscopy [M]. London:Wiley-Interscience.1970.
    [5]Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of Pyridine adsorbed at a silver eleetrode [J]. Chem. Phys. Lett.,1974,26 (2):163-165.
    [6]Jeanmaire D L, Van Duyne R P. Surface Raman Spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode [J]. J. Electroanal. Chem., 1977,84(1):1-2.
    [7]Albrecht M G, Creighton J A. Anomalously intense Raman-spectra pyridine at a silver eleetrode [J]. J.Am. Chem. Soc,1977,99(15):5215-5217.
    [8]Milton Kerker, Dau-Sing Wang, H. Chew. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles:errata [J]. Applied Optics,1980,19 (24):4159-4174.
    [9]Hyunhyub Ko, Srikanth Singamaneni, Vladimir V. Tsukruk. Nanostructured Surfaces and Assemblies as SERS Media [J]. small,2008,4 (10):1576-1599.
    [10]King F W, Van Duyne R P, Schatz G C. Theory of Raman scattering by moleeules absorbed on electrode surfaces [J]. J Chem Phys,1978,69 (10):4472-4481.
    [11]Adrian F J. Charge transfer effects in surface-enhanced raman scattering [J]. J Chem Phys,1982, 77 (10):5302-5314.
    [12]Moskovits M. Surface-enhanced spectroscopy [J]. Rev. Mod. Phys,1985,57 (3):783-826.
    [13]Burstein E, Chen Y J, Chen C Y. Giant Raman scattering by adsorbed molecules on metals surfaces [J]. Solid State Commun,1979,29 (8):567-570.
    [14]Efrima S, Metiu H. Classical Theory of Light Scattering by a Molecule Located Near a Solid Surface [J]. Chem. Phys. Lett.,1978,60 (1):59-64.
    [15]Efrima S, Metiu H. Classical theory of light scattering by an adsorbed molecule Ⅰ:theory [J]. J. Chem. Phys.,1979,70 (4):1602-1613.
    [16]Efrima S, Metiu H. Light seattering by a molecule near a solid surface Ⅱ. Model calculations [J]. J. Chem. Phys.,1979,70 (5):2297-2309.
    [17]Alan Campion, Patanjali Kambhampati. Surface-enhanced Raman scattering [J].1998,27 (10): 241-250.
    [18]Amanda J Haes, Christy L.Haynes. Plasmonic Materials for Surface-Enhanced Sensing and spectroscopy [J]. MRS BULLETIN,2005,30:368-375.
    [19]Shuming Nie, Steven R Emory. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering [J]. Science,1997,275 (10):1102-1106.
    [20]Katrin Kneipp, Yang Wang, Harald Kneipp, Lev T Perelman, Irving Itzkan, Ramachandra R Dasari, Michael S Feld. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) [J]. Phys. Rev. Lett.,1997,78 (9):1667-1670.
    [21]Xu H, Bjerneld E J, Kall M, Borjesson L. Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering [J]. Phys.Rev.Lett,1999,83 (21):4357-4360.
    [22]Xu H, Aizpurua J, Kall M, Apell P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering [J]. Phys.Rev.E,2000,62 (3):4318-4324.
    [23]田中群,任斌,王仲权.表面增强拉曼光谱在电化学中的应用及进展[J].光散射学报,1998,10(3-4):186-199.
    [24]Weitz D A, Garoff S, Hanson C D, Gramila T J, Gersten J I. Fluorescent lifetimes of molecules on silver-island films [J]. Optics Letters,1982,7 (2):89-91.
    [25]Kneipp K, Kneipp H, Corio P, Brown S D M, Shafer K, Motz J, Perelman L T, Hanlon E B, Marucci A, Dresselhaus G, Dresselhaus M S. Surface-Enhanced and Normal Stokes and Anti-Stokes Raman Spectroscopy of Single-Walled Carbon Nanotubes [J]. Phys.Rev.Lett.,2000, 84 (15),3470-3473.
    [26]Wu Z S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H M. Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance [J]. ACS Nano,2010,4 (6):3187-3194.
    [27]Renucci J B, Tyte R N, Cardona M. Resonant Raman scattering in silicon [J]. Phys Rev B,1975, 11 (10):3885-3895.
    [28]Otto A, Bornemann T, Erturk U, Mrozek I, Pettenkofer C. Model of electronically enhanced Raman scattering from adsorbates on cold-deposited silver [J]. Surface Science,1989,210 (3): 363-386.
    [29]Lombardi J R, Birke R L. A Unified Approach to Surface-Enhanced Raman Spectroscopy [J]. J.Phys.Chem.C,2008,112 (14):5605-5617.
    [30]Chenal C, Birke R L, Lombardi J R. DFT, SERS, and Single-Molecule SERS of Crystal Violet [J]. J.Phys.Chem.C,2008,112 (51):20295-20300.
    [31]Tian Z Q, Ren B. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy [J]. Annu. Rev. Phys. Chem.,2004,55:197-229.
    [32]Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures [J]. J.Phys.Chem.B,2002,106 (37):9463-9483.
    [33]赵冰,徐蔚青,阮伟东.半导体纳米材料作为表面增强拉曼散射基底的研究进展[J].高等学校化学学报,2008,29(12):2591-1596.
    [34]Prokes S M, Glembocki O J, Rendell R W, Ancona M G. Enhanced plasmon coupling in crossed dielectric/metal nanowire composite geometries and applications to surface-enhanced Raman spectroscopy [J]. Appl.Phys.Lett,2007,90 (9):093105-093107.
    [35]Pazos N, Barbosa S, Rodriguez L, Potel P A, Perez J, Santos I, Puebla R, Marzan L. Growth of sharp tips on gold nanowires leads to increased Surface-enhanced Raman scattering activity [J]. J.Phys.Chem.Lett,2010,1 (1):24-27.
    [36]Hexter R M, Albreeht M G. Metal Surface Raman spectroscopy:Theory [J]. Spectroseo Acta A, 1979,35 (3):233-251.
    [37]Change R K, Futak T E. Surface-enhanced Raman Scattering [M]. New York:Plenum Press,1982.
    [38]Shao M, Zhang M, Wong N, Ma D, Wang H, Chen W, Lee S. Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced Raman spectroscopy [J]. Appl.Phys.Lett.,2008,93 (10):233118-23320.
    [39]Wang S T, Shi W S, She G W, Mu L X, Lee S T. High-performance surface-enhanced Rman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides [J]. Appl.Phys.Lett.,2010,96 (5):053104-053106.
    [40]Sun Y, Liu K, Miao J, Wang Z, Tian B, Zhang L, Li Q, Fan S, Jiang K. Highly Sensitive Surface-Enhanced Raman Scattering Substrate Made from Superaligned Carbon Nanotubes [J]. Nano lett.,2010,10(10):1747-1753.
    [41]Han X X, Huang G G, Zhao B, Ozaki Y. Label-Free Highly Sensitive Detection of Proteins in Aqueous Solutions Using Surface-Enhanced Raman Scattering [J]. Analytical Chemistry,2009,81, (9):3329-3333.
    [42]Song C, Wang Z, Zhang R, Yang J, Tan X, Cui Y. Highly sensitive immunoassay based on Raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate [J]. Biosensors and Bioelectronics,2009,25 (4):826-831.
    [43]阮伟东.两类有序薄膜的制备及其作为SERS基底的研究[D].吉林:吉林大学,2007.
    [44]高书燕,张树霞,杨恕霞,等.表面增强拉曼散射活性基底[J].化学通报,2007,12,908-914.
    [45]徐蔚青.纳米材料的SERS活性及其在光纤光谱传感器中的应用[D].吉林:吉林大学,2004.
    [46]Wang J, Zhang P J. Surface-enhanced resonance raman study on adsorption of cyanine dye onto silver chloride colloids[J].Phys. Chem..1988,92:1942-1945.
    [47]Zhang P, Wang Y, He T. SERS of pyridine,1,4-dioxane and 1-ethyl-3'-methyl-2-thiacyanine iodide adsorbed on a-Fe2O3 colloids [J]. Chemical Physics Letters,1988,153 (2-3):215-222.
    [48]Kneipp K, Kneipp H, Itzkan I, et al. Ultrasensitive Chemical Analysis by Raman Spectroscopy [J]. Chem. Rev.,1999,99:2957-2975.
    [49]Maxwell D J, Emory S R, Nie S M. Nanostructured thin-film materials with surface-enhanced optical properties [J]. Chem. Mater,2001,13:1082-1088.
    [50]Siiman O, Bumm L A, Callaghan R, et al. Surface-enhanced Raman scattering by citrate on colloidal silver [J]. J. Phys. Chem.,1983,87 (6):1014-1023.
    [51]Lee P C, Meisel D. Surface-enhanced Raman scattering of colloid-stabilizer systems Original Research Article [J]. Chem. Phys. Lett.,1983,99:262-265.
    [52]Ni F, Sheng R, Cotton T M. Flow-injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy [J] Anal. Chem.,1990,62 (18):1958-1963
    [53]Tran C D. Subnanogram detection of dyes on filter paper by surface-enhanced Raman scattering spectrometry [J]. Anal. Chem.,1984,56:824-826.
    [54]Rowe J E, Shank C V. Ultrahigh-Vacuum Studies of Enhanced Raman Scattering from Pyridine on Ag Surfaces [J] Phys. Rev. Lett.,1980,44:1770-1773
    [55]Xu L B, Zhou W L, Kozlov M E, et al. J. Am. Chem. Soc.,2001,123,763-764.
    [56]Xue G, Dai Q P, Jiang S G, Chemical reactions of imidazole with metallic silver studied by the use of SERS and XPS techniques [J]. J Am Chem Soc,1998,110:2393-2395.
    [57]Mabnchin M, Takenaka T, Fujiyoshi Y. Surface-enhanced Raman scattering by molecules absorbed on gold sol particles [J]. Surf Sci,1982,119:150-158.
    [58]Saito Y, Wang J J, Smith D A, et al. A Simple Chemical Method for the Preparation of Silver Surfaces for Efficient SERS [J]. Langmuir,2002,18:2959-2961.
    [59]Traci R J, George C.S, Van Duyne. NanosPhere Lithography:Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet Visible Extinetion Spectroscopy and Electrodynamic Modeling [J]. J.Phys.Chem.B,1999,103:2394-2401.
    [60]Noppadon N, Mati H, Pitak E. Surface-enhanced Raman scattering substrate of silver nanoparticles depositing on AAO template fabricated by magnetron sputtering [J]. Vacuum,2010:1-4.
    [61]Costa J C S, Ando R A, Santana A C, Rossi L M, Santos P S, Corio P. High performance gold nanorods and silver nanocubes in surface enhanced Raman spectroscopy of pesticides [J]. Phys.Chem. Chem.Phys.,2009,11:7491-7498.
    [62]Alvarezpuebla R A, Santos D S, Aroca R F. SERS detection of environmental pollutants in humic acid-gold nanoparticle composite materials [J]. Analyst,2007,132:1210-1214.
    [63]Steven E J B, Narayana M S S. Surface-Enhanced Raman Spectroscopy (SERS) for Sub-Micromolar Detection of DNA/RNA Mononucleotides [J]. J. AM. CHEM. SOC.,2006,128 (49):15580-15581.
    [64]Guo P, Yuan Y, Xiong P. The Analysis of Gynostemma Pentaphyllum (Thunb) Makino for Chinese Crude Drug by FTIR and FT-Raman [J]. Spectroscopy and Spectral Analysis,2004,24 (10):1210.
    [65]Zhang P, Guo Y Y. Surface-Enhanced Raman Scattering inside Metal Nanoshells [J]. J. AM. CHEM. SOC.,2009,131:3808-3809.
    [66]Yoon I, Kang T, Choi W, Kim J. Single Nanowire on a Film as an Efficient SERS-Active Platform [J]. J. AM. CHEM. SOC.,2009,131:758-762.
    [67]Adam M S, Christian D G, Abraham W, Chad E T, Thomas R H, Roberto B, Jin Z. Z. Unique Gold Nanoparticle Aggregates as a Highly Active Surface-Enhanced Raman Scattering Substrate [J]. J. Phys. Chem. B,2004,108 (50):19191-19197.
    [68]Fengli Bei, Xueliang Hou, Shery L Y Chang, George P. S, Dan Li. Interfacing Colloidal Graphene Oxide Sheets with Gold Nanoparticles [J]. Chem. Eur. J.,2011,17(10):5958-5964.
    [69]Benjamin Wiley, Yugang Sun, Brian Mayers, Younan Xia. Shape-Controlled Synthesis of Metal Nanostructures:The Case of Silver [J]. Chem. Eur. J.,2005,17(2):454-463.
    [70]Lee P C, Meisel D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols [J]. J Phys Chem,1982,86 (17):3391-3395.
    [71]Jun Xu, Siyue Li, Jian Weng. Hydrothermal Syntheses of Gold Nanocrystals:From Icosahedral to Its Truncated Form [J]. Adv. Funct. Mater,2008,18:277-284.
    [72]Creighton J A, Blatchford C G, Albercht M G. Plasma resonance enhancement of raman scattering by pyridine absorbed on silver or gold sol particles of size comparable to excitation wavelength [J]. J Chem Soc Faraday Trans Ⅱ,1979,75, (2):790-798.
    [73]Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio [J]. Chem. Commun,2001:617-618.
    [74]Siekkinen A R, McLellan J M, Chen J, Xia Y. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide [J]. Chemical Physics Letters,2006,432 (10):491-496.
    [75]Gao Y, Jiang P, Song L. Studies on silver nanodecahedrons synthesized by PVP-assisted N,N-dimethylformamide (DMF) reduction [J]. Journal of Crystal Growth,2006,289:376-380.
    [76]Dabin Yu, Vivian Wing-Wah Yam. Controlled Synthesis of Monodisperse Silver Nanocubes in Water [J]. J. AM. CHEM. SOC,2004,126 (41) 13200-13201.
    [77]Dabin Yu, Vivian Wing-Wah Yam. Hydrothermal-Induced Assembly of Colloidal Silver Spheres into Various Nanoparticles on the Basis of HTAB-Modified Silver Mirror Reaction [J]. J. Phys. Chem. B,2005,109(12):5497-5503.
    [78]Zhang J, Li X, Sun X, Li Y. Surface Enhanced Raman Scattering Effects of Silver Colloids with Different Shapes [J]. J. Phys. Chem. B,2005,109 (25):12544-12548.
    [79]Aherne D, Ledwith D M, Gara M, Kelly J M. Optical Properties and Growth Aspects of Silver Nanoprisms Produced by a Highly Reproducible and Rapid Synthesis at Room Temperature [J]. Adv. Funct. Mater,2008,18:2005-2016.
    [80]Amy M M, Jiang J, Brus L. Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules [J]. J. Phys. Chem. B,2000,104 (50):11965-11971.
    [81]Lin X M, Xu C Y, Tian Z Q. Surface-enhanced Raman spectroscopy:substrate-related issues [J]. Analytical and Bioanalytical Chemistry,394,2009:1729-1745.
    [82]Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J.Am.Chem.Soc,1958,80 (6): 1339.
    [83]Steven E J Bell, Narayana M S S Surface-Enhanced Raman Spectroscopy as a Probe of Competitive Binding by Anions to Citrate-Reduced Silver Colloids [J]. J. Phys. Chem. A,2005, 109 (33):7405-7410.
    [84]Hu J, Zhao B, Xu W, Li B, Fan Y. Surface-enhanced Raman spectroscopy study on the structure changes of 4-mercaptopyridine adsorbed on silver substrates and silver colloids [J]. Spectrochimica Acta Part A,2002,58:2827-2834.
    [85]Chen M C, Lord L C. Laser-Excited Raman Spectroscopy of Biomolecules. VIII. Conformational Study of Bovine Serum Albumin [J]. J.Am.Chem.Soc,1976,98 (4):990-992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700