固定化的β-半乳糖苷酶合成低聚半乳糖的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-半乳糖苷酶可以利用乳糖合成低聚半乳糖(GOS),用作功能性食品配料。β-半乳糖苷酶固定化是工业化处理乳清,使其乳糖合成GOS的必要步骤。本论文研究β-半乳糖苷酶的固定化方法,以期获得性能良好的固定化酶,将其用于处理乳清合成GOS。
     将乳清粉用蒸馏水溶解复原成一定乳糖浓度的溶液作为实验样品。GOS得率使用TLC法检测,TLC法的准确性用HPLC法进行确证,证明TLC法是检测GOS的有效方法。
     选择壳聚糖作载体,戊二醛交联的方法固定化β-半乳糖苷酶,研究了固定化的最适条件:确定出先固化后交联的顺序较好,4℃固定化6h,pH6.0,1%戊二醛室温交联30min,加酶量为0.4mg/g干重壳聚糖珠,活力回收率达到26.43%,该结果不理想。
     实验制备了海藻酸钙-明胶凝胶包埋法固定化酶,其最优条件为:高粘度海藻酸钠2.54%,明胶0.88%,低粘度海藻酸钠0.24%时,凝胶获得最大的稳定性,重复使用次数可以达到8次。经过戊二醛交联防止酶泄漏,并且提高了固定化酶的操作稳定性,加酶量0.06%(w/v),活力回收率最高可达80%,即固定化酶的比活力为15.1u/g凝胶。海藻酸钙凝胶包埋制备的固定化酶最适温度为55℃,较游离酶高5℃;最适pH升高0.5个单位,耐热性和pH耐受性变宽,而且具有向碱偏移的趋势,这些特性有利于固定化酶的直接使用。
     利用海藻酸钙-明胶凝胶包埋法固定化酶,以复原乳清为底物合成GOS,经单因素试验和响应面法(RSA)优化分析,当反应时间为2.0h,乳糖含量37.4%,温度为58.2℃,pH为5.0~6.0,加酶量为0.14%时,GOS得率最高,理论值为28.9%,经验证实验可以达到29.1%。1升的放大实验中GOS得率为28.3%,与小试相差无几。
     本论文证实海藻酸钙—明胶凝胶包埋法可以制备活力回收率较高的固定化乳糖酶,并且具有较好的操作稳定性,该酶可以用于处理高浓度乳清,合成GOS,并具有进一步扩大试验的价值。
β-galactosidase can synthesizes galactooligosacchrides (GOS) at high level of lactose. The immobilization of β -galactosidase was investigated in order to make full use of lactose from whey industrially. The good method of immobilization of β -galactosidase was studied, then the immobilized β-galactosidase was applied to synthesize GOS.
    Whey powder was reconstituted to the solution with determined concentration of lactose for the working samples. The yield of GOS was monitored with TLC corrected with HPLC.
    Aspergillus-oryza-β-galactosidase was adsorbed on chitosan and cross-linked with glutaraldehyde. The optimal parameters included: cross-linking followed with immobilization, under 4 C, immobilization for 6h, glutaraldehyde pH6.0, 1.0%; under the room temperature for 30min. The enzyme concentration was 0.4mg/g dry chitosan beads. The activity yield reached 26.43%, which was not ideal for enzymatic preparation of GOS.
    Consequently, calcium alginate gel was used to entrap β-galactosidase. The optimums as follows: 2.54% high-viscosity-sodium alginate, 0.88%gelatin, 0.24%low- viscosity-sodium alginate, 2.0%CaCl2, under which condition the gel got the best stability that can be used 8 times on end and the activity yield was 80%. Then immobilized enzyme entrapped in gel was characterized. The immobilized enzyme entrapped with alginate was showed that its optimal temperature rises 5 C to 55 C, optimal pH raised 0.5, endurance to temperature and pH were both better than soluble enzyme which showed that this kind of immobilized enzyme can be used directly and conveniently.
    The immobilized enzyme entrapped in alginate-gelatin gel was used to produce GOS from reconstituted whey. Through single factor experiments and SAS analysis, optimal conditions included lactose concentration, 37.4%; reaction time, 2.0h; temperature, 58.2 C; pH 5.0-6.0, enzyme concentration, 0.14%. The maximum GOS concentration was estimated as 28.9%, which was proved as 29.1 % in the trials with 1L reconstituted whey.
    Immobilized β-galactosidase can be made by entrapment in alginate and gelatin with high activity yield and good practical stability, having the industrial prospect to synthesize GOS.
引文
[1] Stahl B. Thurl S. Zeng J et al. Anal Biochem, 1994,223:21:218~226.
    [2] 郑建仙 耿立萍.功能性低聚糖析论.食品与发酵工业闭.1999,23(1):39~46.
    [3] Raymond R. Mahoney. Galactosyl-oligosacchride formation during lactose hydrolysis: a review[J]. Food Chemistry, 1998, 63(2):147~154.
    [4] 郑建仙.功能性食品(第一卷)[M].中国轻工业出版社,1999,8.
    [5] 马廷和,周培瑾.浅谈寡糖的开发和应用[J].食品与发酵工业,1992,1:80~82.
    [6] Yanahira S.,Kobayashi T., Suguri T et al. [J]. Biosci Biotech Biochem, 1995,59(6): 1021 1026.
    [7] Sharp, R.; Fishbain, S.; Macfarlane, G. T. Effect of short chain carbohydrates on human intestinal Bifidobacteria and Escherichia coli in vitro. J. Med. Microbiol., 50(2), 152~160,2001.
    [8] Shin, H.-S.; Lee, J.-H.; Pestka, J. J.; Ustunol, Z. Growth and viability of commercial Bifidobacterium spp. in skim milk containing oligosaccharides and inulin. J. Food Sci., 65(5), 884~887, 2000.
    [9] Ohtuka,K.,Tsuji,K etc. Availability of 4'-galactosyllactose in rat[J].Journal of Nutritional Science and Vitaminology, 1990,36:265~276.
    [10] Chonan O, Matsumoto K,Watanuki M.Effect of galactooligosacchrides on Calcium absorption and preventing bone loss in ovariectomized rats[J]. Biotech Biochem., 1995, 59(2):236~239.
    [11] Sako, Tomoyuki; Matsumoto, Keisuke; Tanaka, Ryuichiro.Recent progress on research and applications of non-digestible galacto-oligosaccharides.[J]Int. Dairy J., 9(1), 69~80.
    [12] Chonan, Osamu; Takahashi, Rie Effect of β1-4 linked galactooligosaccharides stimulate calcium and magnesium absorption from the large intestine[J]. Yakuruto Kenkyusho Kenkyu Hokokushu, Volume Date 1999, 19, 53~59.
    [13] Chomn, Osamu; Takahashi, Rie; Watanuki, Masaaki. Role of activity of gastrointestinal microflora in absorption of calcium and magnesium in rats fed b1-4 linked galactooligosaccharides[J]. Biosci., Biotechnol., Biochem., 65(8), 1872~1875, 2001.
    [14] Wijnands, M. V. W.; Schoterman, H. C.; Bruijntjes, J. P.; Hollanders, V.M.H.; Woutersen, R. A. Effect of dietary galacto-oligosaccharides on azoxymethane-induced Aberrant crypt foci and colorectal cancer in Fischer 344 rats[J]. Carcinogenesis,22(1), 127~132, 2001.
    [15] 郑建仙 李璇.功能性低聚糖[J].中国食品工业,1998,5(12):26~28.
    [16] Voragen,A.G.J. Technological aspects of functional food-related carbohydrates[J]. Trends in Food science amd Technology, 1998,9:325~335.
    [17] 陈瑞娟.新型低聚半乳糖的介绍[J].食品与发酵工业,1993(3):82~90.
    
    
    [18] 尤新.功能性食品配料—新型低聚半乳糖[J].食品科学,1995,11:41~44.
    [19] 尤新.功能性发酵制品[M].中国轻工业出版社,2000.[42]Wong C H,Shen G[J]. J.Methods in Enzymology,1990,201:591.
    [20] Kan T, Kobayashi Y. United States Patent[P]. No: 4957860.
    [21] Wong C H, Shen G[J]. J.Methods in Enzymology, 1990,201:591.
    [22] Laroute V., Willemot R M. Effect of organic solvents on stability of two glycosidases and on glucoamylase-catalysed oligosaccharide synthesis[J]. Enzyme Microbial Technology, 1992, 14: 52~53.
    [23] Shin H J, Yang J W. [J]. Biotechnol Letter, 1994,24(3):19~21.
    [24] 归莉琼 魏东芝 崔玉敏 俞俊棠.米曲霉β-半乳糖苷酶催化合成低聚半乳糖[J].华东理工大学学报 1998,24(4):422~426.
    [25] Giacin J.R.,Jakubowski J.,LeederJ.G.,Gilbert S.G.,Kleyn D.H. Characterization of lactase immobilized on collagen:conversion of whey lactose by soluble and immobilized lactase[J]. Journal of Food Science, 1974, 39(4):751~754.
    [26] Jakubowski J., Giacin J.R.,Kleyn D.H., Gilbert S.G.,Leeder J.G. Effect of calcium, magnesium and whey proteins on the activity of beta-galactosidase (A. niger) immobilized on collagen[J]. Journal of Food Science, 1975,40 (3): 467~469.
    [27] Siso MIG, Freire A, Ramil E, Belmonte ER, Torres AR, Cerdan E. Covalent immobilization of beta-galactosidase on corn grits. A system for lactose hydrolysis without diffusional resistance[J]. Process Biochemistry, ,1994, 29 (1) 7~12.
    [28] Szczodrak J. Hydrolysis of lactose in whey permeate by immobilized beta-galactosidase from Penicillium notatum[J]. Acta Biotechnologica; ,1999,19 (3) 235~250.
    [29] Mozaffar Z., Nakanishi K.,Matsuno R. Production of oligosaccharides by glutaraldehyde treated and immobilized beta-galactosidases from Bacillus circulans[J]. Biotechnology Letter, 10 (11)805~808, 1988.
    [30] Zahid Mozaffar, Kazuhiro Nakanishi, and Ryuichi Matsuno. Coutinuous production of galactooligosaccharides from lactose using immobilized β-galactosidase from Bacillus circulans[J]. Appl. Microbiol Biotechnol 1986,25:224~228.
    [31] Dey Chyi Sheu, Shin Yi Li, Kow Jen Duan, C.Will Chen. Production of galactooligosacchrisdes immobilized on glutaraldehyde treated chitosan beads[J]. Biotechnology Technique. 1998,12(4):273~276.
    [32] 秦燕 宁正祥 胡新宇.固定化β-半乳糖苷酶催化生成低聚半乳糖.食品发酵与工业,2001,27(11):12~16.
    [33] 王筱兰 王白杨 蔡友良.固定化酶连续生产半乳糖寡糖.南昌大学学报(工科版)2001.23(4)87~90.
    
    
    [34] Mervat I. Foda M., Lopez Leiva. Continuous production of oligosacchrides from whey using a membrane reator[J]. Process Biochemisrtry ,2000, 35:581~587.
    [35] Miguel H., López Leiva, Mónica Guzman. Formation of Oligosacchrides during Enzymic Hydrolysis of Milk Whey Permeates[J]. Process Biochemistry, 1995, 30(8):757~762.
    [36] 魏东芝 王筱兰等.固定化嗜热脂肪芽孢杆菌连续合成半乳糖寡糖的研究[J].生物工程学报,2000,16(3):392~395.
    [37] 陈少欣 魏东芝 胡振华.固定化嗜热脂肪芽孢杆菌合成低聚半乳糖[J].微生物学报,2001,41(3):357~362.
    [38] 秦燕 宁正祥 吴国杰.乳糖水解时低聚半乳糖的生成及应用[J].食品与发酵工业2000,26(5):67~72.
    [39] Lori F. Pivarnik., Andre G.,Senecal, Arthur G. Rand. Hydrolytic and Transgalactosylic activities of commercial β-galactosidase(lactase)in food processing[J]. 1995.
    [40] Greenberg,N.A., and Mahoney, R.R.. Immobilization of lactase(beta-galactosidase) for use in dairy processing: A review [J]. Process Biochem. 1981a. 2:2~8,49,
    [41] Greenberg,N.A., and Mahoney, R.R..Rapid purification of beta-galactosidase(Aspergillus niger)from commercial preparation[J]. J.Food Sci., 1981 b, 46: 684.
    [42] Maciunska J., Scibisz M.., Synowiecki J. Stability and properties of a thermostable beta-galactosidase immobilized on chitin[J]. Journal of Food Biochemistry ,2000, 24 (4) 299~310.
    [43] Saito T., Yoshida Y.,Kawashima K.,Kong Hua Lin., Maeda S., Kobayashi T. Immobilization and characterization of a thermostable beta-galactosidase from a thermophilic anaerobe on a porous ceramic support[J], pplied Microbiology and Biotechnology, 1994, 40 (5) 618~621.
    [44] Yanmaji H., Tagai S., Sakai K.,Izumoto E., Fukuda H. Production of recombinant protein by baculovirus infected insect cells in immobilized culture using porous biomass support particles[J]. Journal of Bioscience and Bioengineering 2000, 89 (1) 12~17.
    [45] Mahoney R R. In Advanced Dairy Chemistry[M]. London: Chapman and Hall, 1996, 3:77~126.
    [46] Prenosil J E., Sruker E., Bourne J R. Formation of oligosaccharides during enzymatic lactose hydrolysis Ⅰ. State of art[J]. Biotechnol Bioeng, 1987,30:1025~1029.
    [47] Gekas V., Lopez leiva M. Hydrolysis of lactose: A literature review[J]. Process Biochem, 1995, 2:2~12.
    [48] Roberts H R., Pettinati J P. Concentration effects in the enzymatic conversion of lactose to oligosaccharides[J]. Agri Food CHEM, 1957,5(2): 130~134.
    [49] Bódalo. A., E Gómez, J. L. Gómez. J. Bastida, M.F. Máximo & F. Díaz. [J]. Process Biochem., 1991,26(6), 349~353.
    
    
    [50] Dahlqvist, A., Maltiasson,B., and Mosbanch, K[J]. Biotech, Bioeng., 1973(15): 395.
    [51] 李文英,王绍树,孙健,β-半乳糖苷酶的研制及固定化初探[J].食品与发酵工业,1990(3):1~12.
    [52] Sufang Sun, Xuyuan Li, Shaoli Nu; Xin You. Immobilization and characterization of beta-galactosidase from the plant gram chicken bean (Cicer arietinum). Evolution of its enzymatic actions in the hydrolysis of lactose[J]. Journal of Agricultural and Food Chemistry; 1999,47 (3) 819~823.
    [53] Weixia Tu; Sufang Sun; Shaoli Nu; Xuyuan Li. Immobilization of beta-galactosidase from Cicer arietinum (gram chicken bean) and its catalytic actions[J]. Food Chemistry, 1999,64 (4) 495~500.
    [54] 潘道东.乳糖酶的固定化及其特性的研究田.中国乳品工业,1991,19(3):99~103.
    [55] Papayannakos N; Markas G; Kekos D. Studies on modeling and simulation of lactose hydrolysis by free and immobilized beta-galactosidase from Aspergillus niger[J]. Chemical Engineering Journal, 1993, 52 (1).
    [56] Portaccio M., Stellato S., Rossi S., Bencivenga U., Eldin MSM., Gaeta FS., Mita DG. Galactose competitive inhibition of beta-galactosidase (Aspergillus oryzae) immobilized on chitosan and nylon supports[J]. Enzyme and Microbial Technology, 1998,23 (1/2) 101~106,.
    [57] Carrara CR; Rubiolo AC. Immobilization of beta-galactosidase on chitosan[J]. Biotechnology Progress, 1994,10 (2): 220~224
    [58] 陈盛 吴海生.碱性磷酸酶在壳聚糖上固定化作用[J].生物化学与生物物理进展,1990,17(5).
    [59] 侯建明 吴经才 杨秀琴等.用脱乙酰几丁质制备固定化青霉素酰化酶[J].中国医药工业杂志,1993,2(3).
    [60] Tomaska M; Stredansky M; Gemeiner P; Sturdik E .Improvement of the thermostability of beta-galactosidase from Kluyveromyces marxianus. Process Biochemistry, 1995,30 (7) 649~652.
    [61] Becerra M; Baroli B; Fadda AM; Blanco Mendez J;Gonzalez Siso MI.Lactose bioconversion by calcium alginate immobilization of Kluyveromyces lactis cells[J]. Enzyme and Microbial Technology; 2001,29 (8/9) 506~512.
    [62] Ates S; Mehmetoglu U A new method for immobilization of beta-galactosidase and its utilization in a plug flow tractor. Process Biochemistry; 32 (5) 433-436, 1997.
    [63] Flaschel E., Raetz E.,Renken A. Biotechnol Bioeng. 1982, 24: 2499~2518.
    [64] 田道 正彰等.乳清矿物质的开发与应用[J].中国乳品工业,1990,18(4):187~189.
    [65] 郭本恒.《乳品化学》[M].中国轻工业出版社,2001年7月.
    
    
    [66]林金资.乳的深度加工[J].中国乳品工业,1995,23(4):199~201.
    [67]马俪珍 张秀红.姜汁在混合乳干酪生产中的应用[J].山西农业大学学报.2000,20(4):372~375.
    [68]沙淼.1999年世界乳业状况[J].中国乳品工业.1999,(6):43~48.
    [69]Robert R. zall. Trends in whey Fraction and utilization[J]. J Dairy Sci. 1984,67:2621~2629.
    [70]王建龙 周定.乳清的开发及综合利用[J].中国乳品工业 1993,21(1):43~48.
    [71]阿布力米提·克力木 汪建明等 乳糖酶水解乳清合成低聚半乳糖[J].天津轻工业学院学报,2002(2):7~9.
    [72]Mateo C; Abian O; Fernandez Lafuente R; Guisan JM. Reversible enzyme immobilizatio via a very strong and nondistorting ionic adsorption on support polyethylenimine composites [J]. Biotechnology and Bioengineering; 2000, 68 (1): 98~105.
    [73]北京师范大学生物系生物化学教研室编.基础生物化学实验[M].高等教育出版社.1982,5
    [74]S. Rejikumar, Surekha Devi. Immobilization of β-Galactosidase onto Polymeric Supports[J]. Journal of applied Polymer Science, 1995,55:871~878.
    [75]王正刚 丁贵平 蔡正森 薛宏基.壳聚糖固定化碱性蛋白酶[J].江苏食品与发酵.1998(1):2~5.
    [76]J. Szczodrak. Hydrolysis of lactose in whey permeate by immobilization beta-galactosidase[J]. Journal of molecular B:Enzymtic, 2000 10:631~637.
    [77]Enrique J. Mammarella and Amelia C. Rubiolo. Response Surface Methodology To Optimize β-Galactosidase Immobillization Using a Combination of Hydrocolloids as the Supporting Matrix. Biotechnol.Prog. 1996,12:612~617.
    [78]欧宏宇 贾士儒.SAS在微生物培养条件中的应用[J].天津轻业学院学报,2001年3月,第1期,总第36期
    [79]张维杰.复合多糖的生化研究技术[M].上海科技出版社,1987.
    [80]无锡轻工大学 天津轻工业学院合编《食品分析》中国轻工业出版社[M].1983年.
    [81]SPSS 10.0 for Windows统计分析[M].人民邮电出版社,黄海等编著,2000.11.
    [82]Shin H. J., Yang J. W. Biotechnol Lett 1994, 16(11): 1157~1162.
    [83]Miguel H., López Leiva, Mónica Guzman. Formation of Oligosacchrides during Enzymic Hydrolysis of Milk Whey Permeates[J]. Process Biochemistry, 1995, 30(8):757~762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700