苯乙烯微波等离子体聚合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今,可持续发展作为指导各国经济社会发展的一项总体战略,已经逐渐被人们所认同。化学工业在给人们带来众多利益的同时,也给生态环境带来了沉重的负担。开发清洁高效的化学反应过程,以达到标本兼治的效果,已成为当代化学的学科前沿和重点发展方向之一。作为现代物理技术的微波、等离子体,应用在化学领域中具有操作方便、清洁、高效、环保、反应快速、选择性好、无滞后效应等优点,引起各国研究者的广泛关注和极大兴趣。
     本文以苯乙烯为主要原料,采用辉光等离子体技术,以二氧化碳为反应气体和利用微波辐射与溶胶凝胶、乳液聚合相结合,分别合成了苯乙烯/CO_2共聚膜和苯乙烯/TiO_2复合微球,研究了在非常规条件下苯乙烯/TiO_2和苯乙烯/CO_2的聚合反应规律,并采用IR、XPS等手段对所得产物进行了表征。
     研究结果显示,所得等离子体共聚膜不仅具有明显的聚苯乙烯特征峰;且等离子体聚合膜在1709 cm-1(C=O)和3296 cm-1(-OH)处出现了新吸收峰,其吸收峰的相对强度随二氧化碳流量值的增大而增强,表明等离子体聚合反应过程中二氧化碳与苯乙烯发生了反应。但一些苯环在等离子体聚合过程中遭到了破坏,枝化程度增加。采用偏光显微镜对所得等离子体聚合膜表面进行了观察,结果显示,以二氧化碳作为反应气体的等离子体聚合膜表面呈现类似波状的图形;随着二氧化碳流量的增加,相邻两个波之间的宽度变大;无二氧化碳作为反应气体的聚合膜没有明显的波纹图形。
     在微波技术协助下,本研究利用溶胶-凝胶法合成的二氧化钛溶胶与苯乙烯进行原位乳液聚合制备了核-壳结构的复合微球,微球表面光滑,粒径较小,且呈单分散性。常规加热乳液聚合与微波辐射乳液聚合结果的比较表明,常规加热乳液聚合所得复合微球的粒径明显大于微波辐射乳液聚合所得的复合微球,微球直径分布较宽,说明微波辐射乳液聚合适用于制备单分散且粒径较小的复合微球
In recent years, lasting developable policy has become an important strategy, which triggers many countries economical development, and is gradually accepted by people. Though chemical industry brings large economical benefits, but it gives rise to severe environment damage. For the sake of environment protection, to develope green chemical reaction process has become one of the important research aspects. Microwave and plasma technologies, which are applied in chemical field, have many advantages, such as easy operation, higher efficiency, quick reaction, environmentally friendly, and so on, thus attracting much attention.
     In this thesis, the studies on the rules of polymerization of CO2/styrene under glow discharge and TiO2/styrene under microwave are presented. The experimental results show that newly formed groups, -COOH and -C-O, are present in the plasma polymerized polystyrene films, suggesting that chemical reactions have happened between CO2 and styrene. XPS analysis confirms that the content of C=O and C-O groups increases with CO2 flow rate. Optical microscope observations demonstrate that the plasma polymerized styrene films show a wave-like pattern and that the wavelength increases with CO2 flow rate.
     TiO2/polystyrene core-shell nanospheres have been successfully synthesized by a novel combination of sol-gel and microwave assisted emulsion polymerization. The obtained nanoparticles, whose diameter is very uniform, have clear core-shell structure and smooth surfaces.
引文
[1]赵化侨,等离子体化学与工艺,合肥:中国科学技术大学出版社,1993
    [2]吴靖嘉,高红莉等,等离子体聚合及其研究现状和应用前景,合成橡胶工业,1993,16(4):243~247
    [3]高晓莉,盛京等,等离子体聚合及其研究进展,精细石油化工,1999,7(4):53~57
    [4] Hiratsuka H., Akovali G., Shen M., et al., Plasma polymerization of some simple saturated hydrocarbons, J Appl Polym Sci, 1978, 22(4): 917~925
    [5] Duval M., Theoret A., A comparative study of microwave and radio frequency plasma polymerization of benzene, J Electrochem Soc, 1973, 120(3): 84C
    [6] Kobayashi H., Bell A.T., Shen M., Effects of monomer flow rate, flow configuration, and reactor geometry on the rate of plasma polymerization, Polymer Preprints, Division of Polymer Chemistry, J Am Chem Soc, 1975, 16(1): 44~49
    [7] Brown K.C., Polymerization in radio frequency glow discharges, Eur Polym J, 1972, 8(1): 117~127
    [8] Vinzant J.W., Bell A.T., Shen M., et al., Polymerization of hydrocarbons in a pulsed plasma, American Chemical Society: Washington D.C., ACS Symposium Series, 1979, 79~85
    [9] Yasuda H., Bumgarner M.O., Hillman J.J., Polymerization of organic compounds in an electrodeless glow discharge. V. Amines and nitriles, J Appl Polym Sci, 1975, 19(5): 1403~1408
    [10] Yasuda H., Lamaze C.E., Polymerization in an electrodeless glow discharge. III. Organic compounds without olefinic doublebond,J Appl Polym Sci, 1973, 17(5): 1533~1544
    [11] Yasuda H., Bumgarner M.O., Marsh H.C., et al., Plasma polymerization of some organic compounds and properties of the polymers, J Polymer Sci Polym Chem Ed, 1976, 14(1): 195~224.
    [12] Hudis M., Wydven T., Plasma polymerization of an ethylenenitrogen gas mixture, J Polym Sci Polym Lett Ed, 1975, 13(9): 549~557
    [13] Yasuda H., Marsh H.C., Tsai J., Preparation of composite reverse osmosis membranes by plasma polymerization. II. Copolymerization of unusual comonomers, J Appl Polym Sci, 1975, 19(8): 2157~2166
    [14] Yasuda H., Marsh H.C., Bumgarner M.O., et al., Polymerization of organic compounds in an electrodeless glow discharge. VI. Acetylene with unusual comonomers, J Appl Polym Sci, 1975, 19(10): 2845~2858
    [15] Yasuda H., Marsh H.C., Preparation of composite reverse osmosis membranes by plasma polymerization of organic compounds. III. Plasma polymers of acetylene/CO/H2O, J Appl Polym Sci, 1975, 19(11): 2981~2990.
    [16] Johnson D.R., Osada Y., Bell A.T., et al., Studies of the mechanism and kinetics of plasma-initiated polymerization of methyl methacrylate, Macromolecules, 1981, 14(1): 118~124
    [17] Siniommescu B.C., Loanca M., Ananiescu C., et al., Plasma-induced polymerization, Polym Bull, 1980, 3: 437~440
    [18] Siniommescu B.C., Loanca M., Ioan S., et al., Plasma-induced polymerization, Polym Bull, 1981, 4: 415~419
    [19] Osada Y., Takase M., Plasma-initiated emulsion polymerization of alkyl acrylates and methacrylates, J Polym Sci Polym Lett Ed, 1983, 21: 643~648
    [20] Osada Y., Bell A. T., Shen M., Plasma Polymerization, ACS Sump Ser, 108: 253~261
    [21] Sinionescu C. I., Sinionescu B. C., Plasma-induced polymerization, Polym Bull, 1981, 5: 61~66
    [22] Iriyama Y., Yasuda H., Proposed mechanism of plasma-induced polymerization, Polymeric Materials Science and Engineering, Proceedings of the ACS Division of Polymeric Materials Science and Engineering, 1990, 62: 162~166
    [23] Odajima, A., Nakase. Y., Osada, Y., et al., Plasma Polymerization, ACS Sump Ser, 1979, 108: 263~274
    [24] Hogen-Esch T.E., Smith R.A., Ades D., et al., Stereochemistry of anionic oligomerization of vinyl monomers. 9. Preparation of stereoregular oligomers of 2-(2-pyridyl)propene, J Polym Sci Polym Lett Ed, 1981, 19: 309~314
    [25] Klein J.A., Bell A.T., Soong D.R., Plasma-initiated polymerization of hexachlorocyclotriphosphazene, Mcromolecules, 1987, 20: 782~789
    [26] Bovey F.A., Polymer conformation and configuration, New York: Academic Press, 1969
    [27] Osada Y., Takase M., Iriyama Y., Mechanism and application of plasma-initiated polymerization of vinyl monomers, Proceedings of the International Ion Engineering Congress. The 7th Symposium (1983 International) on Ion Sources and Ion Assisted Technology (ISIAT '83) and the 4th International Conference on Ion and Plasma Assisted Techniques (IPAT '83), 1983, 3: 1435~1440
    [28] Osada Y., Mizumoto A., Spontaneous and rapid polymerization of plasma-exposed monomer crystals in liquid phase, Macromolecules, 1985, 18: 302~304
    [29] Haraguchi T., Hatanaka C., Ide S., et al., Immobilization of glucoamylase by plasma-initiated polymerization and evaluation of enzyme activity, J Appl Polym Sci Appl Polym Sym, 1990, 46: 385~397
    [30] Osada Y., Iriyama Y., Lino Y., et al.,Plasma-initiated solution polymerization -its its application to immobilization of enzymes, Organic Coatings and Applied Polymer Science Proceedings, 1982, 47: 56~60
    [31] Sinionescu C.I., Cheiaru C., Sulfonated copolymers of acrylamide synthesized by plasma-initiated copolymerization in order to obtain polymers for enhanced oil recovery, Polym Bull, 1994, 32(5-6): 611~616
    [32] Osada Y., Hashidzume M., Tsnchida E., Bell Polymerization of phosphazene crystal by plasma-exposure, A T Nature(London), 1980, 286: 693~701
    [33] Osada Y., Shen M., et al., Sodium dimethylformamide: A new organic reagent, J Polym Sci, 1978, 16(3): 699~700
    [34]陈杰容,低温等离子体化学及其应用,北京:科学出版社,2001,6
    [35] Meyer A.A., Schroder K, et a1., Current trends in biomaterial surface functionalization-nitrogen-containing plasma assisted processes with enhanced selectivity, Vacuum, 2003, (71): 391~406
    [36] Meyer A.A., Finke B., Schr?der K., et a1., Pulsed and cw microwave plasma excitation for surface functionalization in nitrogen-containing gases, Surf Coat Techn, 2004, (174-175): 877~881
    [37]汤建新,李松等,聚丙烯微孔膜的等离子体改性及DNA原位合成,化学学报,2003,61(4):641~645
    [38] Martinez A.J., Manolache S., Gonzalez V., et al., Immobilized biomolecules on plasma functionalized cellophane. I. Covalently attached alpha-chymotrypsin, J Biomater Sci Polym Edn, 2000, 11(4): 415~438
    [39] Avramescu M.E., Sager W.F.C., Wessling M., Functionalised ethylene vinyl alcohol copolymer(EVAL) membranes for affinity protein separation, J Membr Sci, 2003, 216: 177~193
    [40] Kuhn G., eidner W.St., Decker R., et a1., Selective surface functionalization of polyolefins by plasma treatment followed by chemical reduction, Surf Coat Tech, 1999, ll6-119: 796~801
    [41]苏葆辉,冉均国,陈治清,低温等离子体处理聚羟基磷酸钙钠提高生物活性的研究,航天医学与医学工程,2003,16(1):68~71
    [42] Ganapathy R.,Manolache S.,Sarmadi M., et a1., Immobilization of papain on cold-plasma functionalized polyethylene and glass surfaces, J Biomater Sci Polym Edn, 2001, 12(9): 1027~1049
    [43] Ohl A., Schroder K., Plasma-induced chemical micropatterning for cell culturing applications: a brief review, Surf Coat Tech, 1999, (l16-l19): 820~830
    [44] Xu X., Moulijn J.A., Mitigation of carbon dioxide chemical conversion, Energy fuels, 1996, 10(2): 305~324
    [45] Suib S.L., Zerger R.P., A direct continuous low-power catalytic conversion of methane to higher hydrocarbons via microwave plasma, J Catal, 1993, 139(2): 383~391
    [46] Oumghar A., Legrand J.C., Diamy A.M., et al., Methane conversion by an air microwave, Plasma Chem Plasma Pro, 1995, 15(1): 87~107
    [47] Liu C.J., Marafee A., Hill B.J., et al., Oxidative coupling of methane with AC and DC corona discharges, Ind Eng And Chem, 1996, 35(10): 3295~3301
    [48] Nishimura Y., Takenouchi T., Decomposition of carbon dioxide in an induction-coupled argon plasma Jet, Ind Eng Chem Fundam, 1976, 15(2): 266~269
    [49] Liu C.J., Xu G.H., Wang T., Non-thermal plasma approaches in CO2 utilization, Fuel Process Technol, 1999, 58(2-3): 119~134
    [50] Jogan K., Mizuno A., Yamamoro T., et al., The Effect of residence time on the carbon dioxide reduction from combustion flue gases by an AC ferroelectric packed bed reactor, IEEE Trans on Ind Appl, 1993, 29(5): 876~881
    [51] Sigmond R.S., Corona discharges in electrical breakdown of gases, Wiley, New York: 1978, 319~384
    [52] Chang J.S., Corona discharge treatment of carbon dioxide gas in plasma enhanced electrofluidized bed filters in: Proc int symp high pressure low temperature plasma processing, IEEE, Japan Press, 1987, 2(ED-87-75): 45~54
    [53] Maezono I., Chang J.S., Reduction of carbon dioxide from combustion gases by DC corona torches, IEEE Trans on Ind Appl, 1990, 26(4): 651~655
    [54] Boukhafa N., Goldman A., Goldman M, et al., CO2 to CO conversion in corona discharge in, Proc Int Symp Plasma Chem, 1987, 2: 787~792
    [55] Li M.W., Xu G.H., Liu C.J., et al., Study on corona discharge for carbon dioxide conversion using cold reaction, J Fuel Chem Technol (Chinese), 2001, 29(3): 243~246
    [56] Wen Z.Y., Jiang X.Z., Decomposition of CO2 using pulsed corona discharges combined with catalyst, Plasma Chem Plasma Process, 2001, 21(4): 665~678
    [57] Dai B., Gong W.M., et al., Investigation on the conversion of pure CO2 by pulsed corona plasma, China Environ Sci (Chinese), 1999, 19(15): 410~412
    [58] Zhu A.M., Zhang X.L., Gong W.M., et at., Conversion of CO2 by non-equilibrium plasma at atmospheric pressure, Environ Sci (Chinese), 1998, 19(2): 20~23
    [59] Dai B., Gong W.M., et al., Investigation on CO2-CO conversion by cold plasma, Nat Gas Chem Ind (Chinese), 2000, 25(6): 11~14
    [60] Xie Z., Jogan K., Chang J., The effect of residential time on the reduction of CO2 from combustion flue gases by a corona torch reactor, IEEE industry application society annual meeting, USA: Pittsburgh, 1990, 1: 809~814
    [61] Morvova M., DC corona discharge in CO2-air and CO-air mixtures for various electrode materials, J Phys D Appl Phys, 1998, 31(15): 1865~1874
    [62] Seizo K., Yoshihiro Y., Motohiro O., Plasma conversion experiment of carbon dioxide into fuel species and quantum analysis of plasma reaction associated with oxygen atom, Am Soc Mech Eng EC, 1997, 5(2-5): 497~502
    [63] Brock L., Shimojo T., Marquez M., et at., Factors influencing the decomposition of CO2 in AC fan-type plasma reactors: frequency, waveform, and concentration effects, J Catal, 1999, 184(2-3): 123~133
    [64] Wang J.Y., Xia G.G., Huang A., et at., CO2 decomposition using glow discharge plasma, J Catal, 1999, 185(2-3): 153~159
    [65] Tsuji M., Tanoue T., Nakano K., et al., Decomposition of CO2 into CO and O in a microwave-excited discharge flow of CO2/He or CO2/Ar mixtures, Chem Lett, 2001, 349(1): 22~23
    [66] Hempel F., Rpcke J., Miethke F., Wagner H.E., Absorption spectroscopic studies of carbon dioxide conversion in a low pressure glow discharge using tunable infrared diode lasers, Plasma Sources Sci Technol, 2002, 11(3): 266~272
    [67] Li R.X., Tang Q., Yin S., et al., Decomposition of carbon dioxide by the dielectric barrier discharge(DBD) plasma using CaO.7Sr0.3TiO3 barrier, Chem Lett, 2004, 33(4): 412~413
    [68] Krylov O.V., Mamedov A.K., Heterogeneous catalytic reactions of carbon dioxide, Russ Chem Rev, 1995, 64(90): 877~885
    [69] Kogelschatz U., Zhou L.M., Xue B., et at., Production of synthesis gas through plasma-assisted reforming of greenhouse gas, Proc of the 4th Int Conf On Greenhouse Gas Control Tech, Switzerland, 1998, 385~390
    [70] Malik M.A., Jiang X.Z., The CO2 reforming of natural gas in a pulsed corona discharge reactor, Plasma Chem Plasma Process, 1999, 19(4): 505~512
    [71] Liu C.J., Mallinson R.G., Lobban L.L., Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma, J Catal, 1998, 179: 326~334
    [72] Zhou L.M., Xue B., Kogelshatz U., et al., Nonequilibrium plasma reforming of greenhouse gases to synthesis gas, Energy Fuels, 1998, 12: 1191~1199
    [73] Huang A., Xia G., Wang J., et al., CO2 reforming of CH4 by atmospheric pressure ac discharge plasmas, J Catal, 2000, 189: 349~359
    [74] Yao S.L., Ouyang F., Nakayama A., et al., Oxidative coupling and reforming of methane with carbon dioxide using a high-frequency pulsed plasma, Energy Fuels, 2000, 14: 910~914
    [75] Yao S.L., Okumoto M., Nakayama A., et al., Plasma reforming and coupling of methane with carbon dioxide, Energy Fuels, 2001, 15: 1295~1299
    [76] Zhang J.Q., Yang Y.J., Zhang J.S., Liu Q., Study on the conversion of CH4 and CO2 using a pulsed microwave plasma under atmospheric pressure, Acta Chem Sinica, 2002, 60(11): 1973~1980
    [77] Zou J.J., Zhang Y.,Liu C.J., Product Distribution of Conversions of Methane and Carbon Dioxide Using Dielectric Barrier Discharge, Acta Phys Chem Sin, 2002, 18(8): 759~763
    [78] Jian T., Li M.W., Li Y., et al., Comparative Investigation on the Conversion of Greenhouse Cases using Dielectric Barrier Discharge and Corona Discharge, J Tianjin Univ, 2001, 35(1): 19~20
    [79] Jiang T., Li Y., Liu C.J., et al., Plasma methane conversion using dielectric-barrier discharges with zeolite A, Catal Today, 2002, 72(3): 229~235
    [80] Liu C.J., Oxidative synthesis of higher hydrocarbons from CO2 and CH4 by streamer discharges, Chem Lett, 1996: 749~750
    [81] Liu C.J., Xue B., Eliasson B., et al., Methane Conversion to Higher Hydrocarbons in the Presence of Carbon Dioxide Using Dielectric-Barrier Discharge Plasmas, Plasma Chem Plasma Process, 2001, 21(3): 301~310
    [82] Chen D.L., Lui Z.L., Liu W.Y., et al. , Investigation on the Direction Conversion of Carbon Dioxide and natural gases to C2 Hydrocarbon by Microwave plasma, Chinese J Synthetic Chem, 1997, 5(2): 131~132
    [83] Li M.W., Liu C.J., Xiu G.H., Conversion methane and carbon dioxide to syngas in cold Plasma, Chinese J Appl Chem, 2000, 017(006): 593~597
    [84] Li M.W., Xu G.H., Tian Y.L., et al., Carbon dioxide reforming of methane using DC corona discharge plasma reaction, J Phys Chem A, 2004, 108(10): 1687~1693
    [85] Gesser H.D., Hunter N.R., Probawono D, et al., The CO2 reforming of natural gas in a silent discharge reactor, Plasma Chem Plasma Process, 1998, 18(2): 241~245
    [86] Hsieh L.T., Lee W.J., Chen C.Y., et al. , Converting methane by using an RF plasma reactor, Plasma Chem Plasma Process, 1998, 18(2): 215~223
    [87] Mutaf-Yardimci O., Savelive A.V., Fridman A.A., et al., Employing plasma as catalyst in hydrogen production, Int J Hydrogen Energy, 1998, 23(12): 1109~1111
    [88] Kado S., Urasaki K., Sekiney, et al., Low temperature reforming of methane to synthesis gas with direct current pulse discharge method, Chem Commun, 2001, 415~416
    [89] Dai B., Zhang X.L., Gong W.M., et al., Study on the methane coupling under pulse corona plasma by using CO2 as oxidant, Plasma Sci Technol, 2000, 2(6): 577~580
    [90] Zhang X.L., Zhu A.M., et al., Catalytic activity of metal and metal-oxide catalysts in oxidative coupling of CH4 with CO2 under pulse corona plasma, Chinese J Catal, 2003, 24(10): 725~726
    [91] Zhang X.L., Gong W.M., et al., Effect of La2O3/γ-Al2O3 Catalyst on the activation of CH4 and CO2 to C2 hydrocarbons under non-equilibrium plasma, Chinese Chem Lett, 2002, 13(2): 175~176
    [92] Zhang X.L., Dai B., Gong W.M., et al., The simultaneous activation of methane and carbon dioxide to C2 hydrocarbons under pulse corona plasma over La2O3/γ-Al2O3 catalyst, Catal Today, 2002, 72(3): 223~227
    [93] Eliasson B., Liu C.J., Kogelschatz U., Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric barrier discharges with Zeolites, Ind Eng Chem Res, 2000, 39: 1221~1227
    [94] Song H.K., Lee H., Choi J.W., et al., Effect of Electrical Pulse Forms on the CO2 Reforming of Methane Using Atmospheric Dielectric Barrier Discharge, Plasma Chem Plasma Process, 2004, 24(1): 57~72
    [95] Piboon P., George R., Gavala S., A multiple microreactor system for parallel catalyst preparation and testing, AICHE J, 2002, 48(4): 815~819
    [96]陈栋梁,张承聪,二氧化碳和天然气经过微波等离子体直接转化成C2烃,合成化学,1997,5(2):131~132
    [97] Maya L., Plasma-assisted reduction of carbon dioxide in the gas phase, Vacuum Sci Tech A, 2000, 18(1): 285~287
    [98] Zhang X.L., Zhang L., Dai B., et al., The formation of ethane from carbon dioxide under cold plasma ethane dehydrogenation, Plasma Sci Technol, 2001, 3(2): 737~741
    [99] Zhang X.L., Gong W.M., et al., Dehydrogenation of Ethane Under Cold Plasma, Petrochem Technol, 2002, 031(005): 337~340
    [100] Zheng G., Jiang J., Wu Y., et at., The Mutual Conversion of CO2 and CO in Dielectric Barrier Discharge(DBD), Plasma Chem Plasma Process, 2003, 23(1): 59~68
    [101] Glockler G., Lind S. C., The Electrochemistry of Gases and Other Dielectrics, John Wiley & Sons, Inc, New York,1939: 193
    [102] Zhang Y.P., Li Y., Wang Y., et al., Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges, Fuel Process Technol, 2003, 83(1): 101~109
    [103] Zou J.J., Zhang Y.P., Liu C.J., et al., Starch enhanced synthesis of oxygenates from methane and carbon dioxide using dielectric-barrier discharges, Plasma Chem Plasma Process, 2003, 3(1): 69~82
    [104] Bill A., Eliasson B., Kogelschatz U., et at., Comparison of CO2 hydrogenation in catalytic reactor and in a dielectric-barrier discharge, Stud Surf Sci Catal, 1998, 114: 541~544
    [105] Eliasson B., Kogelschatz U., Xue B.Z., et al., Hydrogenation of carbon dioxide to methanol with discharge-activated catalyst, Ind Eng Chem Res, 1998, 37: 3350~3357
    [106] Zhou L.M., Xue B., Kogelschatz U., et al., Nonequilibrium plasma reforming of greenhouse gases to synthesis gas, Plasma Chem Plasma Process, 1998, 18: 375~393
    [107] Ihara T., Ouro T., Ochial T., et al., Plasma reduction of CO2 with H2O for the formation of organic compounds, Bull Chem Soc Jpn, 1996, 67: 312~314
    [108] Hijikata K., Watanabe K., Okazaki T., Direct synthesis of methanol by creeping discharge and the apparatus, JP, 10 298 121, 1998-04-19
    [109] Helmut D., Reinhard M., Juergen R., Verfahren zur numwandlung von biogas zu methanol, Dectsche demokratische republic Patent, DO 260 011 AI, 1988-09-14
    [110] Rajanikanth B., Okumoto M., Katsura S., et al., Non-thermal plasma approach in direct methanol synthesis from CH4, Proc of 1996 IEEE IAS Annual Meeting, New York: Institute of electrical and Electronics Engineers, 1996, 1813~1817
    [111] Kozloy K.V., Michel P., Wagner H.E., Synthesis of Organic Compounds from Mixtures of Methane with Carbon Dioxide in Dielectric-Barrier Discharges at Atmospheric Pressure, Plasmas Polym, 2000, 5(3): 129~150
    [112] Takeshi T.J., Hideomi K.M., A cold plasma generator and its applications to combinatorial copolymerization of carbon dioxide with organic molecules, Macromol Rapid Commun, 2004, 25(10): 312~314
    [113] Wang J.G., Liu C.J., Eliassion B., Density functional theory study of synthesis of oxygenates and higher hydrocarbons from methane and carbon dioxide using cold plasmas, Energy Fuels, 2004, 18(1): 148~153
    [114] Gedye R., Smith F., Westaway K., et a1., The use of microwave ovens for rapid organic synthesis, Tetrahedron Lett, 1986, 27(3):279~282
    [115] Berlan J., Giboreau P., Organic synthesis with microwave.First example of wave action in homogenous phase, Tetrahedron Lett 1991, 32: 2363~2366
    [116] Bose A.K., Manlas M.S., Microwave-induced organic reaction enhancement chemistry 2. Simplified techniques, J Org Chem, 1991, 56: 6968~6970
    [117] Bose A.K., Manlas M.S., Highly accelerated reactions in microwave oven:synthesis of heterocycles, Hetrocycles, 1990, 30(2): 741~744
    [118] Mruuay M., Charlesworth D., Swires L., et a1., Microwave synthesis of the codoidal(N isoproplacrylamide)micro gel system, J Chem Faraday Frans, 1994, 90(13): 1999~1210
    [119]王志,沈家瑞,微波技术在高分子材料加工中的应用,高分子通报,1997,2:113~117
    [120]李杰,赵建青,微波作用下的甲基丙烯酸甲酯的本体聚合高分子材料科学与工程,1999,15(2):155~156
    [121]路建美,朱秀林,马来酸酐的微波固相聚合研究,高分子材料科学与工程,1999,15(1):158~160
    [122] Chia H.L., Jaeob J., Boey F.Y.C., Microwave radiation effect on the polymerization of styrene, J Polym Sci A, 1996, 34(11): 2087~2094
    [123]顾梅,朱秀林,丙烯酰胺的微波聚合研究,高分子材料科学与工程,1997,13(5):36~39
    [124]金钦汉,微波化学,北京:科学出版社,1999
    [125] Zhang W.M., Gao J., Wu C., Microwave preparation of narrowly distributed surfactant-free stable polystyretae nanospheres, Macromolecules, 1997, 30: 6388~6390
    [126]翟慕衡,张文敏,盛恩宏等,微波合成均分散高分子微球及其机理,物理化学学报,1999,15(8):747~75
    [127] Andersson H., Gedde U.W., Hult A., Synthesis and polymerization of liquid crystalline donor-acceptor monomers, Macromolecule 1996, 29(5): 1649~1654
    [128] Hurduc N., Microwave effects in the synthesis of polyethers by phase transfer catalysis, J Eur Polym, 1997, 33(2): 187~190
    [129]罗根祥,刘春生,秦永航等,分子筛孔道内聚苯胺的微波合成,石油化工高等学校学报,2000,13(3):5~8
    [130] Fang X.M., Hutcheon R., Scola D.A., Microwave syntheses of poly(-caprolactam-co- -caprolactone), J Polym Sci A, 2000, 38: 1379~1390
    [131] Afranio Tones-filho, Lenz RobertW., Electrical thermal and photo properties of poly(phenylene vinylene) precursors, II. Microwave-induced elimination reactions in precursor polymer films, J Appl Poly Sci, 1994, 52: 377~386
    [132] Mallakpour S.E., Hajipour A.R. , Khoee S., Microwave-assisted polycondensation of 4,4 -(hexafluoroisopropylidene)-N,N-bis(phthaloyl-L-leucine) diacid chloride with aromatic diols, J Appl Polym Sci, 2000, 77: 3003~3009
    [133] Mallakpour S.E., Hajipour A.R., Khalil F., Microwave-assisted synthesis of optically active poly(amide-imide)s with benzophenone and L-alanine linkages, Eur Polym J, 2001, 37: 119~124
    [134] Mallakpour S. E., Hajipour A.R., Khoee S., Polymerization of 4,4-(hexafluoroisopropylidene)-N,N -bis(phthaloyl-L-leucine) diacid chloride with aromatic diamines by microwave irradiation, J Polym Sci A, 2000, 38: 1154~1160
    [135] Maeda S., Armes S.P., Preparation and Characterization of polypyrrole-tin(IV) oxide nanocomposite colloids, Chemistry of Materials, 1995, 7(1): 171~178
    [136] Aras J.L., Gallardo V., Gomez-Lopera S.A., Plaza R.C., et.al., Synthesis and characterization of poly(ethyl-2-cyanoacrylate) nanoparticles with a magnetic core, J Control Release, 2001, 77: 309~321
    [137]丁小斌,孙宗华,万国祥,热敏性高分子包裹的磁性微球的合成,高分子学报,1998,5:628~631
    [138] Lu S.L., Cheng G.X., Pang S.X., Preparation of molecularly imprinted Fe3O4/P(St-DVB) composite beads with magnetic susceptibility and their characteristics of molecular recognition for amino acid,J Appl Polym Sci, 2003, 89: 3790~3796
    [139] Yen C.C., Studies on the preparation and properties of conductive polymers. X. Using metal plates to prepare metallized conductive polymer films, J Appl Polym Sci, 1996, 60(5): 693~696
    [140] Huang J., Yang Y., Yang B., et al., Synthesis of the CdS nanoparticles in polymer networks, Polym Bull, 1996, 36(3): 337~340
    [141] Huang J., Yang Y., Yang B.,et al., Preparation and characterization of Cu2S/CdS/ZnS nanocomposite in polymeric networks, Polym Bull, 1996, 37(5): 679~682
    [142] Ng C.C.Y., Schrock R.R., Cohen R.E.,Synthesis of silver and gold nanoclusters within microphase-separated diblock copolymers, Chem Mater, 1992, 4(1): 24~27
    [143] Ng C.C.Y., Craig G.S.W., Schrock R.R.,et a1,Silica-pillared derivatives of H+-magadiite, a crystalline hydrated silica, Chem Mater, 1992, 4(4): 885~887
    [144] Ng Cheong Chan Y., Schrock R.R., Cohen R.E., Synthesis of single silver nanoclusters within spherical microdomains in block copolymer films, J Am Chem Soc, 1992, 114: 7295~7296
    [145] Saito R., Okamura S., Ishizu K., Introduction of colloidal silver into a poly(2-vinyl pyridine) microdomain of microphase separation polymer(Styrene-b-2-vinyl prridine) film, Polymer, 1992, 33(5): 1099~1101
    [146] Saito R., Okamura S.,Ishizu K., Introduction of silver nano-clusters into poly(vinyl alcohol) core-polystyrene shell type microspheres, Polymer, 1996, 37(23): 5255~5259
    [147] Antonietti M., Thunemnn A., Wenz E., Synthesis and characterization of non-spherical gold colloids in block-copolymer micelles, Colloid Polym Sci, l996, 274: 795~800
    [148] Klingelhofer S., Heitz W.,Greiner A., et a1., Preparation of palladium colloids in block copolymer micelles and their use for the catalysis of the heck reaction, J Am Chem Soc, 1997, 119(42): 10116~10120
    [149] Selvan S.T., Novel nanostructures of gold-polypyrrole composite, Chem Commun, 1998, 7(3): 351~352
    [150] Chen L., Yang W.J., Yang C.Z., Preparation of nanoscale iron and Fe3O4powder in a polymer matrix, J Mater Sci, 1997, 32(13): 3571~3575
    [151] Vadera S.R., Mathur R., Parihar M., et a1., Direct synthesis of nanocomposite ofγ-Fe2O3 in the copolymer matrix of aniline-formaldehyde in presence of zinc ions, Nanostructured Mater, 1997, 8(7): 889~898
    [152] Tamai H., Sakurai H., Hirota Y., Nishiyama F., Yasuda H., Preparation and characteristics of ultrafine metal particles immobilized on fine polymer particles, J Appl Polym Sci, 1995, 56(4): 441~449
    [153] Tamai H., Hamamoto S., Nishiyama F., Ultrafine metal particles immobilized on styrene/acrylic acid copolymer particles, J Colloid Inter Sci, 1995, 171(1): 250~253
    [154] Wang P.H., Pan C.Y., Polymer metal composite microspheres preparation and characterization of poly(St-co-AN)Ni microspheres, Eur Polym J, 2000, (36): 2297~2300
    [155] Nakao Y., Preparation and characterization of noble-metal solid sols in poly(methyl methacrylates), J Chem Soc-Chem Commun, 1993, 21(10): 826~828
    [156] Nakao Y., Noble metal solid sols in poly(methyl methacrylate), Journal of Colloid Inter Sci, 1995, 171(2): 386~391
    [157] Watkins J.J., Mccarthy T.J., Chenistry in supercritical fluid-swolled polymers-direct synthesis of metal-polymer nanocomposites, Abstracts of Papers of the American ChemicalL Society, 210: 84-PMSE Part 2 AUG 20 1995, J Polym Mater Sci Eng, l995, 73: l58~161
    [158] Ye S.Y., Vijh A.K., Wang Z.Y., et al., A new electrocatalyst consisting of a molecularly homogeneous platinum-aerogel nanocomposite, Canada J Chem-Revue Canadienne de Chimie, 1997, 75(11): 1666~l673
    [159] Sun Y., Rollins H.W., Preparation of polymer-protected semiconductor nanoparticles through the rapid expansion of supercritical fluid solution, Chem Phys Lett, 1998, 288(2-4): 585~588
    [160] Warshawsky A., Upson D.A., Zerovalent metal polymer composites I: Metallized beads, J Polym Sci, A: Polym Chem, 1989, 27(7): 2963~2994
    [161] Warshawsky A,Upson D A.Zerovalent metal polymer composites. II. Metal-polymer microdispersions, J Polym Sci, A Polym Chem, 1989, 27(9): 2995~3014
    [162] Premachandran R., Banerjee S., John V.T., et a1., The Enzymatic synthesis of thiol-containing polymers to prepare polymer-CdS nanocomposites, Chem Mater, 1997, 9(6): 1342~1347
    [163] Xu X., Moulijn J.A., Mitigation of carbon dioxide chemical conversion, Energy Fuels, 1996, 10(2): 305~324
    [164] Suib S.L., Zerger R.P., A direct continuous low-power catalytic conversion of methane to higher hydrocarbons via microwave plasma, J Catal, 1993, 139(2): 383~391
    [165] Oumghar A., Legrand J.C., Diamy A.M., et al., Methane conversion by an air microwave plasma, Chem Plasma Process, 1995, 15(1): 87~107
    [166] Liu C.J., Marafee A., Hill B.J., et al., Oxidative coupling of methane with AC and DC corona discharges, Ind Eng And Chem, 1996, 35(10): 3295~3301
    [167] Van T.G., Spijker H.T., Busscher H.J., Plasma-treated polystyrene surfaces: model surfaces for studying cell-biomaterial interactions, Biomaterials, 2004, 25: 1735~1747
    [168] Baker S.C., Atkin N., Gunning P.A., et al., Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies, Biomaterials, 2006, 27: 3136~3146
    [169] Mitchell S.A., Davidson M.R., Bradley R.H., Improved cellular adhesion to acetone plasma modified polystyrene surfaces, J Colloid Inter Sci, 2005, 281: 122~129
    [170] Wang M.J., Chang Y.I., Poncin E.F., Acid and basic functionalities of nitrogen and carbon dioxide plasma-treated polystyrene, Surf Interf Anal, 2005, 37: 348~355
    [171] Medard N., Soutif J.C., Poncin E.F., Characterization of CO2 plasma-treated polyethylene surface bearing carboxylic groups, Surf Coat Tech, 2002, 160: 197~201
    [172] Wang M.J., Chang Y.I., Poncin-Epaillard F., Illustration of the interface between N2/CO2 plasmas and polystyrene surface, Surf Inter Anal 2005, 37: 325~331
    [173] Yasuda H., Yasuda T., Competitive ablation and polymerization (CAP) principle and the plasma sensitivity of elements in plasma polymerization and treatment, J Polym Sci A Polym Chem, 2000, 38(6): 943~953
    [174] Koprinarov I., Lippitz A., Friedrich T.F.,et al., Oxygen plasma induced degration of the surface of polystyrene,poly(bispkenel-A-carbonate) and poly(ethylene tevrephthalate) as observed by soft x-ray absorption spectroscopy(NEXAFS), Polymer, 1998, 39(14): 3001~3009
    [175]董庆年,红外光谱法,北京:石油化学工业出版社,1977
    [176] Jesch K., Bloor J.E., Kronick P.L., Structure and physical properties of glow discharge polymers, I. Polymers from hydrocarbons, J Polym Sci Part A 1966, 4: 1487~1497
    [177] Kim, J.T. Lim K.B., Lee D.C., The influence of CH4 carrier gas in plasma polymerized styrene films, Surf Coat Tech, 2004, 182: 1~6
    [178] Lub J., van C.B.M., Bruninx E., et al., Interaction of nitrogen and ammonia plasmas with polystyrene and polycarbonate studied by X-ray photoelectron spectroscopy, neutron activation analysis and static secondary ion mass spectrometry, Polymer, 1989, 30: 40~44
    [179] Petrat F.M., Wolany D.W., Schwede B.C., et a1., In situ TOF-SIMS/XPS investigation of nitrogen plasma-modified polystyrene surfaces,J Surf Inter Annal, 1994, 21: 274~282
    [180] Chan C.M., Polymer surface modification and characterization. Verlag: Müchen, Germany, 1993
    [181] Nakao A., Suzuki Y., Iwaki M., Water wettability and zeta-potential of polystyrene surface modified by Ne or Na implantation, J colloid inter Sci, 1998, 197: 257~261
    [182] Barton M.J., Engel A.V., Electric dissociation of CO2, Phys Lett, 1977, 32A(3): 173~174
    [183] Fridman A.A., Resanov V.D., Theoretical basic of non-equilibrium near atmospheric pressure plasma chemistry, Pure Appl Chem, 1994, 66(6): 1267~1278
    [184] Chuang I.L., Laflamme R., Shor P., et al., Quantum computers factoring and decoherence, Science, 1995; 270: 1633~1635
    [185] Landauer R., Dissipation and noise immunity in computation and communication, Nature, 1988, 335: 779~784
    [186] Bowden N., Huck W. T. S., Paul K. E., et al., The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer Appl Phys Lett, 1999, 75: 2557~2559
    [187] Groenewold J., Wrinkling of plates coupled with soft elastic media, Physica A, 2001, 298: 32~45
    [188]朱裕贞,顾达,黑恩成,现代基础化学[M],北京:化学工业出版社,1998
    [189]李晓娥,祖庸,纳米TiO2的制备,现代化工,1999,19(11):42~44
    [190]王鹏主,环境微波化学技术[M],北京:化学工业出版社,2003
    [191]赵国玺,表面活性剂,物理化学,北京:北京大学出版社,1991
    [192]俞志刚,袁荞龙,应圣康,SiO2-TiO2复合微粒的研究,复合材料学报,2000,17(4):71~75
    [193]卢希泉,邓振华,实用红外光谱发现,北京:电子工业出版社,1989
    [194] Pouilleau J.,Devillters D.,Grotdt H., et al., Surface study of a titantium -based ceramic electrode material by X-ray photoelectron spectroscopy, Mater Sci, 1997, 32: 564~561
    [195] TrapalIs C.H., Kozhukharov V., Samuneva B., Sol-gel processing of titanium-containing thin coatings, Part II. XPS studies, J Mater Sci, 1993, 28(5): 1276~1282
    [196] Barthet C., Hickey A.J., Cairns D., Synthesis of novel polymer-silica colloidal nanocomposites via free-radical polymerization of vinyl monpmers, Adv Mater, 1999,11:408~410
    [197]王丽萍,洪广言,无机-有机纳米复合材料,功能材料,1998,29(4):343~347
    [198] Gangopadhyay R., De A., Das s., Transport properties of polypyrrole-ferric oxide conducting nanocomposites, J Appl Phys, 2000, 87(5): 2363~2371
    [199] Wang Q., Xia H.S.,Zhang C.H., Preparation of polymer/inorganic nanoparticles composites through ultrasonic irradiation, J Appl Poly Sci, 2001,80(9): 1478~1488
    [200]张启卫,章永化,陈守明等,聚甲基丙烯酸甲酯/二氧化硅杂化材料制备与性能,应用化学,2002,19(9):874~877
    [201] Zheng M.P., Gu M.Y.,Jin Y.P.,et a1., Preparation structure and properties of TiO2-PVP hybrid films, Mater Sci Eng, 2000, B77: 55~59
    [202]郭广生,赵伟,王志华等,PMMA-TiO2纳米复合材料的制备,应用化学,2004,21(8):821~823
    [203]钱翼清,赵丰,王卫华,烷基化纳米SiO2/MMA乳液聚合物的表征及对PC的改性效果,复合材料学报,2003,20(1):79~84
    [204]申屠宝卿,高其标,黄志明等,纳米SiO2存在下苯乙烯原位乳液聚合,浙江大学学报,2004,38(4):513~517
    [205] Caris C.H.M, Polymer encapsulation of inorganic submicron particles in aqueous dispersion, Doctor Degree Dissertation, Technische University Eindhoven, 1990: 45~65
    [206]鲁德平,熊传溪,闻获江,以超微细Sb2O3/MMA作种子乙酸乙烯酯的乳液聚合研究,高分子材料科学与工程,1995,(11):49~51
    [207] Correa R., Go malez G., Dongar V., Emulsion polymerization in a microwave reactor, Polymer, 1998, 39: 147I~1474
    [208]肖超渤,胡运华,高分子化学,武汉:武汉大学出版社,1998:199~207
    [209]黄琨,向明,周德惠等,核壳式无机-高分子纳米复合粒子的形成机理与表征技术,材料导报,2003,17(3):63~65
    [210] Franciosee S., Tran M.D., Rosangela P., Surface morphology of poly(butyl acrylate)/poly(methyl methacrylate) core shell latex by atomic force microscopy, Langmuir, 1995, 11(2): 440~448
    [211]黄卡玛,刘永清,唐敬贤等,电磁波对化学反应非致热作用的实验研究,高等学校化学学报,1996,l7(12):764~768
    [212]谢筱娟,杨高林,程林等,微波辐射下的相转移催化法合成二(苯并三唑基)烷烃,化学试剂,2000,22(4):222~223
    [213]张兆堂,钟若青,微波加热技术基础,北京:电子工业出版社,1988,10
    [214]许涌深,无皂乳液共聚合的动力学和机理,高分子材料科学与工程,2000,16(1):46~48
    [215] Tang Y.Z., Tang Y.C., Luo S.Z., et al., Microwave preparation of narrowly distributed surfactant-free macromolecular nanospheres, Acta Phys Chem Sin, 1998, 14(7): 620~623
    [216]汤勇铮,唐业仓,罗时忠等,微波制备均分散无皂高分子纳米微球物理化学学报,1998,14(7):620~623
    [217]张文敏,高均,微波合成均分散胶体高分子微球,物理化学学报,1996,12(10):943~945
    [218]董炎明,高分子分析手册,北京:中国石化出版社,2004
    [219]刘玉鑫,波谱分析,成都:四川大学化工学院,2001
    [220] Wagner C.D.,Zatko D.A.,Raymond R.H., Use of the oxygen kll auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis, Ana1 Chem, 1980, 52: 1445~1451

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700